Actual source code: petscsystypes.h

  1: /* Portions of this code are under:
  2:    Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
  3: */

  5: #pragma once

  7: #include <petscconf.h>
  8: #include <petscconf_poison.h>
  9: #include <petscfix.h>
 10: #include <petscmacros.h>
 11: #include <stddef.h>
 12: #include <stdbool.h>

 14: /* SUBMANSEC = Sys */

 16: #include <limits.h> // INT_MIN, INT_MAX, CHAR_BIT

 18: #if defined(__clang__) || (PETSC_CPP_VERSION >= 17)
 19:   // clang allows both [[nodiscard]] and __attribute__((warn_unused_result)) on type
 20:   // definitions. GCC, however, does not, so check that we are using C++17 [[nodiscard]]
 21:   // instead of __attribute__((warn_unused_result))
 22:   #define PETSC_ERROR_CODE_NODISCARD PETSC_NODISCARD
 23: #else
 24:   #define PETSC_ERROR_CODE_NODISCARD
 25: #endif

 27: #ifdef PETSC_CLANG_STATIC_ANALYZER
 28:   #undef PETSC_USE_STRICT_PETSCERRORCODE
 29: #endif

 31: #ifdef PETSC_USE_STRICT_PETSCERRORCODE
 32:   #define PETSC_ERROR_CODE_TYPEDEF   typedef
 33:   #define PETSC_ERROR_CODE_ENUM_NAME PetscErrorCode
 34: #else
 35:   #define PETSC_ERROR_CODE_TYPEDEF
 36:   #define PETSC_ERROR_CODE_ENUM_NAME
 37: #endif

 39: /*E
 40:   PetscErrorCode - Datatype used to return PETSc error codes.

 42:   Level: beginner

 44:   Notes:
 45:   Virtually all PETSc functions return an error code. It is the callers responsibility to check
 46:   the value of the returned error code after each PETSc call to determine if any errors
 47:   occurred. A set of convenience macros (e.g. `PetscCall()`, `PetscCallVoid()`) are provided
 48:   for this purpose. Failing to properly check for errors is not supported, as errors may leave
 49:   PETSc in an undetermined state.

 51:   One can retrieve the error string corresponding to a particular error code using
 52:   `PetscErrorMessage()`.

 54:   The user can also configure PETSc with the `--with-strict-petscerrorcode` option to enable
 55:   compiler warnings when the returned error codes are not captured and checked. Users are
 56:   *heavily* encouraged to opt-in to this option, as it will become enabled by default in a
 57:   future release.

 59:   Developer Notes:
 60:   These are the generic error codes. These error codes are used in many different places in the
 61:   PETSc source code. The C-string versions are at defined in `PetscErrorStrings[]` in
 62:   `src/sys/error/err.c`, while the Fortran versions are defined in
 63:   `src/sys/ftn-mod/petscerror.h`. Any changes here must also be made in both locations.

 65: .seealso: `PetscErrorMessage()`, `PetscCall()`, `SETERRQ()`
 66: E*/
 67: PETSC_ERROR_CODE_TYPEDEF enum PETSC_ERROR_CODE_NODISCARD {
 68:   PETSC_SUCCESS                   = 0,
 69:   PETSC_ERR_BOOLEAN_MACRO_FAILURE = 1, /* do not use */

 71:   PETSC_ERR_MIN_VALUE = 54, /* should always be one less than the smallest value */

