Actual source code: kspimpl.h
1: #pragma once
3: #include <petscksp.h>
4: #include <petscds.h>
5: #include <petsc/private/petscimpl.h>
7: /* SUBMANSEC = KSP */
9: PETSC_EXTERN PetscBool KSPRegisterAllCalled;
10: PETSC_EXTERN PetscBool KSPMonitorRegisterAllCalled;
11: PETSC_EXTERN PetscErrorCode KSPRegisterAll(void);
12: PETSC_EXTERN PetscErrorCode KSPMonitorRegisterAll(void);
13: PETSC_EXTERN PetscErrorCode KSPGuessRegisterAll(void);
14: PETSC_EXTERN PetscErrorCode KSPMatRegisterAll(void);
16: typedef struct _KSPOps *KSPOps;
18: struct _KSPOps {
19: PetscErrorCode (*buildsolution)(KSP, Vec, Vec *); /* Returns a pointer to the solution, or
20: calculates the solution in a
21: user-provided area. */
22: PetscErrorCode (*buildresidual)(KSP, Vec, Vec, Vec *); /* Returns a pointer to the residual, or
23: calculates the residual in a
24: user-provided area. */
25: PetscErrorCode (*solve)(KSP); /* actual solver */
26: PetscErrorCode (*matsolve)(KSP, Mat, Mat); /* multiple dense RHS solver */
27: PetscErrorCode (*setup)(KSP);
28: PetscErrorCode (*setfromoptions)(KSP, PetscOptionItems);
29: PetscErrorCode (*publishoptions)(KSP);
30: PetscErrorCode (*computeextremesingularvalues)(KSP, PetscReal *, PetscReal *);
31: PetscErrorCode (*computeeigenvalues)(KSP, PetscInt, PetscReal *, PetscReal *, PetscInt *);
32: PetscErrorCode (*computeritz)(KSP, PetscBool, PetscBool, PetscInt *, Vec[], PetscReal *, PetscReal *);
33: PetscErrorCode (*destroy)(KSP);
34: PetscErrorCode (*view)(KSP, PetscViewer);
35: PetscErrorCode (*reset)(KSP);
36: PetscErrorCode (*load)(KSP, PetscViewer);
37: };
39: typedef struct _KSPGuessOps *KSPGuessOps;
41: struct _KSPGuessOps {
42: PetscErrorCode (*formguess)(KSPGuess, Vec, Vec); /* Form initial guess */
43: PetscErrorCode (*update)(KSPGuess, Vec, Vec); /* Update database */
44: PetscErrorCode (*setfromoptions)(KSPGuess);
45: PetscErrorCode (*settolerance)(KSPGuess, PetscReal);
46: PetscErrorCode (*setup)(KSPGuess);
47: PetscErrorCode (*destroy)(KSPGuess);
48: PetscErrorCode (*view)(KSPGuess, PetscViewer);
49: PetscErrorCode (*reset)(KSPGuess);
50: };
52: /*
53: Defines the KSPGuess data structure.
54: */
55: struct _p_KSPGuess {
56: PETSCHEADER(struct _KSPGuessOps);
57: KSP ksp; /* the parent KSP */
58: Mat A; /* the current linear operator */
59: PetscObjectState omatstate; /* previous linear operator state */
60: void *data; /* pointer to the specific implementation */
61: };
63: PETSC_EXTERN PetscErrorCode KSPGuessCreate_Fischer(KSPGuess);
64: PETSC_EXTERN PetscErrorCode KSPGuessCreate_POD(KSPGuess);
66: /*
67: Maximum number of monitors you can run with a single KSP
68: */
69: #define MAXKSPMONITORS 5
70: #define MAXKSPREASONVIEWS 5
71: typedef enum {
72: KSP_SETUP_NEW = 0,
73: KSP_SETUP_NEWMATRIX,
74: KSP_SETUP_NEWRHS
75: } KSPSetUpStage;
77: /*
78: Defines the KSP data structure.
