Actual source code: petscsystypes.h
1: /* Portions of this code are under:
2: Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
3: */
5: #pragma once
7: #include <petscconf.h>
8: #include <petscconf_poison.h>
9: #include <petscfix.h>
10: #include <petscmacros.h>
11: #include <stddef.h>
13: /* SUBMANSEC = Sys */
15: #include <limits.h> // INT_MIN, INT_MAX, CHAR_BIT
17: #if defined(__clang__) || (PETSC_CPP_VERSION >= 17)
18: // clang allows both [[nodiscard]] and __attribute__((warn_unused_result)) on type
19: // definitions. GCC, however, does not, so check that we are using C++17 [[nodiscard]]
20: // instead of __attribute__((warn_unused_result))
21: #define PETSC_ERROR_CODE_NODISCARD PETSC_NODISCARD
22: #else
23: #define PETSC_ERROR_CODE_NODISCARD
24: #endif
26: #ifdef PETSC_CLANG_STATIC_ANALYZER
27: #undef PETSC_USE_STRICT_PETSCERRORCODE
28: #endif
30: #ifdef PETSC_USE_STRICT_PETSCERRORCODE
31: #define PETSC_ERROR_CODE_TYPEDEF typedef
32: #define PETSC_ERROR_CODE_ENUM_NAME PetscErrorCode
33: #else
34: #define PETSC_ERROR_CODE_TYPEDEF
35: #define PETSC_ERROR_CODE_ENUM_NAME
36: #endif
38: /*E
39: PetscErrorCode - Datatype used to return PETSc error codes.
41: Level: beginner
43: Notes:
44: Virtually all PETSc functions return an error code. It is the callers responsibility to check
45: the value of the returned error code after each PETSc call to determine if any errors
46: occurred. A set of convenience macros (e.g. `PetscCall()`, `PetscCallVoid()`) are provided
47: for this purpose. Failing to properly check for errors is not supported, as errors may leave
48: PETSc in an undetermined state.
50: One can retrieve the error string corresponding to a particular error code using
51: `PetscErrorMessage()`.
53: The user can also configure PETSc with the `--with-strict-petscerrorcode` option to enable
54: compiler warnings when the returned error codes are not captured and checked. Users are
55: *heavily* encouraged to opt-in to this option, as it will become enabled by default in a
56: future release.
58: Developer Notes:
59: These are the generic error codes. These error codes are used in many different places in the
60: PETSc source code. The C-string versions are at defined in `PetscErrorStrings[]` in
61: `src/sys/error/err.c`, while the Fortran versions are defined in
62: `src/sys/f90-mod/petscerror.h`. Any changes here must also be made in both locations.
64: .seealso: `PetscErrorMessage()`, `PetscCall()`, `SETERRQ()`
65: E*/
66: PETSC_ERROR_CODE_TYPEDEF enum PETSC_ERROR_CODE_NODISCARD {
67: PETSC_SUCCESS = 0,
68: PETSC_ERR_BOOLEAN_MACRO_FAILURE = 1, /* do not use */
70: PETSC_ERR_MIN_VALUE = 54, /* should always be one less than the smallest value */
72: PETSC_ERR_MEM = 55, /* unable to allocate requested memory */
73: PETSC_ERR_SUP = 56, /* no support for requested operation */
74: PETSC_ERR_SUP_SYS = 57, /* no support for requested operation on this computer system */
75: PETSC_ERR_ORDER = 58, /* operation done in wrong order */
76: PETSC_ERR_SIG = 59, /* signal received */
77: PETSC_ERR_FP = 72, /* floating point exception */
78: PETSC_ERR_COR = 74, /* corrupted PETSc object */
79: PETSC_ERR_LIB = 76, /* error in library called by PETSc */
80: PETSC_ERR_PLIB = 77, /* PETSc library generated inconsistent data */
81: PETSC_ERR_MEMC = 78, /* memory corruption */
82: PETSC_ERR_CONV_FAILED = 82, /* iterative method (KSP or SNES) failed */
83: PETSC_ERR_USER = 83, /* user has not provided needed function */
84: PETSC_ERR_SYS = 88, /* error in system call */
85: PETSC_ERR_POINTER = 70, /* pointer does not point to valid address */
86: PETSC_ERR_MPI_LIB_INCOMP = 87, /* MPI library at runtime is not compatible with MPI user compiled with */
88: PETSC_ERR_ARG_SIZ = 60, /* nonconforming object sizes used in operation */
89: PETSC_ERR_ARG_IDN = 61, /* two arguments not allowed to be the same */
90: PETSC_ERR_ARG_WRONG = 62, /* wrong argument (but object probably ok) */
91: PETSC_ERR_ARG_CORRUPT = 64, /* null or corrupted PETSc object as argument */
92: PETSC_ERR_ARG_OUTOFRANGE = 63, /* input argument, out of range */
93: PETSC_ERR_ARG_BADPTR = 68, /* invalid pointer argument */
94: PETSC_ERR_ARG_NOTSAMETYPE = 69, /* two args must be same object type */
95: PETSC_ERR_ARG_NOTSAMECOMM = 80, /* two args must be same communicators */
96: PETSC_ERR_ARG_WRONGSTATE = 73, /* object in argument is in wrong state, e.g. unassembled mat */
97: PETSC_ERR_ARG_TYPENOTSET = 89, /* the type of the object has not yet been set */
98: PETSC_ERR_ARG_INCOMP = 75, /* two arguments are incompatible */
99: PETSC_ERR_ARG_NULL = 85, /* argument is null that should not be */
100: PETSC_ERR_ARG_UNKNOWN_TYPE = 86, /* type name doesn't match any registered type */
102: PETSC_ERR_FILE_OPEN = 65, /* unable to open file */
103: PETSC_ERR_FILE_READ = 66, /* unable to read from file */
104: PETSC_ERR_FILE_WRITE = 67, /* unable to write to file */
105: PETSC_ERR_FILE_UNEXPECTED = 79, /* unexpected data in file */
107: PETSC_ERR_MAT_LU_ZRPVT = 71, /* detected a zero pivot during LU factorization */
