Actual source code: petscsystypes.h

  1: #if !defined(PETSCSYSTYPES_H)
  2: #define PETSCSYSTYPES_H

  4: #include <petscconf.h>
  5: #include <petscfix.h>

  7: /*MC
  8:     PetscErrorCode - datatype used for return error code from almost all PETSc functions

 10:     Level: beginner

 12: .seealso: CHKERRQ, SETERRQ
 13: M*/
 14: typedef int PetscErrorCode;

 16: /*MC

 18:     PetscClassId - A unique id used to identify each PETSc class.

 20:     Notes:
 21:     Use PetscClassIdRegister() to obtain a new value for a new class being created. Usually
 22:          XXXInitializePackage() calls it for each class it defines.

 24:     Developer Notes:
 25:     Internal integer stored in the _p_PetscObject data structure.
 26:          These are all computed by an offset from the lowest one, PETSC_SMALLEST_CLASSID.

 28:     Level: developer

 30: .seealso: PetscClassIdRegister(), PetscLogEventRegister(), PetscHeaderCreate()
 31: M*/
 32: typedef int PetscClassId;

 34: /*MC
 35:     PetscMPIInt - datatype used to represent 'int' parameters to MPI functions.

 37:     Level: intermediate

 39:     Notes:
 40:     usually this is the same as PetscInt, but if PETSc was built with --with-64-bit-indices but
 41:            standard C/Fortran integers are 32 bit then this is NOT the same as PetscInt; it remains 32 bit.

 43:     PetscMPIIntCast(a,&b) checks if the given PetscInt a will fit in a PetscMPIInt, if not it
 44:       generates a PETSC_ERR_ARG_OUTOFRANGE error.

 46: .seealso: PetscBLASInt, PetscInt, PetscMPIIntCast()

 48: M*/
 49: typedef int PetscMPIInt;

 51: /*MC
 52:     PetscEnum - datatype used to pass enum types within PETSc functions.

 54:     Level: intermediate

 56: .seealso: PetscOptionsGetEnum(), PetscOptionsEnum(), PetscBagRegisterEnum()
 57: M*/
 58: typedef enum { ENUM_DUMMY } PetscEnum;

 60: typedef short PetscShort;
 61: typedef char  PetscChar;
 62: typedef float PetscFloat;

 64: /*MC
 65:   PetscInt - PETSc type that represents an integer, used primarily to
 66:       represent size of arrays and indexing into arrays. Its size can be configured with the option --with-64-bit-indices to be either 32-bit (default) or 64-bit.

 68:   Notes:
 69:   For MPI calls that require datatypes, use MPIU_INT as the datatype for PetscInt. It will automatically work correctly regardless of the size of PetscInt.

 71:   Level: beginner

 73: .seealso: PetscBLASInt, PetscMPIInt, PetscReal, PetscScalar, PetscComplex, PetscInt, MPIU_REAL, MPIU_SCALAR, MPIU_COMPLEX, MPIU_INT
 74: M*/

 76: #if defined(PETSC_HAVE_STDINT_H)
 77: #  include <stdint.h>
 78: #endif
 79: #if defined (PETSC_HAVE_INTTYPES_H)
 80: #  if !defined(__STDC_FORMAT_MACROS)
 81: #    define __STDC_FORMAT_MACROS /* required for using PRId64 from c++ */
 82: #  endif
 83: #  include <inttypes.h>
 84: #  if !defined(PRId64)
 85: #    define PRId64 "ld"
 86: #  endif
 87: #endif

 89: #if defined(PETSC_HAVE_STDINT_H) && defined(PETSC_HAVE_INTTYPES_H) && defined(PETSC_HAVE_MPI_INT64_T) /* MPI_INT64_T is not guaranteed to be a macro */
 90:    typedef int64_t PetscInt64;
 91: #elif (PETSC_SIZEOF_LONG_LONG == 8)
 92:    typedef long long PetscInt64;
 93: #elif defined(PETSC_HAVE___INT64)
 94:    typedef __int64 PetscInt64;
 95: #else
 96: #  error "cannot determine PetscInt64 type"
 97: #endif

 99: #if defined(PETSC_USE_64BIT_INDICES)
100:    typedef PetscInt64 PetscInt;
101: #else
102:    typedef int PetscInt;
103: #endif

105: /*MC
106:    PetscBLASInt - datatype used to represent 'int' parameters to BLAS/LAPACK functions.