79: */
80: struct _p_KSP {
81: PETSCHEADER(struct _KSPOps);
82: DM dm;
83: PetscBool dmAuto; /* DM was created automatically by KSP */
84: PetscBool dmActive; /* KSP should use DM for computing operators */
85: /*------------------------- User parameters--------------------------*/
86: PetscObjectParameterDeclare(PetscInt, max_it); /* maximum number of iterations */
87: PetscInt min_it; /* minimum number of iterations */
88: KSPGuess guess;
89: PetscBool guess_zero, /* flag for whether initial guess is 0 */
90: guess_not_read, /* guess is not read, does not need to be zeroed */
91: calc_sings, /* calculate extreme Singular Values */
92: calc_ritz, /* calculate (harmonic) Ritz pairs */
93: guess_knoll; /* use initial guess of PCApply(ksp->B,b */
94: PCSide pc_side; /* flag for left, right, or symmetric preconditioning */
95: PetscInt normsupporttable[KSP_NORM_MAX][PC_SIDE_MAX]; /* Table of supported norms and pc_side, see KSPSetSupportedNorm() */
96: PetscObjectParameterDeclare(PetscReal, rtol); /* relative tolerance */
97: PetscObjectParameterDeclare(PetscReal, abstol); /* absolute tolerance */
98: PetscObjectParameterDeclare(PetscReal, ttol); /* (not set by user) */
99: PetscObjectParameterDeclare(PetscReal, divtol); /* divergence tolerance */
100: PetscReal rnorm0; /* initial residual norm (used for divergence testing) */
101: PetscReal rnorm; /* current residual norm */
102: KSPConvergedReason reason;
103: PetscBool errorifnotconverged; /* create an error if the KSPSolve() does not converge */
105: Vec vec_sol, vec_rhs; /* pointer to where user has stashed
106: the solution and rhs, these are
107: never touched by the code, only
108: passed back to the user */
109: PetscReal *res_hist; /* If !0 stores residual each at iteration */
110: PetscReal *res_hist_alloc; /* If !0 means user did not provide buffer, needs deallocation */
111: PetscCount res_hist_len; /* current entry count of residual history array */
112: PetscCount res_hist_max; /* total entry count of storage in residual history */
113: PetscBool res_hist_reset; /* reset history to length zero for each new solve */
114: PetscReal *err_hist; /* If !0 stores error at each iteration */
115: PetscReal *err_hist_alloc; /* If !0 means user did not provide buffer, needs deallocation */
116: PetscCount err_hist_len; /* current entry count of error history array */
117: PetscCount err_hist_max; /* total entry count of storage in error history */
118: PetscBool err_hist_reset; /* reset history to length zero for each new solve */
120: PetscInt chknorm; /* only compute/check norm if iterations is great than this */
121: PetscBool lagnorm; /* Lag the residual norm calculation so that it is computed as part of the
122: MPI_Allreduce() for computing the inner products for the next iteration. */
124: PetscInt nmax; /* maximum number of right-hand sides to be handled simultaneously */
126: /* --------User (or default) routines (most return -1 on error) --------*/
127: KSPMonitorFn *monitor[MAXKSPMONITORS];
128: PetscCtxDestroyFn *monitordestroy[MAXKSPMONITORS];
129: void *monitorcontext[MAXKSPMONITORS]; /* residual calculation, allows user */
130: PetscInt numbermonitors; /* to, for instance, print residual norm, etc. */
131: PetscBool pauseFinal; /* Pause all drawing monitor at the final iterate */
133: PetscViewer convergedreasonviewer;
134: PetscViewerFormat convergedreasonformat;
135: KSPConvergedReasonViewFn *reasonview[MAXKSPREASONVIEWS]; /* KSP converged reason view */