108: PETSC_ERR_MAT_CH_ZRPVT = 81, /* detected a zero pivot during Cholesky factorization */
110: PETSC_ERR_INT_OVERFLOW = 84,
111: PETSC_ERR_FLOP_COUNT = 90,
112: PETSC_ERR_NOT_CONVERGED = 91, /* solver did not converge */
113: PETSC_ERR_MISSING_FACTOR = 92, /* MatGetFactor() failed */
114: PETSC_ERR_OPT_OVERWRITE = 93, /* attempted to over write options which should not be changed */
115: PETSC_ERR_WRONG_MPI_SIZE = 94, /* example/application run with number of MPI ranks it does not support */
116: PETSC_ERR_USER_INPUT = 95, /* missing or incorrect user input */
117: PETSC_ERR_GPU_RESOURCE = 96, /* unable to load a GPU resource, for example cuBLAS */
118: PETSC_ERR_GPU = 97, /* An error from a GPU call, this may be due to lack of resources on the GPU or a true error in the call */
119: PETSC_ERR_MPI = 98, /* general MPI error */
120: PETSC_ERR_RETURN = 99, /* PetscError() incorrectly returned an error code of 0 */
121: PETSC_ERR_MEM_LEAK = 100, /* memory alloc/free imbalance */
122: PETSC_ERR_PYTHON = 101, /* Exception in Python */
123: PETSC_ERR_MAX_VALUE = 102, /* this is always the one more than the largest error code */
125: /*
126: do not use, exist purely to make the enum bounds equal that of a regular int (so conversion
127: to int in main() is not undefined behavior)
128: */
129: PETSC_ERR_MIN_SIGNED_BOUND_DO_NOT_USE = INT_MIN,
130: PETSC_ERR_MAX_SIGNED_BOUND_DO_NOT_USE = INT_MAX
131: } PETSC_ERROR_CODE_ENUM_NAME;
133: #ifndef PETSC_USE_STRICT_PETSCERRORCODE
134: typedef int PetscErrorCode;
136: /*
137: Needed so that C++ lambdas can deduce the return type as PetscErrorCode from
138: PetscFunctionReturn(PETSC_SUCCESS). Otherwise we get
140: error: return type '(unnamed enum at include/petscsystypes.h:50:1)' must match previous
141: return type 'int' when lambda expression has unspecified explicit return type
142: PetscFunctionReturn(PETSC_SUCCESS);
143: ^
144: */
145: #define PETSC_SUCCESS ((PetscErrorCode)0)
146: #endif
148: #undef PETSC_ERROR_CODE_NODISCARD
149: #undef PETSC_ERROR_CODE_TYPEDEF
150: #undef PETSC_ERROR_CODE_ENUM_NAME
152: /*MC
153: PetscClassId - A unique id used to identify each PETSc class.
155: Level: developer
157: Note:
158: Use `PetscClassIdRegister()` to obtain a new value for a new class being created. Usually
159: XXXInitializePackage() calls it for each class it defines.
161: Developer Note:
162: Internal integer stored in the `_p_PetscObject` data structure. These are all computed by an offset from the lowest one, `PETSC_SMALLEST_CLASSID`.
164: .seealso: `PetscClassIdRegister()`, `PetscLogEventRegister()`, `PetscHeaderCreate()`
165: M*/
166: typedef int PetscClassId;
168: /*MC
169: PetscMPIInt - datatype used to represent 'int' parameters to MPI functions.
171: Level: intermediate
173: Notes:
174: This is always a 32-bit integer, sometimes it is the same as `PetscInt`, but if PETSc was built with `--with-64-bit-indices` but
175: standard C/Fortran integers are 32-bit then this is NOT the same as `PetscInt`; it remains 32-bit.
177: `PetscMPIIntCast`(a,&b) checks if the given `PetscInt` a will fit in a `PetscMPIInt`, if not it
178: generates a `PETSC_ERR_ARG_OUTOFRANGE` error.
180: .seealso: [](stylePetscCount), `PetscBLASInt`, `PetscInt`, `PetscMPIIntCast()`
181: M*/
182: typedef int PetscMPIInt;
184: /* Limit MPI to 32-bits */
185: enum {
186: PETSC_MPI_INT_MIN = INT_MIN,
187: PETSC_MPI_INT_MAX = INT_MAX
188: };
190: /*MC
191: PetscSizeT - datatype used to represent sizes in memory (like `size_t`)
193: Level: intermediate
195: Notes:
196: This is equivalent to `size_t`, but defined for consistency with Fortran, which lacks a native equivalent of `size_t`.
198: .seealso: `PetscInt`, `PetscInt64`, `PetscCount`
199: M*/
200: typedef size_t PetscSizeT;
202: /*MC
203: PetscCount - signed datatype used to represent counts
205: Level: intermediate
207: Notes:
208: This is equivalent to `ptrdiff_t`, but defined for consistency with Fortran, which lacks a native equivalent of `ptrdiff_t`.
210: Use `PetscCount_FMT` to format with `PetscPrintf()`, `printf()`, and related functions.
212: .seealso: [](stylePetscCount), `PetscInt`, `PetscInt64`, `PetscSizeT`
213: M*/
214: typedef ptrdiff_t PetscCount;
215: #define PetscCount_FMT "td"
217: /*MC
218: PetscEnum - datatype used to pass enum types within PETSc functions.
220: Level: intermediate
222: .seealso: `PetscOptionsGetEnum()`, `PetscOptionsEnum()`, `PetscBagRegisterEnum()`
223: M*/
224: typedef enum {
225: ENUM_DUMMY
226: } PetscEnum;
228: typedef short PetscShort;
229: typedef char PetscChar;
230: typedef float PetscFloat;
232: /*MC
233: PetscInt - PETSc type that represents an integer, used primarily to
234: represent size of arrays and indexing into arrays. Its size can be configured with the option `--with-64-bit-indices` to be either 32-bit (default) or 64-bit.
236: Level: beginner
238: Notes:
239: For MPI calls that require datatypes, use `MPIU_INT` as the datatype for `PetscInt`. It will automatically work correctly regardless of the size of `PetscInt`.
