Actual source code: ex5f.F90

  1: !
  2: !  This example shows how to avoid Fortran line lengths larger than 132 characters.
  3: !  It avoids used of certain macros such as PetscCallA() and PetscCheckA() that
  4: !  generate very long lines
  5: !
  6: !  We recommend starting from src/snes/tutorials/ex5f90.F90 instead of this example
  7: !  because that does not have the restricted formatting that makes this version
  8: !  more difficult to read
  9: !
 10: !  Description: This example solves a nonlinear system in parallel with SNES.
 11: !  We solve the  Bratu (SFI - solid fuel ignition) problem in a 2D rectangular
 12: !  domain, using distributed arrays (DMDAs) to partition the parallel grid.
 13: !  The command line options include:
 14: !    -par <param>, where <param> indicates the nonlinearity of the problem
 15: !       problem SFI:  <parameter> = Bratu parameter (0 <= par <= 6.81)
 16: !
 17: !  --------------------------------------------------------------------------
 18: !
 19: !  Solid Fuel Ignition (SFI) problem.  This problem is modeled by
 20: !  the partial differential equation
 21: !
 22: !          -Laplacian u - lambda*exp(u) = 0,  0 < x,y < 1,
 23: !
 24: !  with boundary conditions
 25: !
 26: !           u = 0  for  x = 0, x = 1, y = 0, y = 1.
 27: !
 28: !  A finite difference approximation with the usual 5-point stencil
 29: !  is used to discretize the boundary value problem to obtain a nonlinear
 30: !  system of equations.
 31: !
 32: !  --------------------------------------------------------------------------
 33:       module ex5fmodule
 34:       use petscsnes
 35:       use petscdmda
 36: #include <petsc/finclude/petscsnes.h>
 37: #include <petsc/finclude/petscdm.h>
 38: #include <petsc/finclude/petscdmda.h>
 39:       PetscInt xs,xe,xm,gxs,gxe,gxm
 40:       PetscInt ys,ye,ym,gys,gye,gym
 41:       PetscInt mx,my
 42:       PetscMPIInt rank,size
 43:       PetscReal lambda
 44:       end module ex5fmodule

 46:       program main
 47:       use ex5fmodule
 48:       implicit none

 50: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 51: !                   Variable declarations
 52: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 53: !
 54: !  Variables:
 55: !     snes        - nonlinear solver
 56: !     x, r        - solution, residual vectors
 57: !     its         - iterations for convergence
 58: !
 59: !  See additional variable declarations in the file ex5f.h
 60: !
 61:       SNES           snes
 62:       Vec            x,r
 63:       PetscInt       its,i1,i4
 64:       PetscErrorCode ierr
 65:       PetscReal      lambda_max,lambda_min
 66:       PetscBool      flg
 67:       DM             da

 69: !  Note: Any user-defined Fortran routines (such as FormJacobianLocal)
 70: !  MUST be declared as external.

 72:       external FormInitialGuess
 73:       external FormFunctionLocal,FormJacobianLocal
 74:       external MySNESConverged

 76: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 77: !  Initialize program
 78: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

 80:       call PetscInitialize(ierr)
 81:       CHKERRA(ierr)
 82:       call MPI_Comm_size(PETSC_COMM_WORLD,size,ierr)
 83:       CHKERRMPIA(ierr)
 84:       call MPI_Comm_rank(PETSC_COMM_WORLD,rank,ierr)
 85:       CHKERRMPIA(ierr)
 86: !  Initialize problem parameters

 88:       i1 = 1
 89:       i4 = 4
 90:       lambda_max = 6.81
 91:       lambda_min = 0.0
 92:       lambda     = 6.0
 93:       call PetscOptionsGetReal(PETSC_NULL_OPTIONS,PETSC_NULL_CHARACTER,'-par',lambda,PETSC_NULL_BOOL,ierr)
 94:       CHKERRA(ierr)

 96: ! this statement is split into multiple-lines to keep lines under 132 char limit - required by 'make check'
 97:       if (lambda .ge. lambda_max .or. lambda .le. lambda_min) then
 98:          ierr = PETSC_ERR_ARG_OUTOFRANGE;
 99:          SETERRA(PETSC_COMM_WORLD,ierr,'Lambda')
100:       endif

102: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
103: !  Create nonlinear solver context
104: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