136: PetscCtxDestroyFn *reasonviewdestroy[MAXKSPREASONVIEWS]; /* optional destroy routine */
137: void *reasonviewcontext[MAXKSPREASONVIEWS]; /* viewer context */
138: PetscInt numberreasonviews; /* current number of reason viewers */
140: KSPConvergenceTestFn *converged;
141: PetscCtxDestroyFn *convergeddestroy;
142: void *cnvP;
144: void *ctx; /* optional user-defined context */
146: PC pc;
148: void *data; /* holder for misc stuff associated with a particular iterative solver */
150: PetscBool view, viewPre, viewRate, viewMat, viewPMat, viewRhs, viewSol, viewMatExp, viewEV, viewSV, viewEVExp, viewFinalRes, viewPOpExp, viewDScale;
151: PetscViewer viewer, viewerPre, viewerRate, viewerMat, viewerPMat, viewerRhs, viewerSol, viewerMatExp, viewerEV, viewerSV, viewerEVExp, viewerFinalRes, viewerPOpExp, viewerDScale;
152: PetscViewerFormat format, formatPre, formatRate, formatMat, formatPMat, formatRhs, formatSol, formatMatExp, formatEV, formatSV, formatEVExp, formatFinalRes, formatPOpExp, formatDScale;
154: /* ----------------Default work-area management -------------------- */
155: PetscInt nwork;
156: Vec *work;
158: KSPSetUpStage setupstage;
159: PetscBool setupnewmatrix; /* true if we need to call ksp->ops->setup with KSP_SETUP_NEWMATRIX */
161: PetscInt its; /* number of iterations so far computed in THIS linear solve*/
162: PetscInt totalits; /* number of iterations used by this KSP object since it was created */
164: PetscBool transpose_solve; /* solve transpose system instead */
165: struct {
166: Mat AT, BT;
167: PetscBool use_explicittranspose; /* transpose the system explicitly in KSPSolveTranspose */
168: PetscBool reuse_transpose; /* reuse the previous transposed system */
169: } transpose;
171: KSPNormType normtype; /* type of norm used for convergence tests */
173: PCSide pc_side_set; /* PC type set explicitly by user */
174: KSPNormType normtype_set; /* Norm type set explicitly by user */
176: /* Allow diagonally scaling the matrix before computing the preconditioner or using
177: the Krylov method. Note this is NOT just Jacobi preconditioning */
179: PetscBool dscale; /* diagonal scale system; used with KSPSetDiagonalScale() */
180: PetscBool dscalefix; /* unscale system after solve */
181: PetscBool dscalefix2; /* system has been unscaled */
182: Vec diagonal; /* 1/sqrt(diag of matrix) */
183: Vec truediagonal;
185: /* Allow declaring convergence when negative curvature is detected */
186: PetscBool converged_neg_curve;
188: PetscInt setfromoptionscalled;
189: PetscBool skippcsetfromoptions; /* if set then KSPSetFromOptions() does not call PCSetFromOptions() */
191: PetscErrorCode (*presolve)(KSP, Vec, Vec, void *);
192: PetscErrorCode (*postsolve)(KSP, Vec, Vec, void *);
193: void *prectx, *postctx;
195: PetscInt nestlevel; /* how many levels of nesting does the KSP have */
196: };
198: typedef struct { /* dummy data structure used in KSPMonitorDynamicTolerance() */
199: PetscReal coef;
200: PetscReal bnrm;
201: } KSPDynTolCtx;
203: typedef struct {
204: PetscBool initialrtol; /* default relative residual decrease is computed from initial residual, not rhs */
205: PetscBool mininitialrtol; /* default relative residual decrease is computed from min of initial residual and rhs */
206: PetscBool convmaxits; /* if true, the convergence test returns KSP_CONVERGED_ITS if the maximum number of iterations is reached */
207: Vec work;
208: } KSPConvergedDefaultCtx;
210: static inline PetscErrorCode KSPLogResidualHistory(KSP ksp, PetscReal norm)
211: {
212: PetscFunctionBegin;