108:    Notes:
109:     Usually this is the same as PetscInt, but if PETSc was built with --with-64-bit-indices but
110:            standard C/Fortran integers are 32 bit then this is NOT the same as PetscInt it remains 32 bit
111:            (except on very rare BLAS/LAPACK implementations that support 64 bit integers see the notes below).

113:     PetscErrorCode PetscBLASIntCast(a,&b) checks if the given PetscInt a will fit in a PetscBLASInt, if not it
114:       generates a PETSC_ERR_ARG_OUTOFRANGE error

116:    Installation Notes:
117:     ./configure automatically determines the size of the integers used by BLAS/LAPACK except when --with-batch is used
118:     in that situation one must know (by some other means) if the integers used by BLAS/LAPACK are 64 bit and if so pass the flag --known-64-bit-blas-indice

120:     MATLAB ships with BLAS and LAPACK that use 64 bit integers, for example if you run ./configure with, the option
121:      --with-blaslapack-lib=[/Applications/MATLAB_R2010b.app/bin/maci64/libmwblas.dylib,/Applications/MATLAB_R2010b.app/bin/maci64/libmwlapack.dylib]

123:     MKL ships with both 32 and 64 bit integer versions of the BLAS and LAPACK. If you pass the flag -with-64-bit-blas-indices PETSc will link
124:     against the 64 bit version, otherwise it use the 32 bit version

126:     OpenBLAS can be built to use 64 bit integers. The ./configure options --download-openblas -with-64-bit-blas-indices will build a 64 bit integer version

128:     External packages such as hypre, ML, SuperLU etc do not provide any support for passing 64 bit integers to BLAS/LAPACK so cannot
129:     be used with PETSc when PETSc links against 64 bit integer BLAS/LAPACK. ./configure will generate an error if you attempt to link PETSc against any of
130:     these external libraries while using 64 bit integer BLAS/LAPACK.

132:    Level: intermediate

134: .seealso: PetscMPIInt, PetscInt, PetscBLASIntCast()

136: M*/
137: #if defined(PETSC_HAVE_64BIT_BLAS_INDICES)
138:    typedef PetscInt64 PetscBLASInt;
139: #else
140:    typedef int PetscBLASInt;
141: #endif

143: /*MC
144:    PetscCuBLASInt - datatype used to represent 'int' parameters to cuBLAS/cuSOLVER functions.

146:    Notes:
147:     As of this writing PetscCuBLASInt is always the system `int`.

149:     PetscErrorCode PetscCuBLASIntCast(a,&b) checks if the given PetscInt a will fit in a PetscCuBLASInt, if not it
150:       generates a PETSC_ERR_ARG_OUTOFRANGE error

152:    Level: intermediate

154: .seealso: PetscBLASInt, PetscMPIInt, PetscInt, PetscCuBLASIntCast()

156: M*/
157: typedef int PetscCuBLASInt;

159: /*E
160:     PetscBool  - Logical variable. Actually an int in C and a logical in Fortran.

162:    Level: beginner

164:    Developer Note:
165:    Why have PetscBool , why not use bool in C? The problem is that K and R C, C99 and C++ all have different mechanisms for
166:       boolean values. It is not easy to have a simple macro that that will work properly in all circumstances with all three mechanisms.

168: .seealso: PETSC_TRUE, PETSC_FALSE, PetscNot()
169: E*/
170: typedef enum { PETSC_FALSE,PETSC_TRUE } PetscBool;

172: /*MC
173:    PetscReal - PETSc type that represents a real number version of PetscScalar

175:    Notes:
176:    For MPI calls that require datatypes, use MPIU_REAL as the datatype for PetscScalar and MPIU_SUM, MPIU_MAX, etc. for operations.
177:           They will automatically work correctly regardless of the size of PetscReal.

179:           See PetscScalar for details on how to ./configure the size of PetscReal.