 73:   PETSC_ERR_MEM            = 55, /* unable to allocate requested memory */
 74:   PETSC_ERR_SUP            = 56, /* no support for requested operation */
 75:   PETSC_ERR_SUP_SYS        = 57, /* no support for requested operation on this computer system */
 76:   PETSC_ERR_ORDER          = 58, /* operation done in wrong order */
 77:   PETSC_ERR_SIG            = 59, /* signal received */
 78:   PETSC_ERR_FP             = 72, /* floating point exception */
 79:   PETSC_ERR_COR            = 74, /* corrupted PETSc object */
 80:   PETSC_ERR_LIB            = 76, /* error in library called by PETSc */
 81:   PETSC_ERR_PLIB           = 77, /* PETSc library generated inconsistent data */
 82:   PETSC_ERR_MEMC           = 78, /* memory corruption */
 83:   PETSC_ERR_CONV_FAILED    = 82, /* iterative method (KSP or SNES) failed */
 84:   PETSC_ERR_USER           = 83, /* user has not provided needed function */
 85:   PETSC_ERR_SYS            = 88, /* error in system call */
 86:   PETSC_ERR_POINTER        = 70, /* pointer does not point to valid address */
 87:   PETSC_ERR_MPI_LIB_INCOMP = 87, /* MPI library at runtime is not compatible with MPI user compiled with */

 89:   PETSC_ERR_ARG_SIZ          = 60, /* nonconforming object sizes used in operation */
 90:   PETSC_ERR_ARG_IDN          = 61, /* two arguments not allowed to be the same */
 91:   PETSC_ERR_ARG_WRONG        = 62, /* wrong argument (but object probably ok) */
 92:   PETSC_ERR_ARG_CORRUPT      = 64, /* null or corrupted PETSc object as argument */
 93:   PETSC_ERR_ARG_OUTOFRANGE   = 63, /* input argument, out of range */
 94:   PETSC_ERR_ARG_BADPTR       = 68, /* invalid pointer argument */
 95:   PETSC_ERR_ARG_NOTSAMETYPE  = 69, /* two args must be same object type */
 96:   PETSC_ERR_ARG_NOTSAMECOMM  = 80, /* two args must be same communicators */
 97:   PETSC_ERR_ARG_WRONGSTATE   = 73, /* object in argument is in wrong state, e.g. unassembled mat */
 98:   PETSC_ERR_ARG_TYPENOTSET   = 89, /* the type of the object has not yet been set */
 99:   PETSC_ERR_ARG_INCOMP       = 75, /* two arguments are incompatible */
100:   PETSC_ERR_ARG_NULL         = 85, /* argument is null that should not be */
101:   PETSC_ERR_ARG_UNKNOWN_TYPE = 86, /* type name doesn't match any registered type */

103:   PETSC_ERR_FILE_OPEN       = 65, /* unable to open file */
104:   PETSC_ERR_FILE_READ       = 66, /* unable to read from file */
105:   PETSC_ERR_FILE_WRITE      = 67, /* unable to write to file */
106:   PETSC_ERR_FILE_UNEXPECTED = 79, /* unexpected data in file */

108:   PETSC_ERR_MAT_LU_ZRPVT = 71, /* detected a zero pivot during LU factorization */
109:   PETSC_ERR_MAT_CH_ZRPVT = 81, /* detected a zero pivot during Cholesky factorization */

111:   PETSC_ERR_INT_OVERFLOW   = 84,
112:   PETSC_ERR_FLOP_COUNT     = 90,
113:   PETSC_ERR_NOT_CONVERGED  = 91,  /* solver did not converge */
114:   PETSC_ERR_MISSING_FACTOR = 92,  /* MatGetFactor() failed */
115:   PETSC_ERR_OPT_OVERWRITE  = 93,  /* attempted to over write options which should not be changed */
116:   PETSC_ERR_WRONG_MPI_SIZE = 94,  /* example/application run with number of MPI ranks it does not support */
117:   PETSC_ERR_USER_INPUT     = 95,  /* missing or incorrect user input */
118:   PETSC_ERR_GPU_RESOURCE   = 96,  /* unable to load a GPU resource, for example cuBLAS */
119:   PETSC_ERR_GPU            = 97,  /* An error from a GPU call, this may be due to lack of resources on the GPU or a true error in the call */
120:   PETSC_ERR_MPI            = 98,  /* general MPI error */
121:   PETSC_ERR_RETURN         = 99,  /* PetscError() incorrectly returned an error code of 0 */
122:   PETSC_ERR_MEM_LEAK       = 100, /* memory alloc/free imbalance */
123:   PETSC_ERR_PYTHON         = 101, /* Exception in Python */
124:   PETSC_ERR_MAX_VALUE      = 102, /* this is always the one more than the largest error code */