241: .seealso: `PetscBLASInt`, `PetscMPIInt`, `PetscReal`, `PetscScalar`, `PetscComplex`, `PetscInt`, `MPIU_REAL`, `MPIU_SCALAR`, `MPIU_COMPLEX`, `MPIU_INT`, `PetscIntCast()`
242: M*/
244: #if defined(PETSC_HAVE_STDINT_H)
245: #include <stdint.h>
246: #endif
247: #if defined(PETSC_HAVE_INTTYPES_H)
250: #endif
251: #include <inttypes.h>
252: #if !defined(PRId64)
253: #define PRId64 "ld"
254: #endif
255: #endif
257: #if defined(PETSC_HAVE_STDINT_H) && defined(PETSC_HAVE_INTTYPES_H) && (defined(PETSC_HAVE_MPIUNI) || defined(PETSC_HAVE_MPI_INT64_T)) /* MPI_INT64_T is not guaranteed to be a macro */
258: typedef int64_t PetscInt64;
260: #define PETSC_INT64_MIN INT64_MIN
261: #define PETSC_INT64_MAX INT64_MAX
263: #elif (PETSC_SIZEOF_LONG_LONG == 8)
264: typedef long long PetscInt64;
266: #define PETSC_INT64_MIN LLONG_MIN
267: #define PETSC_INT64_MAX LLONG_MAX
269: #elif defined(PETSC_HAVE___INT64)
270: typedef __int64 PetscInt64;
272: #define PETSC_INT64_MIN INT64_MIN
273: #define PETSC_INT64_MAX INT64_MAX
275: #else
276: #error "cannot determine PetscInt64 type"
277: #endif
279: #if PETSC_SIZEOF_SIZE_T == 4
280: #define PETSC_COUNT_MIN INT_MIN
281: #define PETSC_COUNT_MAX INT_MAX
282: #else
283: #define PETSC_COUNT_MIN PETSC_INT64_MIN
284: #define PETSC_COUNT_MAX PETSC_INT64_MAX
285: #endif
287: typedef int32_t PetscInt32;
288: #define PETSC_INT32_MIN INT32_MIN
289: #define PETSC_INT32_MAX INT32_MAX
291: #if defined(PETSC_USE_64BIT_INDICES)
292: typedef PetscInt64 PetscInt;
294: #define PETSC_INT_MIN PETSC_INT64_MIN
295: #define PETSC_INT_MAX PETSC_INT64_MAX
296: #define PetscInt_FMT PetscInt64_FMT
297: #else
298: typedef int PetscInt;
300: enum {
301: PETSC_INT_MIN = INT_MIN,
302: PETSC_INT_MAX = INT_MAX
303: };
304: #define PetscInt_FMT "d"
305: #endif
307: #define PETSC_UINT16_MAX 65535
309: /* deprecated */
310: #define PETSC_MIN_INT PETSC_INT_MIN
311: #define PETSC_MAX_INT PETSC_INT_MAX
312: #define PETSC_MAX_UINT16 PETSC_UINT16_MAX
314: #if defined(PETSC_HAVE_STDINT_H) && defined(PETSC_HAVE_INTTYPES_H) && (defined(PETSC_HAVE_MPIUNI) || defined(PETSC_HAVE_MPI_INT64_T)) /* MPI_INT64_T is not guaranteed to be a macro */
315: #define MPIU_INT64 MPI_INT64_T
316: #define PetscInt64_FMT PRId64
317: #elif (PETSC_SIZEOF_LONG_LONG == 8)
318: #define MPIU_INT64 MPI_LONG_LONG_INT
319: #define PetscInt64_FMT "lld"
320: #elif defined(PETSC_HAVE___INT64)
321: #define MPIU_INT64 MPI_INT64_T
322: #define PetscInt64_FMT "ld"
323: #else
324: #error "cannot determine PetscInt64 type"
325: #endif
327: #define MPIU_INT32 MPI_INT32_T
328: #define PetscInt32_FMT PRId32
330: /*MC
331: PetscBLASInt - datatype used to represent 'int' parameters to BLAS/LAPACK functions.
333: Level: intermediate
335: Notes:
336: Usually this is the same as `PetscInt`, but if PETSc was built with `--with-64-bit-indices` but
337: standard C/Fortran integers are 32-bit then this may not be the same as `PetscInt`,
338: except on some BLAS/LAPACK implementations that support 64-bit integers see the notes below.
340: `PetscErrorCode` `PetscBLASIntCast`(a,&b) checks if the given `PetscInt` a will fit in a `PetscBLASInt`, if not it
341: generates a `PETSC_ERR_ARG_OUTOFRANGE` error
343: Installation Notes\:
344: ./configure automatically determines the size of the integers used by BLAS/LAPACK except when `--with-batch` is used
345: in that situation one must know (by some other means) if the integers used by BLAS/LAPACK are 64-bit and if so pass the flag `--known-64-bit-blas-indices`
347: MATLAB ships with BLAS and LAPACK that use 64-bit integers, for example if you run ./configure with, the option
348: `--with-blaslapack-lib`=[/Applications/MATLAB_R2010b.app/bin/maci64/libmwblas.dylib,/Applications/MATLAB_R2010b.app/bin/maci64/libmwlapack.dylib]
350: MKL ships with both 32 and 64-bit integer versions of the BLAS and LAPACK. If you pass the flag `-with-64-bit-blas-indices` PETSc will link
351: against the 64-bit version, otherwise it uses the 32-bit version
353: OpenBLAS can be built to use 64-bit integers. The ./configure options `--download-openblas` `-with-64-bit-blas-indices` will build a 64-bit integer version
355: External packages such as hypre, ML, SuperLU etc do not provide any support for passing 64-bit integers to BLAS/LAPACK so cannot
356: be used with PETSc when PETSc links against 64-bit integer BLAS/LAPACK. ./configure will generate an error if you attempt to link PETSc against any of
357: these external libraries while using 64-bit integer BLAS/LAPACK.
359: .seealso: `PetscMPIInt`, `PetscInt`, `PetscBLASIntCast()`
360: M*/
361: #if defined(PETSC_HAVE_64BIT_BLAS_INDICES)
362: typedef PetscInt64 PetscBLASInt;
364: #define PETSC_BLAS_INT_MIN PETSC_INT64_MIN
365: #define PETSC_BLAS_INT_MAX PETSC_INT64_MAX
366: #define PetscBLASInt_FMT PetscInt64_FMT
367: #else
368: typedef int PetscBLASInt;
370: enum {
371: PETSC_BLAS_INT_MIN = INT_MIN,
372: PETSC_BLAS_INT_MAX = INT_MAX
373: };
375: #define PetscBLASInt_FMT "d"
376: #endif
378: /*MC
379: PetscCuBLASInt - datatype used to represent 'int' parameters to cuBLAS/cuSOLVER functions.
381: Level: intermediate
383: Notes:
384: As of this writing `PetscCuBLASInt` is always the system `int`.
386: `PetscErrorCode` `PetscCuBLASIntCast`(a,&b) checks if the given `PetscInt` a will fit in a `PetscCuBLASInt`, if not it
387: generates a `PETSC_ERR_ARG_OUTOFRANGE` error
389: .seealso: `PetscBLASInt`, `PetscMPIInt`, `PetscInt`, `PetscCuBLASIntCast()`
390: M*/
391: typedef int PetscCuBLASInt;
393: enum {
394: PETSC_CUBLAS_INT_MIN = INT_MIN,
395: PETSC_CUBLAS_INT_MAX = INT_MAX
396: };
398: /*MC
399: PetscHipBLASInt - datatype used to represent 'int' parameters to hipBLAS/hipSOLVER functions.