181:    Level: beginner

183: .seealso: PetscScalar, PetscComplex, PetscInt, MPIU_REAL, MPIU_SCALAR, MPIU_COMPLEX, MPIU_INT
184: M*/

186: #if defined(PETSC_USE_REAL_SINGLE)
187:    typedef float PetscReal;
188: #elif defined(PETSC_USE_REAL_DOUBLE)
189:    typedef double PetscReal;
190: #elif defined(PETSC_USE_REAL___FLOAT128)
191: #  if defined(__cplusplus)
192:      extern "C" {
193: #  endif
194: #  include <quadmath.h>
195: #  if defined(__cplusplus)
196:      }
197: #  endif
198:    typedef __float128 PetscReal;
199: #elif defined(PETSC_USE_REAL___FP16)
200:    typedef __fp16 PetscReal;
201: #endif /* PETSC_USE_REAL_* */

203: /*MC
204:    PetscComplex - PETSc type that represents a complex number with precision matching that of PetscReal.

206:    Synopsis:
207: #include <petscsys.h>
208:    PetscComplex number = 1. + 2.*PETSC_i;

210:    Notes:
211:    For MPI calls that require datatypes, use MPIU_COMPLEX as the datatype for PetscComplex and MPIU_SUM etc for operations.
212:           They will automatically work correctly regardless of the size of PetscComplex.

214:           See PetscScalar for details on how to ./configure the size of PetscReal

216:           Complex numbers are automatically available if PETSc was able to find a working complex implementation

218:     Petsc has a 'fix' for complex numbers to support expressions such as std::complex<PetscReal> + PetscInt, which are not supported by the standard
219:     C++ library, but are convenient for petsc users. If the C++ compiler is able to compile code in petsccxxcomplexfix.h (This is checked by
220:     configure), we include petsccxxcomplexfix.h to provide this convenience.

222:     If the fix causes conflicts, or one really does not want this fix for a particular C++ file, one can define PETSC_SKIP_CXX_COMPLEX_FIX
223:     at the beginning of the C++ file to skip the fix.

225:    Level: beginner

227: .seealso: PetscReal, PetscScalar, PetscComplex, PetscInt, MPIU_REAL, MPIU_SCALAR, MPIU_COMPLEX, MPIU_INT, PETSC_i
228: M*/
229: #if !defined(PETSC_SKIP_COMPLEX)
230: #  if defined(PETSC_CLANGUAGE_CXX)
231: #    if !defined(PETSC_USE_REAL___FP16) && !defined(PETSC_USE_REAL___FLOAT128)
232: #      if defined(__cplusplus) && defined(PETSC_HAVE_CXX_COMPLEX)  /* enable complex for library code */
233: #        define PETSC_HAVE_COMPLEX 1
234: #      elif !defined(__cplusplus) && defined(PETSC_HAVE_C99_COMPLEX) && defined(PETSC_HAVE_CXX_COMPLEX)  /* User code only - conditional on libary code complex support */
235: #        define PETSC_HAVE_COMPLEX 1
236: #      endif
237: #    elif defined(PETSC_USE_REAL___FLOAT128) && defined(PETSC_HAVE_C99_COMPLEX)
238: #        define PETSC_HAVE_COMPLEX 1
239: #    endif
240: #  else /* !PETSC_CLANGUAGE_CXX */
241: #    if !defined(PETSC_USE_REAL___FP16)
242: #      if !defined(__cplusplus) && defined(PETSC_HAVE_C99_COMPLEX) /* enable complex for library code */
243: #        define PETSC_HAVE_COMPLEX 1
244: #      elif defined(__cplusplus) && defined(PETSC_HAVE_C99_COMPLEX) && defined(PETSC_HAVE_CXX_COMPLEX)  /* User code only - conditional on libary code complex support */
245: #        define PETSC_HAVE_COMPLEX 1
246: #      endif
247: #    endif
248: #  endif /* PETSC_CLANGUAGE_CXX */
249: #endif /* !PETSC_SKIP_COMPLEX */