126:   /*
127:     do not use, exist purely to make the enum bounds equal that of a regular int (so conversion
128:     to int in main() is not undefined behavior)
129:   */
130:   PETSC_ERR_MIN_SIGNED_BOUND_DO_NOT_USE = INT_MIN,
131:   PETSC_ERR_MAX_SIGNED_BOUND_DO_NOT_USE = INT_MAX
132: } PETSC_ERROR_CODE_ENUM_NAME;

134: #ifndef PETSC_USE_STRICT_PETSCERRORCODE
135: typedef int PetscErrorCode;

137:   /*
138:   Needed so that C++ lambdas can deduce the return type as PetscErrorCode from
139:   PetscFunctionReturn(PETSC_SUCCESS). Otherwise we get

141:   error: return type '(unnamed enum at include/petscsystypes.h:50:1)' must match previous
142:   return type 'int' when lambda expression has unspecified explicit return type
143:   PetscFunctionReturn(PETSC_SUCCESS);
144:   ^
145: */
146:   #define PETSC_SUCCESS ((PetscErrorCode)0)
147: #endif

149: #undef PETSC_ERROR_CODE_NODISCARD
150: #undef PETSC_ERROR_CODE_TYPEDEF
151: #undef PETSC_ERROR_CODE_ENUM_NAME

153: /*MC
154:     PetscClassId - A unique id used to identify each PETSc class.

156:     Level: developer

158:     Note:
159:     Use `PetscClassIdRegister()` to obtain a new value for a new class being created. Usually
160:     XXXInitializePackage() calls it for each class it defines.

162:     Developer Note:
163:     Internal integer stored in the `_p_PetscObject` data structure. These are all computed by an offset from the lowest one, `PETSC_SMALLEST_CLASSID`.

165: .seealso: `PetscClassIdRegister()`, `PetscLogEventRegister()`, `PetscHeaderCreate()`
166: M*/
167: typedef int PetscClassId;

169: /*MC
170:     PetscMPIInt - datatype used to represent 'int' parameters to MPI functions.

172:     Level: intermediate

174:     Notes:
175:     This is always a 32-bit integer, sometimes it is the same as `PetscInt`, but if PETSc was built with `--with-64-bit-indices` but
176:     standard C/Fortran integers are 32-bit then this is NOT the same as `PetscInt`; it remains 32-bit.

178:     `PetscMPIIntCast`(a,&b) checks if the given `PetscInt` a will fit in a `PetscMPIInt`, if not it
179:     generates a `PETSC_ERR_ARG_OUTOFRANGE` error.

181: .seealso: [](stylePetscCount), `PetscBLASInt`, `PetscInt`, `PetscMPIIntCast()`
182: M*/
183: typedef int PetscMPIInt;

185: /* Limit MPI to 32-bits */
186: enum {
187:   PETSC_MPI_INT_MIN = INT_MIN,
188:   PETSC_MPI_INT_MAX = INT_MAX
189: };

191: /*MC
192:     PetscSizeT - datatype used to represent sizes in memory (like `size_t`)

194:     Level: intermediate

196:     Notes:
197:     This is equivalent to `size_t`, but defined for consistency with Fortran, which lacks a native equivalent of `size_t`.

199: .seealso: `PetscInt`, `PetscInt64`, `PetscCount`
200: M*/
201: typedef size_t PetscSizeT;

203: /*MC
204:     PetscCount - signed datatype used to represent counts

206:     Level: intermediate

208:     Notes:
209:     This is equivalent to `ptrdiff_t`, but defined for consistency with Fortran, which lacks a native equivalent of `ptrdiff_t`.