213: PetscCall(PetscObjectSAWsTakeAccess((PetscObject)ksp));
214: if (ksp->res_hist && ksp->res_hist_max > ksp->res_hist_len) ksp->res_hist[ksp->res_hist_len++] = norm;
215: PetscCall(PetscObjectSAWsGrantAccess((PetscObject)ksp));
216: PetscFunctionReturn(PETSC_SUCCESS);
217: }
219: static inline PetscErrorCode KSPLogErrorHistory(KSP ksp)
220: {
221: DM dm;
223: PetscFunctionBegin;
224: PetscCall(PetscObjectSAWsTakeAccess((PetscObject)ksp));
225: PetscCall(KSPGetDM(ksp, &dm));
226: if (dm && ksp->err_hist && ksp->err_hist_max > ksp->err_hist_len) {
227: PetscSimplePointFn *exactSol;
228: void *exactCtx;
229: PetscDS ds;
230: Vec u;
231: PetscReal error;
232: PetscInt Nf;
234: PetscCall(KSPBuildSolution(ksp, NULL, &u));
235: /* TODO Was needed to correct for Newton solution, but I just need to set a solution */
236: //PetscCall(VecScale(u, -1.0));
237: /* TODO Case when I have a solution */
238: if (0) {
239: PetscCall(DMGetDS(dm, &ds));
240: PetscCall(PetscDSGetNumFields(ds, &Nf));
241: PetscCheck(Nf <= 1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Cannot handle number of fields %" PetscInt_FMT " > 1 right now", Nf);
242: PetscCall(PetscDSGetExactSolution(ds, 0, &exactSol, &exactCtx));
243: PetscCall(DMComputeL2FieldDiff(dm, 0.0, &exactSol, &exactCtx, u, &error));
244: } else {
245: /* The null solution A 0 = 0 */
246: PetscCall(VecNorm(u, NORM_2, &error));
247: }
248: ksp->err_hist[ksp->err_hist_len++] = error;
249: }
250: PetscCall(PetscObjectSAWsGrantAccess((PetscObject)ksp));
251: PetscFunctionReturn(PETSC_SUCCESS);
252: }
254: static inline PetscScalar KSPNoisyHash_Private(PetscInt xx)
255: {
256: unsigned int x = (unsigned int)xx;
257: x = ((x >> 16) ^ x) * 0x45d9f3b;
258: x = ((x >> 16) ^ x) * 0x45d9f3b;
259: x = ((x >> 16) ^ x);
260: return (PetscScalar)(((PetscInt64)x - 2147483648) * 5.e-10); /* center around zero, scaled about -1. to 1.*/
261: }
263: static inline PetscErrorCode KSPSetNoisy_Private(Mat A, Vec v)
264: {
265: PetscScalar *a;
266: PetscInt n, istart;
267: MatNullSpace nullsp = NULL;
269: PetscFunctionBegin;
270: if (A) PetscCall(MatGetNullSpace(A, &nullsp));
271: PetscCall(VecGetOwnershipRange(v, &istart, NULL));
272: PetscCall(VecGetLocalSize(v, &n));
273: PetscCall(VecGetArrayWrite(v, &a));
274: for (PetscInt i = 0; i < n; ++i) a[i] = KSPNoisyHash_Private(i + istart);
275: PetscCall(VecRestoreArrayWrite(v, &a));
276: if (nullsp) PetscCall(MatNullSpaceRemove(nullsp, v));
277: PetscFunctionReturn(PETSC_SUCCESS);
278: }
280: PETSC_INTERN PetscErrorCode KSPSetUpNorms_Private(KSP, PetscBool, KSPNormType *, PCSide *);
282: PETSC_INTERN PetscErrorCode KSPPlotEigenContours_Private(KSP, PetscInt, const PetscReal *, const PetscReal *);
284: typedef struct _p_DMKSP *DMKSP;
285: typedef struct _DMKSPOps *DMKSPOps;
286: struct _DMKSPOps {
287: KSPComputeOperatorsFn *computeoperators;
288: KSPComputeRHSFn *computerhs;
289: KSPComputeInitialGuessFn *computeinitialguess;
290: PetscErrorCode (*destroy)(DMKSP *);
291: PetscErrorCode (*duplicate)(DMKSP, DMKSP);
292: };
294: /*S
295: DMKSP - Object held by a `DM` that contains all the callback functions and their contexts needed by a `KSP`
297: Level: developer
299: Notes:
300: Users provides callback functions and their contexts to `KSP` using, for example, `KSPSetComputeRHS()`. These values are stored
301: in a `DMKSP` that is contained in the `DM` associated with the `KSP`. If no `DM` was provided by
302: the user with `KSPSetDM()` it is automatically created by `KSPGetDM()` with `DMShellCreate()`.