106:       call SNESCreate(PETSC_COMM_WORLD,snes,ierr)
107:       CHKERRA(ierr)

109: !  Set convergence test routine if desired

111:       call PetscOptionsHasName(PETSC_NULL_OPTIONS,PETSC_NULL_CHARACTER,'-my_snes_convergence',flg,ierr)
112:       CHKERRA(ierr)
113:       if (flg) then
114:         call SNESSetConvergenceTest(snes,MySNESConverged,0,PETSC_NULL_FUNCTION,ierr)
115:         CHKERRA(ierr)
116:       endif

118: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
119: !  Create vector data structures; set function evaluation routine
120: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

122: !  Create distributed array (DMDA) to manage parallel grid and vectors

124: !     This really needs only the star-type stencil, but we use the box stencil

126:       call DMDACreate2d(PETSC_COMM_WORLD,DM_BOUNDARY_NONE,DM_BOUNDARY_NONE,DMDA_STENCIL_STAR,i4,i4,PETSC_DECIDE,PETSC_DECIDE, &
127:                         i1,i1, PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,da,ierr)
128:       CHKERRA(ierr)
129:       call DMSetFromOptions(da,ierr)
130:       CHKERRA(ierr)
131:       call DMSetUp(da,ierr)
132:       CHKERRA(ierr)

134: !  Extract global and local vectors from DMDA; then duplicate for remaining
135: !  vectors that are the same types

137:       call DMCreateGlobalVector(da,x,ierr)
138:       CHKERRA(ierr)
139:       call VecDuplicate(x,r,ierr)
140:       CHKERRA(ierr)

142: !  Get local grid boundaries (for 2-dimensional DMDA)

144:       call DMDAGetInfo(da,PETSC_NULL_INTEGER,mx,my,PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,PETSC_NULL_INTEGER, &
145:                        PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,PETSC_NULL_INTEGER, &
146:                        PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,ierr)
147:       CHKERRA(ierr)
148:       call DMDAGetCorners(da,xs,ys,PETSC_NULL_INTEGER,xm,ym,PETSC_NULL_INTEGER,ierr)
149:       CHKERRA(ierr)
150:       call DMDAGetGhostCorners(da,gxs,gys,PETSC_NULL_INTEGER,gxm,gym,PETSC_NULL_INTEGER,ierr)
151:       CHKERRA(ierr)

153: !  Here we shift the starting indices up by one so that we can easily
154: !  use the Fortran convention of 1-based indices (rather 0-based indices).

156:       xs  = xs+1
157:       ys  = ys+1
158:       gxs = gxs+1
159:       gys = gys+1

161:       ye  = ys+ym-1
162:       xe  = xs+xm-1
163:       gye = gys+gym-1
164:       gxe = gxs+gxm-1

166: !  Set function evaluation routine and vector

168:       call DMDASNESSetFunctionLocal(da,INSERT_VALUES,FormFunctionLocal,da,ierr)
169:       CHKERRA(ierr)
170:       call DMDASNESSetJacobianLocal(da,FormJacobianLocal,da,ierr)
171:       CHKERRA(ierr)
172:       call SNESSetDM(snes,da,ierr)
173:       CHKERRA(ierr)

175: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
176: !  Customize nonlinear solver; set runtime options
177: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

179: !  Set runtime options (e.g., -snes_monitor -snes_rtol <rtol> -ksp_type <type>)

181:       call SNESSetFromOptions(snes,ierr)
182:       CHKERRA(ierr)
183: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
184: !  Evaluate initial guess; then solve nonlinear system.
185: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

187: !  Note: The user should initialize the vector, x, with the initial guess
188: !  for the nonlinear solver prior to calling SNESSolve().  In particular,
189: !  to employ an initial guess of zero, the user should explicitly set
190: !  this vector to zero by calling VecSet().