211:     Use `PetscCount_FMT` to format with `PetscPrintf()`, `printf()`, and related functions.

213: .seealso: [](stylePetscCount), `PetscInt`, `PetscInt64`, `PetscSizeT`
214: M*/
215: typedef ptrdiff_t PetscCount;
216: #define PetscCount_FMT "td"

218: /*MC
219:     PetscEnum - datatype used to pass enum types within PETSc functions.

221:     Level: intermediate

223: .seealso: `PetscOptionsGetEnum()`, `PetscOptionsEnum()`, `PetscBagRegisterEnum()`
224: M*/
225: typedef enum {
226:   ENUM_DUMMY
227: } PetscEnum;

229: typedef short PetscShort;
230: typedef float PetscFloat;

232: /*MC
233:   PetscInt - PETSc type that represents an integer, used primarily to
234:              represent size of arrays and indexing into arrays. Its size can be configured with the option `--with-64-bit-indices` to be either 32-bit (default) or 64-bit.

236:   Level: beginner

238:   Notes:
239:   For MPI calls that require datatypes, use `MPIU_INT` as the datatype for `PetscInt`. It will automatically work correctly regardless of the size of `PetscInt`.

241: .seealso: `PetscBLASInt`, `PetscMPIInt`, `PetscReal`, `PetscScalar`, `PetscComplex`, `PetscInt`, `MPIU_REAL`, `MPIU_SCALAR`, `MPIU_COMPLEX`, `MPIU_INT`, `PetscIntCast()`
242: M*/

244: #if defined(PETSC_HAVE_STDINT_H)
245:   #include <stdint.h>
246: #endif
247: #if defined(PETSC_HAVE_INTTYPES_H)
250:   #endif
251:   #include <inttypes.h>
252:   #if !defined(PRId64)
253:     #define PRId64 "ld"
254:   #endif
255: #endif

257: #if defined(PETSC_HAVE_STDINT_H) && defined(PETSC_HAVE_INTTYPES_H) && (defined(PETSC_HAVE_MPIUNI) || defined(PETSC_HAVE_MPI_INT64_T)) /* MPI_INT64_T is not guaranteed to be a macro */
258: typedef int64_t PetscInt64;

260:   #define PETSC_INT64_MIN INT64_MIN
261:   #define PETSC_INT64_MAX INT64_MAX

263: #elif (PETSC_SIZEOF_LONG_LONG == 8)
264: typedef long long PetscInt64;

266:   #define PETSC_INT64_MIN LLONG_MIN
267:   #define PETSC_INT64_MAX LLONG_MAX

269: #elif defined(PETSC_HAVE___INT64)
270: typedef __int64 PetscInt64;

272:   #define PETSC_INT64_MIN INT64_MIN
273:   #define PETSC_INT64_MAX INT64_MAX

275: #else
276:   #error "cannot determine PetscInt64 type"
277: #endif

279: #if PETSC_SIZEOF_SIZE_T == 4
280:   #define PETSC_COUNT_MIN INT_MIN
281:   #define PETSC_COUNT_MAX INT_MAX
282: #else
283:   #define PETSC_COUNT_MIN PETSC_INT64_MIN
284:   #define PETSC_COUNT_MAX PETSC_INT64_MAX
285: #endif

287: typedef int32_t PetscInt32;
288: #define PETSC_INT32_MIN INT32_MIN
289: #define PETSC_INT32_MAX INT32_MAX

291: #if defined(PETSC_USE_64BIT_INDICES)
292: typedef PetscInt64 PetscInt;

294:   #define PETSC_INT_MIN PETSC_INT64_MIN
295:   #define PETSC_INT_MAX PETSC_INT64_MAX
296:   #define PetscInt_FMT  PetscInt64_FMT
297: #else
298: typedef int PetscInt;

300: enum {
301:   PETSC_INT_MIN = INT_MIN,
302:   PETSC_INT_MAX = INT_MAX
303: };
304:   #define PetscInt_FMT "d"
305: #endif