251: #if defined(PETSC_HAVE_COMPLEX)
252:   #if defined(__cplusplus)  /* C++ complex support */
253:     /* Locate a C++ complex template library */
254:     #if defined(PETSC_DESIRE_KOKKOS_COMPLEX) /* Defined in petscvec_kokkos.hpp for *.kokkos.cxx files */
255:       #define petsccomplexlib Kokkos
256:       #include <Kokkos_Complex.hpp>
257:     #elif defined(PETSC_HAVE_CUDA)
258:       #define petsccomplexlib thrust
259:       #include <thrust/complex.h>
260:     #elif defined(PETSC_USE_REAL___FLOAT128)
261:       #include <complex.h>
262:     #else
263:       #define petsccomplexlib std
264:       #include <complex>
265:     #endif

267:     /* Define PetscComplex based on the precision */
268:     #if defined(PETSC_USE_REAL_SINGLE)
269:       typedef petsccomplexlib::complex<float> PetscComplex;
270:     #elif defined(PETSC_USE_REAL_DOUBLE)
271:       typedef petsccomplexlib::complex<double> PetscComplex;
272:     #elif defined(PETSC_USE_REAL___FLOAT128)
273:       typedef __complex128 PetscComplex;
274:     #endif

276:     /* Include a PETSc C++ complex 'fix'. Check PetscComplex manual page for details */
277:     #if defined(PETSC_HAVE_CXX_COMPLEX_FIX) && !defined(PETSC_SKIP_CXX_COMPLEX_FIX)
278: #include <petsccxxcomplexfix.h>
279:     #endif
280:   #else /* c99 complex support */
281:     #include <complex.h>
282:     #if defined(PETSC_USE_REAL_SINGLE) || defined(PETSC_USE_REAL___FP16)
283:       typedef float _Complex PetscComplex;
284:     #elif defined(PETSC_USE_REAL_DOUBLE)
285:       typedef double _Complex PetscComplex;
286:     #elif defined(PETSC_USE_REAL___FLOAT128)
287:       typedef __complex128 PetscComplex;
288:     #endif /* PETSC_USE_REAL_* */
289:   #endif /* !__cplusplus */
290: #endif /* PETSC_HAVE_COMPLEX */

292: /*MC
293:    PetscScalar - PETSc type that represents either a double precision real number, a double precision
294:        complex number, a single precision real number, a __float128 real or complex or a __fp16 real - if the code is configured
295:        with --with-scalar-type=real,complex --with-precision=single,double,__float128,__fp16

297:    Notes:
298:    For MPI calls that require datatypes, use MPIU_SCALAR as the datatype for PetscScalar and MPIU_SUM, MPIU_MAX etc for operations. They will automatically work correctly regardless of the size of PetscScalar.

300:    Level: beginner

302: .seealso: PetscReal, PetscComplex, PetscInt, MPIU_REAL, MPIU_SCALAR, MPIU_COMPLEX, MPIU_INT, PetscRealPart(), PetscImaginaryPart()
303: M*/

305: #if defined(PETSC_USE_COMPLEX) && defined(PETSC_HAVE_COMPLEX)
306:    typedef PetscComplex PetscScalar;
307: #else /* PETSC_USE_COMPLEX */
308:    typedef PetscReal PetscScalar;
309: #endif /* PETSC_USE_COMPLEX */

311: /*E
312:     PetscCopyMode  - Determines how an array or PetscObject passed to certain functions is copied or retained by the aggregate PetscObject

314:    Level: beginner

316:    For the array input:
317: $   PETSC_COPY_VALUES - the array values are copied into new space, the user is free to reuse or delete the passed in array
318: $   PETSC_OWN_POINTER - the array values are NOT copied, the object takes ownership of the array and will free it later, the user cannot change or
319: $                       delete the array. The array MUST have been obtained with PetscMalloc(). Hence this mode cannot be used in Fortran.
320: $   PETSC_USE_POINTER - the array values are NOT copied, the object uses the array but does NOT take ownership of the array. The user cannot use
321: $                       the array but the user must delete the array after the object is destroyed.