304: Users very rarely need to worked directly with the `DMKSP` object, rather they work with the `KSP` and the `DM` they created
306: Multiple `DM` can share a single `DMKSP`, often each `DM` is associated with
307: a grid refinement level. `DMGetDMKSP()` returns the `DMKSP` associated with a `DM`. `DMGetDMKSPWrite()` returns a unique
308: `DMKSP` that is only associated with the current `DM`, making a copy of the shared `DMKSP` if needed (copy-on-write).
310: Developer Notes:
311: It is rather subtle why `DMKSP`, `DMSNES`, and `DMTS` are needed instead of simply storing the user callback functions and contexts in `DM` or `KSP`, `SNES`, or `TS`.
312: It is to support composable solvers such as geometric multigrid. We want, by default, the same callback functions and contexts for all the levels in the computation,
313: but we need to also support different callbacks and contexts on each level. The copy-on-write approach of `DMGetDMKSPWrite()` makes this possible.
315: The `originaldm` inside the `DMKSP` is NOT reference counted (to prevent a reference count loop between a `DM` and a `DMKSP`).
316: The `DM` on which this context was first created is cached here to implement one-way
317: copy-on-write. When `DMGetDMKSPWrite()` sees a request using a different `DM`, it makes a copy of the `TSDM`. Thus, if a user
318: only interacts directly with one level, e.g., using `TSSetIFunction()`, then coarse levels of a multilevel item
319: integrator are built, then the user changes the routine with another call to `TSSetIFunction()`, it automatically
320: propagates to all the levels. If instead, they get out a specific level and set the function on that level,
321: subsequent changes to the original level will no longer propagate to that level.
323: .seealso: [](ch_ts), `KSP`, `KSPCreate()`, `DM`, `DMGetDMKSPWrite()`, `DMGetDMKSP()`, `DMSNES`, `DMTS`, `DMKSPSetComputeOperators()`, `DMKSPGetComputeOperators()`,
324: `DMKSPSetComputeRHS()`, `DMKSPSetComputeInitialGuess()`
325: S*/
326: struct _p_DMKSP {
327: PETSCHEADER(struct _DMKSPOps);
328: void *operatorsctx;
329: void *rhsctx;
330: void *initialguessctx;
331: void *data;
333: /* See developer note for `DMKSP` above */
334: DM originaldm;
336: void (*fortran_func_pointers[3])(void); /* Store our own function pointers so they are associated with the DMKSP instead of the DM */
337: };
338: PETSC_EXTERN PetscErrorCode DMGetDMKSP(DM, DMKSP *);
339: PETSC_EXTERN PetscErrorCode DMGetDMKSPWrite(DM, DMKSP *);
340: PETSC_EXTERN PetscErrorCode DMCopyDMKSP(DM, DM);
342: /*
343: These allow the various Krylov methods to apply to either the linear system or its transpose.