401: Level: intermediate
403: Notes:
404: `PetscHipBLASInt` is always the system `int`.
406: `PetscErrorCode` `PetscHipBLASIntCast`(a,&b) checks if the given `PetscInt` a will fit in a `PetscHipBLASInt`, if not it
407: generates a `PETSC_ERR_ARG_OUTOFRANGE` error
409: .seealso: `PetscBLASInt`, `PetscMPIInt`, `PetscInt`, `PetscHipBLASIntCast()`
410: M*/
411: typedef int PetscHipBLASInt;
413: enum {
414: PETSC_HIPBLAS_INT_MIN = INT_MIN,
415: PETSC_HIPBLAS_INT_MAX = INT_MAX
416: };
418: /*MC
419: PetscExodusIIInt - datatype used to represent 'int' parameters to ExodusII functions.
421: Level: intermediate
423: Notes:
424: This is the same as `int`
426: .seealso: `PetscMPIInt`, `PetscInt`, `PetscExodusIIFloat`, `PetscBLASIntCast()`
427: M*/
428: typedef int PetscExodusIIInt;
429: #define PetscExodusIIInt_FMT "d"
431: /*MC
432: PetscExodusIIFloat - datatype used to represent 'float' parameters to ExodusII functions.
434: Level: intermediate
436: Notes:
437: This is the same as `float`
439: .seealso: `PetscMPIInt`, `PetscInt`, `PetscExodusIIInt`, `PetscBLASIntCast()`
440: M*/
441: typedef float PetscExodusIIFloat;
443: /*E
444: PetscBool - Logical variable. Actually an enum in C and a logical in Fortran.
446: Level: beginner
448: Developer Note:
449: Why have `PetscBool`, why not use bool in C? The problem is that K and R C, C99 and C++ all have different mechanisms for
450: Boolean values. It is not easy to have a simple macro that will work properly in all circumstances with all three mechanisms.
452: .seealso: `PETSC_TRUE`, `PETSC_FALSE`, `PetscNot()`, `PetscBool3`
453: E*/
454: typedef enum {
455: PETSC_FALSE,
456: PETSC_TRUE
457: } PetscBool;
458: PETSC_EXTERN const char *const PetscBools[];
460: /*E
461: PetscBool3 - Ternary logical variable. Actually an enum in C and a 4 byte integer in Fortran.
463: Level: beginner
465: Note:
466: Should not be used with the if (flg) or if (!flg) syntax.
468: .seealso: `PETSC_TRUE`, `PETSC_FALSE`, `PetscNot()`, `PETSC_BOOL3_TRUE`, `PETSC_BOOL3_FALSE`, `PETSC_BOOL3_UNKNOWN`
469: E*/
470: typedef enum {
471: PETSC_BOOL3_FALSE,
472: PETSC_BOOL3_TRUE,
473: PETSC_BOOL3_UNKNOWN = -1 /* the value is unknown at the time of query, but might be determined later */
474: } PetscBool3;
476: #define PetscBool3ToBool(a) ((a) == PETSC_BOOL3_TRUE ? PETSC_TRUE : PETSC_FALSE)
477: #define PetscBoolToBool3(a) ((a) == PETSC_TRUE ? PETSC_BOOL3_TRUE : PETSC_BOOL3_FALSE)
479: /*MC
480: PetscReal - PETSc type that represents a real number version of `PetscScalar`
482: Level: beginner
484: Notes:
485: For MPI calls that require datatypes, use `MPIU_REAL` as the datatype for `PetscReal` and `MPIU_SUM`, `MPIU_MAX`, etc. for operations.
486: They will automatically work correctly regardless of the size of `PetscReal`.
488: See `PetscScalar` for details on how to ./configure the size of `PetscReal`.
490: .seealso: `PetscScalar`, `PetscComplex`, `PetscInt`, `MPIU_REAL`, `MPIU_SCALAR`, `MPIU_COMPLEX`, `MPIU_INT`
491: M*/
493: #if defined(PETSC_USE_REAL_SINGLE)
494: typedef float PetscReal;
495: #elif defined(PETSC_USE_REAL_DOUBLE)
496: typedef double PetscReal;
497: #elif defined(PETSC_USE_REAL___FLOAT128)
498: #if defined(__cplusplus)
499: extern "C" {
500: #endif
501: #include <quadmath.h>
502: #if defined(__cplusplus)
503: }
504: #endif
505: typedef __float128 PetscReal;
506: #elif defined(PETSC_USE_REAL___FP16)
507: typedef __fp16 PetscReal;
508: #endif /* PETSC_USE_REAL_* */
510: /*MC
511: PetscComplex - PETSc type that represents a complex number with precision matching that of `PetscReal`.
513: Synopsis:
514: #include <petscsys.h>
515: PetscComplex number = 1. + 2.*PETSC_i;
517: Level: beginner
519: Notes:
520: For MPI calls that require datatypes, use `MPIU_COMPLEX` as the datatype for `PetscComplex` and `MPIU_SUM` etc for operations.
521: They will automatically work correctly regardless of the size of `PetscComplex`.
523: See `PetscScalar` for details on how to ./configure the size of `PetscReal`
525: Complex numbers are automatically available if PETSc was able to find a working complex implementation
527: PETSc has a 'fix' for complex numbers to support expressions such as `std::complex<PetscReal>` + `PetscInt`, which are not supported by the standard
528: C++ library, but are convenient for petsc users. If the C++ compiler is able to compile code in `petsccxxcomplexfix.h` (This is checked by
529: configure), we include `petsccxxcomplexfix.h` to provide this convenience.
531: If the fix causes conflicts, or one really does not want this fix for a particular C++ file, one can define `PETSC_SKIP_CXX_COMPLEX_FIX`
532: at the beginning of the C++ file to skip the fix.