192:       call FormInitialGuess(x,ierr)
193:       CHKERRA(ierr)
194:       call SNESSolve(snes,PETSC_NULL_VEC,x,ierr)
195:       CHKERRA(ierr)
196:       call SNESGetIterationNumber(snes,its,ierr)
197:       CHKERRA(ierr)
198:       if (rank .eq. 0) then
199:          write(6,100) its
200:       endif
201:   100 format('Number of SNES iterations = ',i5)

203: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
204: !  Free work space.  All PETSc objects should be destroyed when they
205: !  are no longer needed.
206: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

208:       call VecDestroy(x,ierr)
209:       CHKERRA(ierr)
210:       call VecDestroy(r,ierr)
211:       CHKERRA(ierr)
212:       call SNESDestroy(snes,ierr)
213:       CHKERRA(ierr)
214:       call DMDestroy(da,ierr)
215:       CHKERRA(ierr)
216:       call PetscFinalize(ierr)
217:       CHKERRA(ierr)
218:       end

220: ! ---------------------------------------------------------------------
221: !
222: !  FormInitialGuess - Forms initial approximation.
223: !
224: !  Input Parameters:
225: !  X - vector
226: !
227: !  Output Parameter:
228: !  X - vector
229: !
230: !  Notes:
231: !  This routine serves as a wrapper for the lower-level routine
232: !  "ApplicationInitialGuess", where the actual computations are
233: !  done using the standard Fortran style of treating the local
234: !  vector data as a multidimensional array over the local mesh.
235: !  This routine merely handles ghost point scatters and accesses
236: !  the local vector data via VecGetArrayF90() and VecRestoreArrayF90().
237: !
238:       subroutine FormInitialGuess(X,ierr)
239:       use ex5fmodule
240:       implicit none

242: !  Input/output variables:
243:       Vec      X
244:       PetscErrorCode  ierr
245: !  Declarations for use with local arrays:
246:       PetscScalar, pointer :: lx_v(:)

248:       ierr = 0

250: !  Get a pointer to vector data.
251: !    - For default PETSc vectors, VecGetArray() returns a pointer to
252: !      the data array.  Otherwise, the routine is implementation dependent.
253: !    - You MUST call VecRestoreArray() when you no longer need access to
254: !      the array.
255: !    - Note that the Fortran interface to VecGetArray() differs from the
256: !      C version.  See the users manual for details.

258:       call VecGetArrayF90(X,lx_v,ierr)
259:       CHKERRQ(ierr)

261: !  Compute initial guess over the locally owned part of the grid

263:       call InitialGuessLocal(lx_v,ierr)
264:       CHKERRQ(ierr)

266: !  Restore vector

268:       call VecRestoreArrayF90(X,lx_v,ierr)
269:       CHKERRQ(ierr)

271:       end

273: ! ---------------------------------------------------------------------
274: !
275: !  InitialGuessLocal - Computes initial approximation, called by
276: !  the higher level routine FormInitialGuess().
277: !
278: !  Input Parameter:
279: !  x - local vector data
280: !
281: !  Output Parameters:
282: !  x - local vector data
283: !  ierr - error code
284: !
285: !  Notes:
286: !  This routine uses standard Fortran-style computations over a 2-dim array.
287: !
288:       subroutine InitialGuessLocal(x,ierr)
289:       use ex5fmodule
290:       implicit none

292: !  Input/output variables:
293:       PetscScalar    x(xs:xe,ys:ye)
294:       PetscErrorCode ierr

296: !  Local variables:
297:       PetscInt  i,j
298:       PetscReal temp1,temp,one,hx,hy

300: !  Set parameters

302:       ierr   = 0
303:       one    = 1.0
304:       hx     = one/((mx-1))
305:       hy     = one/((my-1))
306:       temp1  = lambda/(lambda + one)

308:       do 20 j=ys,ye
309:          temp = (min(j-1,my-j))*hy
310:          do 10 i=xs,xe
311:             if (i .eq. 1 .or. j .eq. 1 .or. i .eq. mx .or. j .eq. my) then
312:               x(i,j) = 0.0
313:             else
314:               x(i,j) = temp1 * sqrt(min(min(i-1,mx-i)*hx,(temp)))
315:             endif
316:  10      continue
317:  20   continue

319:       end

321: ! ---------------------------------------------------------------------
322: !
323: !  FormFunctionLocal - Computes nonlinear function, called by
324: !  the higher level routine FormFunction().
325: !
326: !  Input Parameter:
327: !  x - local vector data
328: !
329: !  Output Parameters:
330: !  f - local vector data, f(x)
331: !  ierr - error code
332: !
333: !  Notes:
334: !  This routine uses standard Fortran-style computations over a 2-dim array.
335: !
336: !
337:       subroutine FormFunctionLocal(info,x,f,da,ierr)
338:       use ex5fmodule
339:       implicit none