307: #define PETSC_UINT16_MAX 65535

309: /* deprecated */
310: #define PETSC_MIN_INT    PETSC_INT_MIN
311: #define PETSC_MAX_INT    PETSC_INT_MAX
312: #define PETSC_MAX_UINT16 PETSC_UINT16_MAX

314: #if defined(PETSC_HAVE_STDINT_H) && defined(PETSC_HAVE_INTTYPES_H) && (defined(PETSC_HAVE_MPIUNI) || defined(PETSC_HAVE_MPI_INT64_T)) /* MPI_INT64_T is not guaranteed to be a macro */
315:   #define MPIU_INT64     MPI_INT64_T
316:   #define PetscInt64_FMT PRId64
317: #elif (PETSC_SIZEOF_LONG_LONG == 8)
318:   #define MPIU_INT64     MPI_LONG_LONG_INT
319:   #define PetscInt64_FMT "lld"
320: #elif defined(PETSC_HAVE___INT64)
321:   #define MPIU_INT64     MPI_INT64_T
322:   #define PetscInt64_FMT "ld"
323: #else
324:   #error "cannot determine PetscInt64 type"
325: #endif

327: #define MPIU_INT32     MPI_INT32_T
328: #define PetscInt32_FMT PRId32

330: /*MC
331:    PetscBLASInt - datatype used to represent 'int' parameters to BLAS/LAPACK functions.

333:    Level: intermediate

335:    Notes:
336:    Usually this is the same as `PetscInt`, but if PETSc was built with `--with-64-bit-indices` but
337:    standard C/Fortran integers are 32-bit then this may not be the same as `PetscInt`,
338:    except on some BLAS/LAPACK implementations that support 64-bit integers see the notes below.

340:    `PetscErrorCode` `PetscBLASIntCast`(a,&b) checks if the given `PetscInt` a will fit in a `PetscBLASInt`, if not it
341:     generates a `PETSC_ERR_ARG_OUTOFRANGE` error

343:    Installation Notes\:
344:    ./configure automatically determines the size of the integers used by BLAS/LAPACK except when `--with-batch` is used
345:    in that situation one must know (by some other means) if the integers used by BLAS/LAPACK are 64-bit and if so pass the flag `--known-64-bit-blas-indices`

347:    MATLAB ships with BLAS and LAPACK that use 64-bit integers, for example if you run ./configure with, the option
348:     `--with-blaslapack-lib`=[/Applications/MATLAB_R2010b.app/bin/maci64/libmwblas.dylib,/Applications/MATLAB_R2010b.app/bin/maci64/libmwlapack.dylib]

350:    MKL ships with both 32 and 64-bit integer versions of the BLAS and LAPACK. If you pass the flag `-with-64-bit-blas-indices` PETSc will link
351:    against the 64-bit version, otherwise it uses the 32-bit version

353:    OpenBLAS can be built to use 64-bit integers. The ./configure options `--download-openblas` `-with-64-bit-blas-indices` will build a 64-bit integer version

355:    External packages such as hypre, ML, SuperLU etc do not provide any support for passing 64-bit integers to BLAS/LAPACK so cannot
356:    be used with PETSc when PETSc links against 64-bit integer BLAS/LAPACK. ./configure will generate an error if you attempt to link PETSc against any of
357:    these external libraries while using 64-bit integer BLAS/LAPACK.

359: .seealso: `PetscMPIInt`, `PetscInt`, `PetscBLASIntCast()`
360: M*/
361: #if defined(PETSC_HAVE_64BIT_BLAS_INDICES)
362: typedef PetscInt64 PetscBLASInt;

364:   #define PETSC_BLAS_INT_MIN PETSC_INT64_MIN
365:   #define PETSC_BLAS_INT_MAX PETSC_INT64_MAX
366:   #define PetscBLASInt_FMT   PetscInt64_FMT
367: #else
368: typedef int PetscBLASInt;

370: enum {
371:   PETSC_BLAS_INT_MIN = INT_MIN,
372:   PETSC_BLAS_INT_MAX = INT_MAX
373: };

375:   #define PetscBLASInt_FMT "d"
376: #endif

378: /*MC
379:    PetscCuBLASInt - datatype used to represent 'int' parameters to cuBLAS/cuSOLVER functions.