534: .seealso: `PetscReal`, `PetscScalar`, `PetscComplex`, `PetscInt`, `MPIU_REAL`, `MPIU_SCALAR`, `MPIU_COMPLEX`, `MPIU_INT`, `PETSC_i`
535: M*/
536: #if !defined(PETSC_SKIP_COMPLEX)
537: #if defined(PETSC_CLANGUAGE_CXX)
538: #if !defined(PETSC_USE_REAL___FP16) && !defined(PETSC_USE_REAL___FLOAT128)
539: #if defined(__cplusplus) && defined(PETSC_HAVE_CXX_COMPLEX) /* enable complex for library code */
540: #define PETSC_HAVE_COMPLEX 1
541: #elif !defined(__cplusplus) && defined(PETSC_HAVE_C99_COMPLEX) && defined(PETSC_HAVE_CXX_COMPLEX) /* User code only - conditional on library code complex support */
542: #define PETSC_HAVE_COMPLEX 1
543: #endif
544: #elif defined(PETSC_USE_REAL___FLOAT128) && defined(PETSC_HAVE_C99_COMPLEX)
545: #define PETSC_HAVE_COMPLEX 1
546: #endif
547: #else /* !PETSC_CLANGUAGE_CXX */
548: #if !defined(PETSC_USE_REAL___FP16)
550: #define PETSC_HAVE_COMPLEX 1
551: #elif defined(__cplusplus) && defined(PETSC_HAVE_C99_COMPLEX) && defined(PETSC_HAVE_CXX_COMPLEX) /* User code only - conditional on library code complex support */
552: #define PETSC_HAVE_COMPLEX 1
553: #endif
554: #endif
555: #endif /* PETSC_CLANGUAGE_CXX */
556: #endif /* !PETSC_SKIP_COMPLEX */
558: #if defined(PETSC_HAVE_COMPLEX)
559: #if defined(__cplusplus) /* C++ complex support */
560: /* Locate a C++ complex template library */
561: #if defined(PETSC_DESIRE_KOKKOS_COMPLEX) /* Defined in petscvec_kokkos.hpp for *.kokkos.cxx files */
562: #define petsccomplexlib Kokkos
563: #include <Kokkos_Complex.hpp>
564: #elif (defined(__CUDACC__) && defined(PETSC_HAVE_CUDA)) || (defined(__HIPCC__) && defined(PETSC_HAVE_HIP))
565: #define petsccomplexlib thrust
566: #include <thrust/complex.h>
567: #elif defined(PETSC_USE_REAL___FLOAT128)
568: #include <complex.h>
569: #else
570: #define petsccomplexlib std
571: #include <complex>
572: #endif
574: /* Define PetscComplex based on the precision */
575: #if defined(PETSC_USE_REAL_SINGLE)
576: typedef petsccomplexlib::complex<float> PetscComplex;
577: #elif defined(PETSC_USE_REAL_DOUBLE)
578: typedef petsccomplexlib::complex<double> PetscComplex;
579: #elif defined(PETSC_USE_REAL___FLOAT128)
580: typedef __complex128 PetscComplex;
581: #endif
583: /* Include a PETSc C++ complex 'fix'. Check PetscComplex manual page for details */
584: #if defined(PETSC_HAVE_CXX_COMPLEX_FIX) && !defined(PETSC_SKIP_CXX_COMPLEX_FIX)
585: #include <petsccxxcomplexfix.h>
586: #endif
587: #else /* c99 complex support */
588: #include <complex.h>
589: #if defined(PETSC_USE_REAL_SINGLE) || defined(PETSC_USE_REAL___FP16)
590: typedef float _Complex PetscComplex;
591: #elif defined(PETSC_USE_REAL_DOUBLE)
592: typedef double _Complex PetscComplex;
593: #elif defined(PETSC_USE_REAL___FLOAT128)
594: typedef __complex128 PetscComplex;
595: #endif /* PETSC_USE_REAL_* */
596: #endif /* !__cplusplus */
597: #endif /* PETSC_HAVE_COMPLEX */
599: /*MC
600: PetscScalar - PETSc type that represents either a double precision real number, a double precision
601: complex number, a single precision real number, a __float128 real or complex or a __fp16 real - if the code is configured
602: with `--with-scalar-type`=real,complex `--with-precision`=single,double,__float128,__fp16
604: Level: beginner
606: Note:
607: For MPI calls that require datatypes, use `MPIU_SCALAR` as the datatype for `PetscScalar` and `MPIU_SUM`, etc for operations. They will automatically work correctly regardless of the size of `PetscScalar`.
609: .seealso: `PetscReal`, `PetscComplex`, `PetscInt`, `MPIU_REAL`, `MPIU_SCALAR`, `MPIU_COMPLEX`, `MPIU_INT`, `PetscRealPart()`, `PetscImaginaryPart()`
610: M*/
612: #if defined(PETSC_USE_COMPLEX) && defined(PETSC_HAVE_COMPLEX)
613: typedef PetscComplex PetscScalar;
614: #else /* PETSC_USE_COMPLEX */
615: typedef PetscReal PetscScalar;
616: #endif /* PETSC_USE_COMPLEX */
618: /*E
619: PetscCopyMode - Determines how an array or `PetscObject` passed to certain functions is copied or retained by the aggregate `PetscObject`
621: Values for array input:
622: + `PETSC_COPY_VALUES` - the array values are copied into new space, the user is free to reuse or delete the passed in array
623: . `PETSC_OWN_POINTER` - the array values are NOT copied, the object takes ownership of the array and will free it later, the user cannot change or
624: delete the array. The array MUST have been obtained with `PetscMalloc()`. Hence this mode cannot be used in Fortran.
625: - `PETSC_USE_POINTER` - the array values are NOT copied, the object uses the array but does NOT take ownership of the array. The user cannot use
626: the array but the user must delete the array after the object is destroyed.
628: Values for PetscObject:
629: + `PETSC_COPY_VALUES` - the input `PetscObject` is cloned into the aggregate `PetscObject`; the user is free to reuse/modify the input `PetscObject` without side effects.
630: . `PETSC_OWN_POINTER` - the input `PetscObject` is referenced by pointer (with reference count), thus should not be modified by the user.
631: increases its reference count).
632: - `PETSC_USE_POINTER` - invalid for `PetscObject` inputs.
634: Level: beginner
636: .seealso: `PetscInsertMode`
637: E*/
638: typedef enum {
639: PETSC_COPY_VALUES,
640: PETSC_OWN_POINTER,
641: PETSC_USE_POINTER
642: } PetscCopyMode;
643: PETSC_EXTERN const char *const PetscCopyModes[];
645: /*MC
646: PETSC_FALSE - False value of `PetscBool`
648: Level: beginner
650: Note:
651: Zero integer
653: .seealso: `PetscBool`, `PetscBool3`, `PETSC_TRUE`
654: M*/
656: /*MC
657: PETSC_TRUE - True value of `PetscBool`
659: Level: beginner
661: Note:
662: Nonzero integer
664: .seealso: `PetscBool`, `PetscBool3`, `PETSC_FALSE`
665: M*/
667: /*MC
668: PetscLogDouble - Used for logging times
670: Level: developer
672: Note:
673: Contains double precision numbers that are not used in the numerical computations, but rather in logging, timing etc.
675: .seealso: `PetscBool`, `PetscDataType`
676: M*/
677: typedef double PetscLogDouble;
679: /*E
680: PetscDataType - Used for handling different basic data types.