323:    For the PetscObject input:
324: $   PETSC_COPY_VALUES - the input PetscObject is cloned into the aggregate PetscObject; the user is free to reuse/modify the input PetscObject without side effects.
325: $   PETSC_OWN_POINTER - the input PetscObject is referenced by pointer (with reference count), thus should not be modified by the user. (Modification may cause errors or unintended side-effects in this or a future version of PETSc.)
326:    For either case above, the input PetscObject should be destroyed by the user when no longer needed (the aggregate object increases its reference count).
327: $   PETSC_USE_POINTER - invalid for PetscObject inputs.

329: E*/
330: typedef enum {PETSC_COPY_VALUES, PETSC_OWN_POINTER, PETSC_USE_POINTER} PetscCopyMode;

332: /*MC
333:     PETSC_FALSE - False value of PetscBool

335:     Level: beginner

337:     Note:
338:     Zero integer

340: .seealso: PetscBool, PETSC_TRUE
341: M*/

343: /*MC
344:     PETSC_TRUE - True value of PetscBool

346:     Level: beginner

348:     Note:
349:     Nonzero integer

351: .seealso: PetscBool, PETSC_FALSE
352: M*/

354: /*MC
355:     PetscLogDouble - Used for logging times

357:   Notes:
358:   Contains double precision numbers that are not used in the numerical computations, but rather in logging, timing etc.

360:   Level: developer

362: M*/
363: typedef double PetscLogDouble;

365: /*E
366:     PetscDataType - Used for handling different basic data types.

368:    Level: beginner

370:    Notes:
371:    Use of this should be avoided if one can directly use MPI_Datatype instead.

373:    PETSC_INT is the datatype for a PetscInt, regardless of whether it is 4 or 8 bytes.
374:    PETSC_REAL, PETSC_COMPLEX and PETSC_SCALAR are the datatypes for PetscReal, PetscComplex and PetscScalar, regardless of their sizes.

376:    Developer comment:
377:    It would be nice if we could always just use MPI Datatypes, why can we not?

379:    If you change any values in PetscDatatype make sure you update their usage in
380:    share/petsc/matlab/PetscBagRead.m and share/petsc/matlab/@PetscOpenSocket/read/write.m

382:    TODO: Add PETSC_INT32 and remove use of improper PETSC_ENUM

384: .seealso: PetscBinaryRead(), PetscBinaryWrite(), PetscDataTypeToMPIDataType(),
385:           PetscDataTypeGetSize()

387: E*/
388: typedef enum {PETSC_DATATYPE_UNKNOWN = 0,
389:               PETSC_DOUBLE = 1, PETSC_COMPLEX = 2, PETSC_LONG = 3, PETSC_SHORT = 4, PETSC_FLOAT = 5,
390:               PETSC_CHAR = 6, PETSC_BIT_LOGICAL = 7, PETSC_ENUM = 8, PETSC_BOOL = 9, PETSC___FLOAT128 = 10,
391:               PETSC_OBJECT = 11, PETSC_FUNCTION = 12, PETSC_STRING = 13, PETSC___FP16 = 14, PETSC_STRUCT = 15,
392:               PETSC_INT = 16, PETSC_INT64 = 17} PetscDataType;

394: #if defined(PETSC_USE_REAL_SINGLE)
395: #  define PETSC_REAL PETSC_FLOAT
396: #elif defined(PETSC_USE_REAL_DOUBLE)
397: #  define PETSC_REAL PETSC_DOUBLE
398: #elif defined(PETSC_USE_REAL___FLOAT128)
399: #  define PETSC_REAL PETSC___FLOAT128
400: #elif defined(PETSC_USE_REAL___FP16)
401: #  define PETSC_REAL PETSC___FP16
402: #else
403: #  define PETSC_REAL PETSC_DOUBLE
404: #endif

406: #if defined(PETSC_USE_COMPLEX)
407: #  define PETSC_SCALAR PETSC_COMPLEX
408: #else
409: #  define PETSC_SCALAR PETSC_REAL
410: #endif

412: #define PETSC_FORTRANADDR PETSC_LONG

414: /*S
415:     PetscToken - 'Token' used for managing tokenizing strings

417:   Level: intermediate

419: .seealso: PetscTokenCreate(), PetscTokenFind(), PetscTokenDestroy()
420: S*/
421: typedef struct _p_PetscToken* PetscToken;

423: /*S
424:      PetscObject - any PETSc object, PetscViewer, Mat, Vec, KSP etc

426:    Level: beginner

428:    Note:
429:    This is the base class from which all PETSc objects are derived from.