341:       DM da

343: !  Input/output variables:
344:       DMDALocalInfo info(DMDA_LOCAL_INFO_SIZE)
345:       PetscScalar x(gxs:gxe,gys:gye)
346:       PetscScalar f(xs:xe,ys:ye)
347:       PetscErrorCode     ierr

349: !  Local variables:
350:       PetscScalar two,one,hx,hy
351:       PetscScalar hxdhy,hydhx,sc
352:       PetscScalar u,uxx,uyy
353:       PetscInt  i,j

355:       xs     = info(DMDA_LOCAL_INFO_XS)+1
356:       xe     = xs+info(DMDA_LOCAL_INFO_XM)-1
357:       ys     = info(DMDA_LOCAL_INFO_YS)+1
358:       ye     = ys+info(DMDA_LOCAL_INFO_YM)-1
359:       mx     = info(DMDA_LOCAL_INFO_MX)
360:       my     = info(DMDA_LOCAL_INFO_MY)

362:       one    = 1.0
363:       two    = 2.0
364:       hx     = one/(mx-1)
365:       hy     = one/(my-1)
366:       sc     = hx*hy*lambda
367:       hxdhy  = hx/hy
368:       hydhx  = hy/hx

370: !  Compute function over the locally owned part of the grid

372:       do 20 j=ys,ye
373:          do 10 i=xs,xe
374:             if (i .eq. 1 .or. j .eq. 1 .or. i .eq. mx .or. j .eq. my) then
375:                f(i,j) = x(i,j)
376:             else
377:                u = x(i,j)
378:                uxx = hydhx * (two*u - x(i-1,j) - x(i+1,j))
379:                uyy = hxdhy * (two*u - x(i,j-1) - x(i,j+1))
380:                f(i,j) = uxx + uyy - sc*exp(u)
381:             endif
382:  10      continue
383:  20   continue

385:       call PetscLogFlops(11.0d0*ym*xm,ierr)
386:       CHKERRQ(ierr)

388:       end

390: ! ---------------------------------------------------------------------
391: !
392: !  FormJacobianLocal - Computes Jacobian matrix, called by
393: !  the higher level routine FormJacobian().
394: !
395: !  Input Parameters:
396: !  x        - local vector data
397: !
398: !  Output Parameters:
399: !  jac      - Jacobian matrix
400: !  jac_prec - optionally different preconditioning matrix (not used here)
401: !  ierr     - error code
402: !
403: !  Notes:
404: !  This routine uses standard Fortran-style computations over a 2-dim array.
405: !
406: !  Notes:
407: !  Due to grid point reordering with DMDAs, we must always work
408: !  with the local grid points, and then transform them to the new
409: !  global numbering with the "ltog" mapping
410: !  We cannot work directly with the global numbers for the original
411: !  uniprocessor grid!
412: !
413: !  Two methods are available for imposing this transformation
414: !  when setting matrix entries:
415: !    (A) MatSetValuesLocal(), using the local ordering (including
416: !        ghost points!)
417: !          by calling MatSetValuesLocal()
418: !    (B) MatSetValues(), using the global ordering
419: !        - Use DMDAGetGlobalIndices() to extract the local-to-global map
420: !        - Then apply this map explicitly yourself
421: !        - Set matrix entries using the global ordering by calling
422: !          MatSetValues()
423: !  Option (A) seems cleaner/easier in many cases, and is the procedure
424: !  used in this example.
425: !
426:       subroutine FormJacobianLocal(info,x,A,jac,da,ierr)
427:       use ex5fmodule
428:       implicit none

430:       DM da

432: !  Input/output variables:
433:       PetscScalar x(gxs:gxe,gys:gye)
434:       Mat         A,jac
435:       PetscErrorCode  ierr
436:       DMDALocalInfo info(DMDA_LOCAL_INFO_SIZE)

438: !  Local variables:
439:       PetscInt  row,col(5),i,j,i1,i5
440:       PetscScalar two,one,hx,hy,v(5)
441:       PetscScalar hxdhy,hydhx,sc

443: !  Set parameters

445:       i1     = 1
446:       i5     = 5
447:       one    = 1.0
448:       two    = 2.0
449:       hx     = one/(mx-1)
450:       hy     = one/(my-1)
451:       sc     = hx*hy
452:       hxdhy  = hx/hy
453:       hydhx  = hy/hx