682: Level: beginner
684: Notes:
685: Use of this should be avoided if one can directly use `MPI_Datatype` instead.
687: `PETSC_INT` is the datatype for a `PetscInt`, regardless of whether it is 4 or 8 bytes.
688: `PETSC_REAL`, `PETSC_COMPLEX` and `PETSC_SCALAR` are the datatypes for `PetscReal`, `PetscComplex` and `PetscScalar`, regardless of their sizes.
690: Developer Notes:
691: It would be nice if we could always just use MPI Datatypes, why can we not?
693: If you change any values in `PetscDatatype` make sure you update their usage in
694: share/petsc/matlab/PetscBagRead.m and share/petsc/matlab/@PetscOpenSocket/read/write.m
696: TODO:
697: Remove use of improper `PETSC_ENUM`
699: .seealso: `PetscBinaryRead()`, `PetscBinaryWrite()`, `PetscDataTypeToMPIDataType()`,
700: `PetscDataTypeGetSize()`
701: E*/
702: typedef enum {
703: PETSC_DATATYPE_UNKNOWN = 0,
704: PETSC_DOUBLE = 1,
705: PETSC_COMPLEX = 2,
706: PETSC_LONG = 3,
707: PETSC_SHORT = 4,
708: PETSC_FLOAT = 5,
709: PETSC_CHAR = 6,
710: PETSC_BIT_LOGICAL = 7,
711: PETSC_ENUM = 8,
712: PETSC_BOOL = 9,
713: PETSC___FLOAT128 = 10,
714: PETSC_OBJECT = 11,
715: PETSC_FUNCTION = 12,
716: PETSC_STRING = 13,
717: PETSC___FP16 = 14,
718: PETSC_STRUCT = 15,
719: PETSC_INT = 16,
720: PETSC_INT64 = 17,
721: PETSC_COUNT = 18,
722: PETSC_INT32 = 19,
723: } PetscDataType;
724: PETSC_EXTERN const char *const PetscDataTypes[];
726: #if defined(PETSC_USE_REAL_SINGLE)
727: #define PETSC_REAL PETSC_FLOAT
728: #elif defined(PETSC_USE_REAL_DOUBLE)
729: #define PETSC_REAL PETSC_DOUBLE
730: #elif defined(PETSC_USE_REAL___FLOAT128)
731: #define PETSC_REAL PETSC___FLOAT128
732: #elif defined(PETSC_USE_REAL___FP16)
733: #define PETSC_REAL PETSC___FP16
734: #else
735: #define PETSC_REAL PETSC_DOUBLE
736: #endif
738: #if defined(PETSC_USE_COMPLEX)
739: #define PETSC_SCALAR PETSC_COMPLEX
740: #else
741: #define PETSC_SCALAR PETSC_REAL
742: #endif
744: #define PETSC_FORTRANADDR PETSC_LONG
746: /*S
747: PetscToken - 'Token' used for managing tokenizing strings
749: Level: intermediate
751: .seealso: `PetscTokenCreate()`, `PetscTokenFind()`, `PetscTokenDestroy()`
752: S*/
753: typedef struct _p_PetscToken *PetscToken;
755: /*S
756: PetscObject - any PETSc object, `PetscViewer`, `Mat`, `Vec`, `KSP` etc
758: Level: beginner
760: Notes:
761: This is the base class from which all PETSc objects are derived from.
763: In certain situations one can cast an object, for example a `Vec`, to a `PetscObject` with (`PetscObject`)vec
765: .seealso: `PetscObjectDestroy()`, `PetscObjectView()`, `PetscObjectGetName()`, `PetscObjectSetName()`, `PetscObjectReference()`, `PetscObjectDereference()`
766: S*/
767: typedef struct _p_PetscObject *PetscObject;
769: /*MC
770: PetscObjectId - unique integer Id for a `PetscObject`
772: Level: developer
774: Note:
775: Unlike pointer values, object ids are never reused so one may save a `PetscObjectId` and compare it to one obtained later from a `PetscObject` to determine
776: if the objects are the same. Never compare two object pointer values.
778: .seealso: `PetscObjectState`, `PetscObjectGetId()`
779: M*/
780: typedef PetscInt64 PetscObjectId;
782: /*MC
783: PetscObjectState - integer state for a `PetscObject`
785: Level: developer
787: Note:
788: Object state is always-increasing and (for objects that track state) can be used to determine if an object has
789: changed since the last time you interacted with it. It is 64-bit so that it will not overflow for a very long time.
791: .seealso: `PetscObjectId`, `PetscObjectStateGet()`, `PetscObjectStateIncrease()`, `PetscObjectStateSet()`
792: M*/
793: typedef PetscInt64 PetscObjectState;
795: /*S
796: PetscFunctionList - Linked list of functions, possibly stored in dynamic libraries, accessed
797: by string name
799: Level: advanced
801: .seealso: `PetscFunctionListAdd()`, `PetscFunctionListDestroy()`
802: S*/
803: typedef struct _n_PetscFunctionList *PetscFunctionList;
805: /*E
806: PetscFileMode - Access mode for a file.
808: Values:
809: + `FILE_MODE_UNDEFINED` - initial invalid value
810: . `FILE_MODE_READ` - open a file at its beginning for reading
811: . `FILE_MODE_WRITE` - open a file at its beginning for writing (will create if the file does not exist)
812: . `FILE_MODE_APPEND` - open a file at end for writing
813: . `FILE_MODE_UPDATE` - open a file for updating, meaning for reading and writing
814: - `FILE_MODE_APPEND_UPDATE` - open a file for updating, meaning for reading and writing, at the end
816: Level: beginner
818: .seealso: `PetscViewerFileSetMode()`
819: E*/
820: typedef enum {
821: FILE_MODE_UNDEFINED = -1,
822: FILE_MODE_READ = 0,
823: FILE_MODE_WRITE,
824: FILE_MODE_APPEND,
825: FILE_MODE_UPDATE,
826: FILE_MODE_APPEND_UPDATE
827: } PetscFileMode;
828: PETSC_EXTERN const char *const PetscFileModes[];
830: typedef void *PetscDLHandle;
831: typedef enum {
832: PETSC_DL_DECIDE = 0,
833: PETSC_DL_NOW = 1,
834: PETSC_DL_LOCAL = 2
835: } PetscDLMode;
837: /*S
838: PetscObjectList - Linked list of PETSc objects, each accessible by string name
840: Level: developer
842: Note:
843: Used by `PetscObjectCompose()` and `PetscObjectQuery()`
845: .seealso: `PetscObjectListAdd()`, `PetscObjectListDestroy()`, `PetscObjectListFind()`, `PetscObjectCompose()`, `PetscObjectQuery()`, `PetscFunctionList`
846: S*/
847: typedef struct _n_PetscObjectList *PetscObjectList;
849: /*S
850: PetscDLLibrary - Linked list of dynamic libraries to search for functions
852: Level: developer
854: .seealso: `PetscDLLibraryOpen()`
855: S*/
856: typedef struct _n_PetscDLLibrary *PetscDLLibrary;
858: /*S
859: PetscContainer - Simple PETSc object that contains a pointer to any required data
861: Level: advanced
863: Note:
864: This is useful to attach arbitrary data to a `PetscObject` with `PetscObjectCompose()` and `PetscObjectQuery()`
866: .seealso: `PetscObject`, `PetscContainerCreate()`, `PetscObjectCompose()`, `PetscObjectQuery()`
867: S*/
868: typedef struct _p_PetscContainer *PetscContainer;
870: /*S
871: PetscRandom - Abstract PETSc object that manages generating random numbers
873: Level: intermediate
875: .seealso: `PetscRandomCreate()`, `PetscRandomGetValue()`, `PetscRandomType`
876: S*/
877: typedef struct _p_PetscRandom *PetscRandom;
879: /*
880: In binary files variables are stored using the following lengths,
881: regardless of how they are stored in memory on any one particular
882: machine. Use these rather than sizeof() in computing sizes for
883: PetscBinarySeek().