431: .seealso:  PetscObjectDestroy(), PetscObjectView(), PetscObjectGetName(), PetscObjectSetName(), PetscObjectReference(), PetscObjectDereference()
432: S*/
433: typedef struct _p_PetscObject* PetscObject;

435: /*MC
436:     PetscObjectId - unique integer Id for a PetscObject

438:     Level: developer

440:     Notes:
441:     Unlike pointer values, object ids are never reused.

443: .seealso: PetscObjectState, PetscObjectGetId()
444: M*/
445: typedef PetscInt64 PetscObjectId;

447: /*MC
448:     PetscObjectState - integer state for a PetscObject

450:     Level: developer

452:     Notes:
453:     Object state is always-increasing and (for objects that track state) can be used to determine if an object has
454:     changed since the last time you interacted with it.  It is 64-bit so that it will not overflow for a very long time.

456: .seealso: PetscObjectId, PetscObjectStateGet(), PetscObjectStateIncrease(), PetscObjectStateSet()
457: M*/
458: typedef PetscInt64 PetscObjectState;

460: /*S
461:      PetscFunctionList - Linked list of functions, possibly stored in dynamic libraries, accessed
462:       by string name

464:    Level: advanced

466: .seealso:  PetscFunctionListAdd(), PetscFunctionListDestroy()
467: S*/
468: typedef struct _n_PetscFunctionList *PetscFunctionList;

470: /*E
471:   PetscFileMode - Access mode for a file.

473:   Level: beginner

475: $  FILE_MODE_UNDEFINED - initial invalid value
476: $  FILE_MODE_READ - open a file at its beginning for reading
477: $  FILE_MODE_WRITE - open a file at its beginning for writing (will create if the file does not exist)
478: $  FILE_MODE_APPEND - open a file at end for writing
479: $  FILE_MODE_UPDATE - open a file for updating, meaning for reading and writing
480: $  FILE_MODE_APPEND_UPDATE - open a file for updating, meaning for reading and writing, at the end

482: .seealso: PetscViewerFileSetMode()
483: E*/
484: typedef enum {FILE_MODE_UNDEFINED=-1, FILE_MODE_READ=0, FILE_MODE_WRITE, FILE_MODE_APPEND, FILE_MODE_UPDATE, FILE_MODE_APPEND_UPDATE} PetscFileMode;

486: typedef void* PetscDLHandle;
487: typedef enum {PETSC_DL_DECIDE=0,PETSC_DL_NOW=1,PETSC_DL_LOCAL=2} PetscDLMode;

489: /*S
490:      PetscObjectList - Linked list of PETSc objects, each accessible by string name

492:    Level: developer

494:    Notes:
495:    Used by PetscObjectCompose() and PetscObjectQuery()

497: .seealso:  PetscObjectListAdd(), PetscObjectListDestroy(), PetscObjectListFind(), PetscObjectCompose(), PetscObjectQuery(), PetscFunctionList
498: S*/
499: typedef struct _n_PetscObjectList *PetscObjectList;

501: /*S
502:      PetscDLLibrary - Linked list of dynamics libraries to search for functions

504:    Level: advanced

506: .seealso:  PetscDLLibraryOpen()
507: S*/
508: typedef struct _n_PetscDLLibrary *PetscDLLibrary;

510: /*S
511:      PetscContainer - Simple PETSc object that contains a pointer to any required data

513:    Level: advanced

515: .seealso:  PetscObject, PetscContainerCreate()
516: S*/
517: typedef struct _p_PetscContainer*  PetscContainer;

519: /*S
520:      PetscRandom - Abstract PETSc object that manages generating random numbers

522:    Level: intermediate

524: .seealso:  PetscRandomCreate(), PetscRandomGetValue(), PetscRandomType
525: S*/
526: typedef struct _p_PetscRandom*   PetscRandom;