344: */
345: static inline PetscErrorCode KSP_RemoveNullSpace(KSP ksp, Vec y)
346: {
347: PetscFunctionBegin;
348: if (ksp->pc_side == PC_LEFT) {
349: Mat A;
350: MatNullSpace nullsp;
352: PetscCall(PCGetOperators(ksp->pc, &A, NULL));
353: PetscCall(MatGetNullSpace(A, &nullsp));
354: if (nullsp) PetscCall(MatNullSpaceRemove(nullsp, y));
355: }
356: PetscFunctionReturn(PETSC_SUCCESS);
357: }
359: static inline PetscErrorCode KSP_RemoveNullSpaceTranspose(KSP ksp, Vec y)
360: {
361: PetscFunctionBegin;
362: if (ksp->pc_side == PC_LEFT) {
363: Mat A;
364: MatNullSpace nullsp;
366: PetscCall(PCGetOperators(ksp->pc, &A, NULL));
367: PetscCall(MatGetTransposeNullSpace(A, &nullsp));
368: if (nullsp) PetscCall(MatNullSpaceRemove(nullsp, y));
369: }
370: PetscFunctionReturn(PETSC_SUCCESS);
371: }
373: static inline PetscErrorCode KSP_MatMult(KSP ksp, Mat A, Vec x, Vec y)
374: {
375: PetscFunctionBegin;
376: if (ksp->transpose_solve) PetscCall(MatMultTranspose(A, x, y));
377: else PetscCall(MatMult(A, x, y));
378: PetscFunctionReturn(PETSC_SUCCESS);
379: }
381: static inline PetscErrorCode KSP_MatMultTranspose(KSP ksp, Mat A, Vec x, Vec y)
382: {
383: PetscFunctionBegin;
384: if (ksp->transpose_solve) PetscCall(MatMult(A, x, y));
385: else PetscCall(MatMultTranspose(A, x, y));
386: PetscFunctionReturn(PETSC_SUCCESS);
387: }
389: static inline PetscErrorCode KSP_MatMultHermitianTranspose(KSP ksp, Mat A, Vec x, Vec y)
390: {
391: PetscFunctionBegin;
392: if (!ksp->transpose_solve) PetscCall(MatMultHermitianTranspose(A, x, y));
393: else {
394: Vec w;
396: PetscCall(VecDuplicate(x, &w));
397: PetscCall(VecCopy(x, w));
398: PetscCall(VecConjugate(w));
399: PetscCall(MatMult(A, w, y));
400: PetscCall(VecDestroy(&w));
401: PetscCall(VecConjugate(y));
402: }
403: PetscFunctionReturn(PETSC_SUCCESS);
404: }
406: static inline PetscErrorCode KSP_PCApply(KSP ksp, Vec x, Vec y)
407: {
408: PetscFunctionBegin;
409: if (ksp->transpose_solve) {
410: PetscCall(PCApplyTranspose(ksp->pc, x, y));
411: PetscCall(KSP_RemoveNullSpaceTranspose(ksp, y));
412: } else {
413: PetscCall(PCApply(ksp->pc, x, y));
414: PetscCall(KSP_RemoveNullSpace(ksp, y));
415: }
416: PetscFunctionReturn(PETSC_SUCCESS);
417: }
419: static inline PetscErrorCode KSP_PCApplyTranspose(KSP ksp, Vec x, Vec y)
420: {
421: PetscFunctionBegin;
422: if (ksp->transpose_solve) {
423: PetscCall(PCApply(ksp->pc, x, y));
424: PetscCall(KSP_RemoveNullSpace(ksp, y));
425: } else {
426: PetscCall(PCApplyTranspose(ksp->pc, x, y));
427: PetscCall(KSP_RemoveNullSpaceTranspose(ksp, y));
428: }
429: PetscFunctionReturn(PETSC_SUCCESS);
430: }
432: static inline PetscErrorCode KSP_PCApplyHermitianTranspose(KSP ksp, Vec x, Vec y)
433: {
434: PetscFunctionBegin;
435: PetscCall(VecConjugate(x));