455: !  Compute entries for the locally owned part of the Jacobian.
456: !   - Currently, all PETSc parallel matrix formats are partitioned by
457: !     contiguous chunks of rows across the processors.
458: !   - Each processor needs to insert only elements that it owns
459: !     locally (but any non-local elements will be sent to the
460: !     appropriate processor during matrix assembly).
461: !   - Here, we set all entries for a particular row at once.
462: !   - We can set matrix entries either using either
463: !     MatSetValuesLocal() or MatSetValues(), as discussed above.
464: !   - Note that MatSetValues() uses 0-based row and column numbers
465: !     in Fortran as well as in C.

467:       do 20 j=ys,ye
468:          row = (j - gys)*gxm + xs - gxs - 1
469:          do 10 i=xs,xe
470:             row = row + 1
471: !           boundary points
472:             if (i .eq. 1 .or. j .eq. 1 .or. i .eq. mx .or. j .eq. my) then
473: !       Some f90 compilers need 4th arg to be of same type in both calls
474:                col(1) = row
475:                v(1)   = one
476:                call MatSetValuesLocal(jac,i1,row,i1,col,v,INSERT_VALUES,ierr)
477:                CHKERRQ(ierr)
478: !           interior grid points
479:             else
480:                v(1) = -hxdhy
481:                v(2) = -hydhx
482:                v(3) = two*(hydhx + hxdhy) - sc*lambda*exp(x(i,j))
483:                v(4) = -hydhx
484:                v(5) = -hxdhy
485:                col(1) = row - gxm
486:                col(2) = row - 1
487:                col(3) = row
488:                col(4) = row + 1
489:                col(5) = row + gxm
490:                call MatSetValuesLocal(jac,i1,row,i5,col,v, INSERT_VALUES,ierr)
491:                CHKERRQ(ierr)
492:             endif
493:  10      continue
494:  20   continue
495:       call MatAssemblyBegin(jac,MAT_FINAL_ASSEMBLY,ierr)
496:       CHKERRQ(ierr)
497:       call MatAssemblyEnd(jac,MAT_FINAL_ASSEMBLY,ierr)
498:       CHKERRQ(ierr)
499:       if (A .ne. jac) then
500:          call MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY,ierr)
501:          CHKERRQ(ierr)
502:          call MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY,ierr)
503:          CHKERRQ(ierr)
504:       endif
505:       end

507: !
508: !     Simple convergence test based on the infinity norm of the residual being small
509: !
510:       subroutine MySNESConverged(snes,it,xnorm,snorm,fnorm,reason,dummy,ierr)
511:       use ex5fmodule
512:       implicit none

514:       SNES snes
515:       PetscInt it,dummy
516:       PetscReal xnorm,snorm,fnorm,nrm
517:       SNESConvergedReason reason
518:       Vec f
519:       PetscErrorCode ierr

521:       call SNESGetFunction(snes,f,PETSC_NULL_FUNCTION,dummy,ierr)
522:       CHKERRQ(ierr)
523:       call VecNorm(f,NORM_INFINITY,nrm,ierr)
524:       CHKERRQ(ierr)
525:       if (nrm .le. 1.e-5) reason = SNES_CONVERGED_FNORM_ABS

527:       end

529: !/*TEST
530: !
531: !   build:
532: !      requires: !complex !single
533: !
534: !   test:
535: !      nsize: 4
536: !      args: -snes_mf -pc_type none -da_processors_x 4 -da_processors_y 1 -snes_monitor_short \
537: !            -ksp_gmres_cgs_refinement_type refine_always
538: !
539: !   test:
540: !      suffix: 2
541: !      nsize: 4
542: !      args: -da_processors_x 2 -da_processors_y 2 -snes_monitor_short -ksp_gmres_cgs_refinement_type refine_always
543: !
544: !   test:
545: !      suffix: 3
546: !      nsize: 3
547: !      args: -snes_fd -snes_monitor_short -ksp_gmres_cgs_refinement_type refine_always
548: !
549: !   test:
550: !      suffix: 6
551: !      nsize: 1
552: !      args: -snes_monitor_short -my_snes_convergence
553: !
554: !TEST*/