528: /*
529:    In binary files variables are stored using the following lengths,
530:   regardless of how they are stored in memory on any one particular
531:   machine. Use these rather then sizeof() in computing sizes for
532:   PetscBinarySeek().
533: */
534: #define PETSC_BINARY_INT_SIZE    (32/8)
535: #define PETSC_BINARY_FLOAT_SIZE  (32/8)
536: #define PETSC_BINARY_CHAR_SIZE   (8/8)
537: #define PETSC_BINARY_SHORT_SIZE  (16/8)
538: #define PETSC_BINARY_DOUBLE_SIZE (64/8)
539: #define PETSC_BINARY_SCALAR_SIZE sizeof(PetscScalar)

541: /*E
542:   PetscBinarySeekType - argument to PetscBinarySeek()

544:   Level: advanced

546: .seealso: PetscBinarySeek(), PetscBinarySynchronizedSeek()
547: E*/
548: typedef enum {PETSC_BINARY_SEEK_SET = 0,PETSC_BINARY_SEEK_CUR = 1,PETSC_BINARY_SEEK_END = 2} PetscBinarySeekType;

550: /*E
551:     PetscBuildTwoSidedType - algorithm for setting up two-sided communication

553: $  PETSC_BUILDTWOSIDED_ALLREDUCE - classical algorithm using an MPI_Allreduce with
554: $      a buffer of length equal to the communicator size. Not memory-scalable due to
555: $      the large reduction size. Requires only MPI-1.
556: $  PETSC_BUILDTWOSIDED_IBARRIER - nonblocking algorithm based on MPI_Issend and MPI_Ibarrier.
557: $      Proved communication-optimal in Hoefler, Siebert, and Lumsdaine (2010). Requires MPI-3.
558: $  PETSC_BUILDTWOSIDED_REDSCATTER - similar to above, but use more optimized function
559: $      that only communicates the part of the reduction that is necessary.  Requires MPI-2.

561:    Level: developer

563: .seealso: PetscCommBuildTwoSided(), PetscCommBuildTwoSidedSetType(), PetscCommBuildTwoSidedGetType()
564: E*/
565: typedef enum {
566:   PETSC_BUILDTWOSIDED_NOTSET = -1,
567:   PETSC_BUILDTWOSIDED_ALLREDUCE = 0,
568:   PETSC_BUILDTWOSIDED_IBARRIER = 1,
569:   PETSC_BUILDTWOSIDED_REDSCATTER = 2
570:   /* Updates here must be accompanied by updates in finclude/petscsys.h and the string array in mpits.c */
571: } PetscBuildTwoSidedType;

573: /* NOTE: If you change this, you must also change the values in src/vec/f90-mod/petscvec.h */
574: /*E
575:   InsertMode - Whether entries are inserted or added into vectors or matrices

577:   Level: beginner

579: .seealso: VecSetValues(), MatSetValues(), VecSetValue(), VecSetValuesBlocked(),
580:           VecSetValuesLocal(), VecSetValuesBlockedLocal(), MatSetValuesBlocked(),
581:           MatSetValuesBlockedLocal(), MatSetValuesLocal(), VecScatterBegin(), VecScatterEnd()
582: E*/
583:  typedef enum {NOT_SET_VALUES, INSERT_VALUES, ADD_VALUES, MAX_VALUES, MIN_VALUES, INSERT_ALL_VALUES, ADD_ALL_VALUES, INSERT_BC_VALUES, ADD_BC_VALUES} InsertMode;

585: /*MC
586:     INSERT_VALUES - Put a value into a vector or matrix, overwrites any previous value

588:     Level: beginner

590: .seealso: InsertMode, VecSetValues(), MatSetValues(), VecSetValue(), VecSetValuesBlocked(),
591:           VecSetValuesLocal(), VecSetValuesBlockedLocal(), MatSetValuesBlocked(), ADD_VALUES,
592:           MatSetValuesBlockedLocal(), MatSetValuesLocal(), VecScatterBegin(), VecScatterEnd(), MAX_VALUES

594: M*/

596: /*MC
597:     ADD_VALUES - Adds a value into a vector or matrix, if there previously was no value, just puts the
598:                 value into that location