381:    Level: intermediate

383:    Notes:
384:    As of this writing `PetscCuBLASInt` is always the system `int`.

386:   `PetscErrorCode` `PetscCuBLASIntCast`(a,&b) checks if the given `PetscInt` a will fit in a `PetscCuBLASInt`, if not it
387:    generates a `PETSC_ERR_ARG_OUTOFRANGE` error

389: .seealso: `PetscBLASInt`, `PetscMPIInt`, `PetscInt`, `PetscCuBLASIntCast()`
390: M*/
391: typedef int PetscCuBLASInt;

393: enum {
394:   PETSC_CUBLAS_INT_MIN = INT_MIN,
395:   PETSC_CUBLAS_INT_MAX = INT_MAX
396: };

398: /*MC
399:    PetscHipBLASInt - datatype used to represent 'int' parameters to hipBLAS/hipSOLVER functions.

401:    Level: intermediate

403:    Notes:
404:    `PetscHipBLASInt` is always the system `int`.

406:    `PetscErrorCode` `PetscHipBLASIntCast`(a,&b) checks if the given `PetscInt` a will fit in a `PetscHipBLASInt`, if not it
407:    generates a `PETSC_ERR_ARG_OUTOFRANGE` error

409: .seealso: `PetscBLASInt`, `PetscMPIInt`, `PetscInt`, `PetscHipBLASIntCast()`
410: M*/
411: typedef int PetscHipBLASInt;

413: enum {
414:   PETSC_HIPBLAS_INT_MIN = INT_MIN,
415:   PETSC_HIPBLAS_INT_MAX = INT_MAX
416: };

418: /*MC
419:    PetscExodusIIInt - datatype used to represent 'int' parameters to ExodusII functions.

421:    Level: intermediate

423:    Notes:
424:    This is the same as `int`

426: .seealso: `PetscMPIInt`, `PetscInt`, `PetscExodusIIFloat`, `PetscBLASIntCast()`
427: M*/
428: typedef int PetscExodusIIInt;
429: #define PetscExodusIIInt_FMT "d"

431: /*MC
432:    PetscExodusIIFloat - datatype used to represent 'float' parameters to ExodusII functions.

434:    Level: intermediate

436:    Notes:
437:    This is the same as `float`

439: .seealso: `PetscMPIInt`, `PetscInt`, `PetscExodusIIInt`, `PetscBLASIntCast()`
440: M*/
441: typedef float PetscExodusIIFloat;

443: /*E
444:    PetscBool  - Logical variable.

446:    Level: beginner

448: .seealso: `PETSC_TRUE`, `PETSC_FALSE`, `PetscNot()`, `PetscBool3`
449: E*/
450: typedef bool PetscBool;
451: #define PETSC_FALSE false
452: #define PETSC_TRUE  true
453: PETSC_EXTERN const char *const PetscBools[];

455: /*E
456:    PetscBool3  - Ternary logical variable. Actually an enum in C and a 4 byte integer in Fortran.

458:    Level: beginner

460:    Note:
461:    Should not be used with the if (flg) or if (!flg) syntax.