436: PetscCall(KSP_PCApplyTranspose(ksp, x, y));
437: PetscCall(VecConjugate(x));
438: PetscCall(VecConjugate(y));
439: PetscFunctionReturn(PETSC_SUCCESS);
440: }
442: static inline PetscErrorCode KSP_PCMatApply(KSP ksp, Mat X, Mat Y)
443: {
444: PetscFunctionBegin;
445: if (ksp->transpose_solve) PetscCall(PCMatApplyTranspose(ksp->pc, X, Y));
446: else PetscCall(PCMatApply(ksp->pc, X, Y));
447: PetscFunctionReturn(PETSC_SUCCESS);
448: }
450: static inline PetscErrorCode KSP_PCMatApplyTranspose(KSP ksp, Mat X, Mat Y)
451: {
452: PetscFunctionBegin;
453: if (!ksp->transpose_solve) PetscCall(PCMatApplyTranspose(ksp->pc, X, Y));
454: else PetscCall(PCMatApply(ksp->pc, X, Y));
455: PetscFunctionReturn(PETSC_SUCCESS);
456: }
458: static inline PetscErrorCode KSP_PCApplyBAorAB(KSP ksp, Vec x, Vec y, Vec w)
459: {
460: PetscFunctionBegin;
461: if (ksp->transpose_solve) {
462: PetscCall(PCApplyBAorABTranspose(ksp->pc, ksp->pc_side, x, y, w));
463: PetscCall(KSP_RemoveNullSpaceTranspose(ksp, y));
464: } else {
465: PetscCall(PCApplyBAorAB(ksp->pc, ksp->pc_side, x, y, w));
466: PetscCall(KSP_RemoveNullSpace(ksp, y));
467: }
468: PetscFunctionReturn(PETSC_SUCCESS);
469: }
471: static inline PetscErrorCode KSP_PCApplyBAorABTranspose(KSP ksp, Vec x, Vec y, Vec w)
472: {
473: PetscFunctionBegin;
474: if (ksp->transpose_solve) PetscCall(PCApplyBAorAB(ksp->pc, ksp->pc_side, x, y, w));
475: else PetscCall(PCApplyBAorABTranspose(ksp->pc, ksp->pc_side, x, y, w));
476: PetscFunctionReturn(PETSC_SUCCESS);
477: }
479: PETSC_EXTERN PetscLogEvent KSP_GMRESOrthogonalization;
480: PETSC_EXTERN PetscLogEvent KSP_SetUp;
481: PETSC_EXTERN PetscLogEvent KSP_Solve;
482: PETSC_EXTERN PetscLogEvent KSP_Solve_FS_0;
483: PETSC_EXTERN PetscLogEvent KSP_Solve_FS_1;
484: PETSC_EXTERN PetscLogEvent KSP_Solve_FS_2;
485: PETSC_EXTERN PetscLogEvent KSP_Solve_FS_3;
486: PETSC_EXTERN PetscLogEvent KSP_Solve_FS_4;
487: PETSC_EXTERN PetscLogEvent KSP_Solve_FS_S;
488: PETSC_EXTERN PetscLogEvent KSP_Solve_FS_L;
489: PETSC_EXTERN PetscLogEvent KSP_Solve_FS_U;
490: PETSC_EXTERN PetscLogEvent KSP_SolveTranspose;
491: PETSC_EXTERN PetscLogEvent KSP_MatSolve;
492: PETSC_EXTERN PetscLogEvent KSP_MatSolveTranspose;
494: PETSC_INTERN PetscErrorCode MatGetSchurComplement_Basic(Mat, IS, IS, IS, IS, MatReuse, Mat *, MatSchurComplementAinvType, MatReuse, Mat *);
495: PETSC_INTERN PetscErrorCode PCPreSolveChangeRHS(PC, PetscBool *);
497: /*MC
498: KSPCheckDot - Checks if the result of a dot product used by the corresponding `KSP` contains Inf or NaN. These indicate that the previous
499: application of the preconditioner generated an error. Sets a `KSPConvergedReason` and returns if the `PC` set a `PCFailedReason`.
501: Collective
503: Input Parameter:
504: . ksp - the linear solver `KSP` context.