600:     Level: beginner

602: .seealso: InsertMode, VecSetValues(), MatSetValues(), VecSetValue(), VecSetValuesBlocked(),
603:           VecSetValuesLocal(), VecSetValuesBlockedLocal(), MatSetValuesBlocked(), INSERT_VALUES,
604:           MatSetValuesBlockedLocal(), MatSetValuesLocal(), VecScatterBegin(), VecScatterEnd(), MAX_VALUES

606: M*/

608: /*MC
609:     MAX_VALUES - Puts the maximum of the scattered/gathered value and the current value into each location

611:     Level: beginner

613: .seealso: InsertMode, VecScatterBegin(), VecScatterEnd(), ADD_VALUES, INSERT_VALUES

615: M*/

617: /*MC
618:     MIN_VALUES - Puts the minimal of the scattered/gathered value and the current value into each location

620:     Level: beginner

622: .seealso: InsertMode, VecScatterBegin(), VecScatterEnd(), ADD_VALUES, INSERT_VALUES

624: M*/

626: /*S
627:    PetscSubcomm - A decomposition of an MPI communicator into subcommunicators

629:    Notes:
630:    After a call to PetscSubcommSetType(), PetscSubcommSetTypeGeneral(), or PetscSubcommSetFromOptions() one may call
631: $     PetscSubcommChild() returns the associated subcommunicator on this process
632: $     PetscSubcommContiguousParent() returns a parent communitor but with all child of the same subcommunicator having contiguous rank

634:    Sample Usage:
635:        PetscSubcommCreate()
636:        PetscSubcommSetNumber()
637:        PetscSubcommSetType(PETSC_SUBCOMM_INTERLACED);
638:        ccomm = PetscSubcommChild()
639:        PetscSubcommDestroy()

641:    Level: advanced

643:    Notes:
644: $   PETSC_SUBCOMM_GENERAL - similar to MPI_Comm_split() each process sets the new communicator (color) they will belong to and the order within that communicator
645: $   PETSC_SUBCOMM_CONTIGUOUS - each new communicator contains a set of process with contiguous ranks in the original MPI communicator
646: $   PETSC_SUBCOMM_INTERLACED - each new communictor contains a set of processes equally far apart in rank from the others in that new communicator

648:    Example: Consider a communicator with six processes split into 3 subcommunicators.
649: $     PETSC_SUBCOMM_CONTIGUOUS - the first communicator contains rank 0,1  the second rank 2,3 and the third rank 4,5 in the original ordering of the original communicator
650: $     PETSC_SUBCOMM_INTERLACED - the first communicator contains rank 0,3, the second 1,4 and the third 2,5

652:    Developer Notes:
653:    This is used in objects such as PCREDUNDANT to manage the subcommunicators on which the redundant computations
654:       are performed.

656: .seealso: PetscSubcommCreate(), PetscSubcommSetNumber(), PetscSubcommSetType(), PetscSubcommView(), PetscSubcommSetFromOptions()

658: S*/
659: typedef struct _n_PetscSubcomm* PetscSubcomm;
660: typedef enum {PETSC_SUBCOMM_GENERAL=0,PETSC_SUBCOMM_CONTIGUOUS=1,PETSC_SUBCOMM_INTERLACED=2} PetscSubcommType;

662: /*S
663:      PetscHeap - A simple class for managing heaps

665:    Level: intermediate

667: .seealso:  PetscHeapCreate(), PetscHeapAdd(), PetscHeapPop(), PetscHeapPeek(), PetscHeapStash(), PetscHeapUnstash(), PetscHeapView(), PetscHeapDestroy()
668: S*/
669: typedef struct _PetscHeap *PetscHeap;

671: typedef struct _n_PetscShmComm* PetscShmComm;
672: typedef struct _n_PetscOmpCtrl* PetscOmpCtrl;

674: /*S
675:    PetscSegBuffer - a segmented extendable buffer

677:    Level: developer

679: .seealso: PetscSegBufferCreate(), PetscSegBufferGet(), PetscSegBufferExtract(), PetscSegBufferDestroy()
680: S*/
681: typedef struct _n_PetscSegBuffer *PetscSegBuffer;

683: typedef struct _n_PetscOptionsHelpPrinted *PetscOptionsHelpPrinted;
684: #endif