884: */
885: #define PETSC_BINARY_INT_SIZE (32 / 8)
886: #define PETSC_BINARY_FLOAT_SIZE (32 / 8)
887: #define PETSC_BINARY_CHAR_SIZE (8 / 8)
888: #define PETSC_BINARY_SHORT_SIZE (16 / 8)
889: #define PETSC_BINARY_DOUBLE_SIZE (64 / 8)
890: #define PETSC_BINARY_SCALAR_SIZE sizeof(PetscScalar)
892: /*E
893: PetscBinarySeekType - argument to `PetscBinarySeek()`
895: Values:
896: + `PETSC_BINARY_SEEK_SET` - offset is an absolute location in the file
897: . `PETSC_BINARY_SEEK_CUR` - offset is an offset from the current location of the file pointer
898: - `PETSC_BINARY_SEEK_END` - offset is an offset from the end of the file
900: Level: advanced
902: .seealso: `PetscBinarySeek()`, `PetscBinarySynchronizedSeek()`
903: E*/
904: typedef enum {
905: PETSC_BINARY_SEEK_SET = 0,
906: PETSC_BINARY_SEEK_CUR = 1,
907: PETSC_BINARY_SEEK_END = 2
908: } PetscBinarySeekType;
910: /*E
911: PetscBuildTwoSidedType - algorithm for setting up two-sided communication for use with `PetscSF`
913: Values:
914: + `PETSC_BUILDTWOSIDED_ALLREDUCE` - classical algorithm using an `MPI_Allreduce()` with
915: a buffer of length equal to the communicator size. Not memory-scalable due to
916: the large reduction size. Requires only an MPI-1 implementation.
917: . `PETSC_BUILDTWOSIDED_IBARRIER` - nonblocking algorithm based on `MPI_Issend()` and `MPI_Ibarrier()`.
918: Proved communication-optimal in Hoefler, Siebert, and Lumsdaine (2010). Requires an MPI-3 implementation.
919: - `PETSC_BUILDTWOSIDED_REDSCATTER` - similar to above, but use more optimized function
920: that only communicates the part of the reduction that is necessary. Requires an MPI-2 implementation.
922: Level: developer
924: .seealso: `PetscCommBuildTwoSided()`, `PetscCommBuildTwoSidedSetType()`, `PetscCommBuildTwoSidedGetType()`
925: E*/
926: typedef enum {
927: PETSC_BUILDTWOSIDED_NOTSET = -1,
928: PETSC_BUILDTWOSIDED_ALLREDUCE = 0,
929: PETSC_BUILDTWOSIDED_IBARRIER = 1,
930: PETSC_BUILDTWOSIDED_REDSCATTER = 2
931: /* Updates here must be accompanied by updates in finclude/petscsys.h and the string array in mpits.c */
932: } PetscBuildTwoSidedType;
933: PETSC_EXTERN const char *const PetscBuildTwoSidedTypes[];
935: /* NOTE: If you change this, you must also change the values in src/vec/f90-mod/petscvec.h */
936: /*E
937: InsertMode - How the entries are combined with the current values in the vectors or matrices
939: Values:
940: + `NOT_SET_VALUES` - do not actually use the values
941: . `INSERT_VALUES` - replace the current values with the provided values, unless the index is marked as constrained by the `PetscSection`
942: . `ADD_VALUES` - add the values to the current values, unless the index is marked as constrained by the `PetscSection`
943: . `MAX_VALUES` - use the maximum of each current value and provided value
944: . `MIN_VALUES` - use the minimum of each current value and provided value
945: . `INSERT_ALL_VALUES` - insert, even if indices that are not marked as constrained by the `PetscSection`
946: . `ADD_ALL_VALUES` - add, even if indices that are not marked as constrained by the `PetscSection`
947: . `INSERT_BC_VALUES` - insert, but ignore indices that are not marked as constrained by the `PetscSection`
948: - `ADD_BC_VALUES` - add, but ignore indices that are not marked as constrained by the `PetscSection`
950: Level: beginner
952: Note:
953: The `PetscSection` that determines the effects of the `InsertMode` values can be obtained by the `Vec` object with `VecGetDM()`
954: and `DMGetLocalSection()`.
956: Not all options are supported for all operations or PETSc object types.