506: Output Parameter:
507: . beta - the result of the inner product
509: Level: developer
511: Developer Notes:
512: Used to manage returning from `KSP` solvers collectively whose preconditioners have failed, possibly only a subset of MPI processes, in some way
514: It uses the fact that `KSP` piggy-backs the collectivity of certain error conditions on the results of norms and inner products.
516: .seealso: `PCFailedReason`, `KSPConvergedReason`, `KSP`, `KSPCreate()`, `KSPSetType()`, `KSP`, `KSPCheckNorm()`, `KSPCheckSolve()`,
517: `KSPSetErrorIfNotConverged()`
518: M*/
519: #define KSPCheckDot(ksp, beta) \
520: do { \
521: if (PetscIsInfOrNanScalar(beta)) { \
522: PetscCheck(!ksp->errorifnotconverged, PetscObjectComm((PetscObject)ksp), PETSC_ERR_NOT_CONVERGED, "KSPSolve has not converged due to Nan or Inf inner product"); \
523: { \
524: PCFailedReason pcreason; \
525: PetscCall(PCReduceFailedReason(ksp->pc)); \
526: PetscCall(PCGetFailedReason(ksp->pc, &pcreason)); \
527: PetscCall(VecFlag(ksp->vec_sol, pcreason)); \
528: if (pcreason) { \
529: ksp->reason = KSP_DIVERGED_PC_FAILED; \
530: } else { \
531: ksp->reason = KSP_DIVERGED_NANORINF; \
532: } \
533: PetscFunctionReturn(PETSC_SUCCESS); \
534: } \
535: } \
536: } while (0)
538: /*MC
539: KSPCheckNorm - Checks if the result of a norm used by the corresponding `KSP` contains `inf` or `NaN`. These indicate that the previous
540: application of the preconditioner generated an error. Sets a `KSPConvergedReason` and returns if the `PC` set a `PCFailedReason`.
542: Collective
544: Input Parameter:
545: . ksp - the linear solver `KSP` context.
547: Output Parameter:
548: . beta - the result of the norm
550: Level: developer
552: Developer Notes:
553: Used to manage returning from `KSP` solvers collectively whose preconditioners have failed, possibly only a subset of MPI processes, in some way.
555: It uses the fact that `KSP` piggy-backs the collectivity of certain error conditions on the results of norms and inner products.
557: .seealso: `PCFailedReason`, `KSPConvergedReason`, `KSP`, `KSPCreate()`, `KSPSetType()`, `KSP`, `KSPCheckDot()`, `KSPCheckSolve()`,
558: `KSPSetErrorIfNotConverged()`
559: M*/
560: #define KSPCheckNorm(ksp, beta) \
561: do { \
562: if (PetscIsInfOrNanReal(beta)) { \
563: PetscCheck(!ksp->errorifnotconverged, PetscObjectComm((PetscObject)ksp), PETSC_ERR_NOT_CONVERGED, "KSPSolve has not converged due to Nan or Inf norm"); \
564: { \
565: PCFailedReason pcreason; \
566: PetscCall(PCReduceFailedReason(ksp->pc)); \
567: PetscCall(PCGetFailedReason(ksp->pc, &pcreason)); \
568: PetscCall(VecFlag(ksp->vec_sol, pcreason)); \
569: if (pcreason) { \
570: ksp->reason = KSP_DIVERGED_PC_FAILED; \
571: } else { \
572: ksp->reason = KSP_DIVERGED_NANORINF; \
573: } \
574: ksp->rnorm = beta; \
575: PetscFunctionReturn(PETSC_SUCCESS); \
576: } \
577: } \
578: } while (0)
580: PETSC_INTERN PetscErrorCode KSPMonitorMakeKey_Internal(const char[], PetscViewerType, PetscViewerFormat, char[]);
581: PETSC_INTERN PetscErrorCode KSPMonitorRange_Private(KSP, PetscInt, PetscReal *);