958: .seealso: `VecSetValues()`, `MatSetValues()`, `VecSetValue()`, `VecSetValuesBlocked()`,
959: `VecSetValuesLocal()`, `VecSetValuesBlockedLocal()`, `MatSetValuesBlocked()`,
960: `MatSetValuesBlockedLocal()`, `MatSetValuesLocal()`, `VecScatterBegin()`, `VecScatterEnd()`
961: E*/
962: typedef enum {
963: NOT_SET_VALUES,
964: INSERT_VALUES,
965: ADD_VALUES,
966: MAX_VALUES,
967: MIN_VALUES,
968: INSERT_ALL_VALUES,
969: ADD_ALL_VALUES,
970: INSERT_BC_VALUES,
971: ADD_BC_VALUES
972: } InsertMode;
974: /*MC
975: INSERT_VALUES - Put a value into a vector or matrix, overwrites any previous value
977: Level: beginner
979: .seealso: `InsertMode`, `VecSetValues()`, `MatSetValues()`, `VecSetValue()`, `VecSetValuesBlocked()`,
980: `VecSetValuesLocal()`, `VecSetValuesBlockedLocal()`, `MatSetValuesBlocked()`, `ADD_VALUES`,
981: `MatSetValuesBlockedLocal()`, `MatSetValuesLocal()`, `VecScatterBegin()`, `VecScatterEnd()`, `MAX_VALUES`
982: M*/
984: /*MC
985: ADD_VALUES - Adds a value into a vector or matrix, if there previously was no value, just puts the
986: value into that location
988: Level: beginner
990: .seealso: `InsertMode`, `VecSetValues()`, `MatSetValues()`, `VecSetValue()`, `VecSetValuesBlocked()`,
991: `VecSetValuesLocal()`, `VecSetValuesBlockedLocal()`, `MatSetValuesBlocked()`, `INSERT_VALUES`,
992: `MatSetValuesBlockedLocal()`, `MatSetValuesLocal()`, `VecScatterBegin()`, `VecScatterEnd()`, `MAX_VALUES`
993: M*/
995: /*MC
996: MAX_VALUES - Puts the maximum of the scattered/gathered value and the current value into each location
998: Level: beginner
1000: .seealso: `InsertMode`, `VecScatterBegin()`, `VecScatterEnd()`, `ADD_VALUES`, `INSERT_VALUES`
1001: M*/
1003: /*MC
1004: MIN_VALUES - Puts the minimal of the scattered/gathered value and the current value into each location
1006: Level: beginner
1008: .seealso: `InsertMode`, `VecScatterBegin()`, `VecScatterEnd()`, `ADD_VALUES`, `INSERT_VALUES`
1009: M*/
1011: /*S
1012: PetscSubcomm - A decomposition of an MPI communicator into subcommunicators
1014: Values:
1015: + `PETSC_SUBCOMM_GENERAL` - similar to `MPI_Comm_split()` each process sets the new communicator (color) they will belong to and the order within that communicator
1016: . `PETSC_SUBCOMM_CONTIGUOUS` - each new communicator contains a set of process with contiguous ranks in the original MPI communicator
1017: - `PETSC_SUBCOMM_INTERLACED` - each new communictor contains a set of processes equally far apart in rank from the others in that new communicator
1019: Sample Usage:
1020: .vb
1021: PetscSubcommCreate()
1022: PetscSubcommSetNumber()
1023: PetscSubcommSetType(PETSC_SUBCOMM_INTERLACED);
1024: ccomm = PetscSubcommChild()
1025: PetscSubcommDestroy()
1026: .ve
1028: Example:
1029: Consider a communicator with six processes split into 3 subcommunicators.
1030: .vb
1031: PETSC_SUBCOMM_CONTIGUOUS - the first communicator contains rank 0,1 the second rank 2,3 and the third rank 4,5 in the original ordering of the original communicator
1032: PETSC_SUBCOMM_INTERLACED - the first communicator contains rank 0,3, the second 1,4 and the third 2,5
1033: .ve
1035: Level: advanced
1037: Note:
1038: After a call to `PetscSubcommSetType()`, `PetscSubcommSetTypeGeneral()`, or `PetscSubcommSetFromOptions()` one may call
1039: .vb
1040: PetscSubcommChild() returns the associated subcommunicator on this process
1041: PetscSubcommContiguousParent() returns a parent communitor but with all child of the same subcommunicator having contiguous rank
1042: .ve
1044: Developer Note:
1045: This is used in objects such as `PCREDUNDANT` to manage the subcommunicators on which the redundant computations
1046: are performed.
1048: .seealso: `PetscSubcommCreate()`, `PetscSubcommSetNumber()`, `PetscSubcommSetType()`, `PetscSubcommView()`, `PetscSubcommSetFromOptions()`
1049: S*/
1050: typedef struct _n_PetscSubcomm *PetscSubcomm;
1051: typedef enum {
1052: PETSC_SUBCOMM_GENERAL = 0,
1053: PETSC_SUBCOMM_CONTIGUOUS = 1,
1054: PETSC_SUBCOMM_INTERLACED = 2
1055: } PetscSubcommType;
1056: PETSC_EXTERN const char *const PetscSubcommTypes[];
1058: /*S
1059: PetscHeap - A simple class for managing heaps
1061: Level: intermediate
1063: .seealso: `PetscHeapCreate()`, `PetscHeapAdd()`, `PetscHeapPop()`, `PetscHeapPeek()`, `PetscHeapStash()`, `PetscHeapUnstash()`, `PetscHeapView()`, `PetscHeapDestroy()`
1064: S*/
1065: typedef struct _PetscHeap *PetscHeap;
1067: typedef struct _n_PetscShmComm *PetscShmComm;
1068: typedef struct _n_PetscOmpCtrl *PetscOmpCtrl;
1070: /*S
1071: PetscSegBuffer - a segmented extendable buffer
1073: Level: developer
1075: .seealso: `PetscSegBufferCreate()`, `PetscSegBufferGet()`, `PetscSegBufferExtract()`, `PetscSegBufferDestroy()`
1076: S*/
1077: typedef struct _n_PetscSegBuffer *PetscSegBuffer;
1079: typedef struct _n_PetscOptionsHelpPrinted *PetscOptionsHelpPrinted;
1081: /*S
1082: PetscBT - PETSc bitarrays, efficient storage of arrays of boolean values
1084: Level: advanced
1086: Notes:
1087: The following routines do not have their own manual pages
1089: .vb
1090: PetscBTCreate(m,&bt) - creates a bit array with enough room to hold m values
1091: PetscBTDestroy(&bt) - destroys the bit array
1092: PetscBTMemzero(m,bt) - zeros the entire bit array (sets all values to false)
1093: PetscBTSet(bt,index) - sets a particular entry as true
1094: PetscBTClear(bt,index) - sets a particular entry as false
1095: PetscBTLookup(bt,index) - returns the value
1096: PetscBTLookupSet(bt,index) - returns the value and then sets it true
1097: PetscBTLookupClear(bt,index) - returns the value and then sets it false
1098: PetscBTLength(m) - returns number of bytes in array with m bits
1099: PetscBTView(m,bt,viewer) - prints all the entries in a bit array
1100: .ve
1102: PETSc does not check error flags on `PetscBTLookup()`, `PetcBTLookupSet()`, `PetscBTLength()` because error checking
1103: would cost hundreds more cycles then the operation.
1105: S*/
1106: typedef char *PetscBT;
1108: /* The number of bits in a byte */
1109: #define PETSC_BITS_PER_BYTE CHAR_BIT