463: .seealso: `PETSC_TRUE`, `PETSC_FALSE`, `PetscNot()`, `PETSC_BOOL3_TRUE`, `PETSC_BOOL3_FALSE`, `PETSC_BOOL3_UNKNOWN`
464: E*/
465: typedef enum {
466:   PETSC_BOOL3_FALSE   = 0,
467:   PETSC_BOOL3_TRUE    = 1,
468:   PETSC_BOOL3_UNKNOWN = -1 /* the value is unknown at the time of query, but might be determined later */
469: } PetscBool3;

471: #define PetscBool3ToBool(a) ((a) == PETSC_BOOL3_TRUE ? PETSC_TRUE : PETSC_FALSE)
472: #define PetscBoolToBool3(a) ((a) == PETSC_TRUE ? PETSC_BOOL3_TRUE : PETSC_BOOL3_FALSE)

474: /*MC
475:    PetscReal - PETSc type that represents a real number version of `PetscScalar`

477:    Level: beginner

479:    Notes:
480:    For MPI calls that require datatypes, use `MPIU_REAL` as the datatype for `PetscReal` and `MPIU_SUM`, `MPIU_MAX`, etc. for operations.
481:    They will automatically work correctly regardless of the size of `PetscReal`.

483:    See `PetscScalar` for details on how to ./configure the size of `PetscReal`.

485: .seealso: `PetscScalar`, `PetscComplex`, `PetscInt`, `MPIU_REAL`, `MPIU_SCALAR`, `MPIU_COMPLEX`, `MPIU_INT`
486: M*/

488: #if defined(PETSC_USE_REAL_SINGLE)
489: typedef float PetscReal;
490: #elif defined(PETSC_USE_REAL_DOUBLE)
491: typedef double PetscReal;
492: #elif defined(PETSC_USE_REAL___FLOAT128)
493:   #if defined(__cplusplus)
494: extern "C" {
495:   #endif
496:   #include <quadmath.h>
497:   #if defined(__cplusplus)
498: }
499:   #endif
500: typedef __float128 PetscReal;
501: #elif defined(PETSC_USE_REAL___FP16)
502: typedef __fp16 PetscReal;
503: #endif /* PETSC_USE_REAL_* */

505: /*MC
506:    PetscComplex - PETSc type that represents a complex number with precision matching that of `PetscReal`.

508:    Synopsis:
509: #include <petscsys.h>
510:    PetscComplex number = 1. + 2.*PETSC_i;

512:    Level: beginner

514:    Notes:
515:    For MPI calls that require datatypes, use `MPIU_COMPLEX` as the datatype for `PetscComplex` and `MPIU_SUM` etc for operations.
516:    They will automatically work correctly regardless of the size of `PetscComplex`.

518:    See `PetscScalar` for details on how to ./configure the size of `PetscReal`

520:    Complex numbers are automatically available if PETSc was able to find a working complex implementation

522:     PETSc has a 'fix' for complex numbers to support expressions such as `std::complex<PetscReal>` + `PetscInt`, which are not supported by the standard
523:     C++ library, but are convenient for PETSc users. If the C++ compiler is able to compile code in `petsccxxcomplexfix.h` (This is checked by
524:     configure), we include `petsccxxcomplexfix.h` to provide this convenience.

526:     If the fix causes conflicts, or one really does not want this fix for a particular C++ file, one can define `PETSC_SKIP_CXX_COMPLEX_FIX`
527:     at the beginning of the C++ file to skip the fix.

529: .seealso: `PetscReal`, `PetscScalar`, `PetscComplex`, `PetscInt`, `MPIU_REAL`, `MPIU_SCALAR`, `MPIU_COMPLEX`, `MPIU_INT`, `PETSC_i`
530: M*/
531: #if !defined(PETSC_SKIP_COMPLEX)
532:   #if defined(PETSC_CLANGUAGE_CXX)
533:     #if !defined(PETSC_USE_REAL___FP16) && !defined(PETSC_USE_REAL___FLOAT128)
534:       #if defined(__cplusplus) && defined(PETSC_HAVE_CXX_COMPLEX) /* enable complex for library code */
535:         #define PETSC_HAVE_COMPLEX 1
536:       #elif !defined(__cplusplus) && defined(PETSC_HAVE_C99_COMPLEX) && defined(PETSC_HAVE_CXX_COMPLEX) /* User code only - conditional on library code complex support */
537:         #define PETSC_HAVE_COMPLEX 1
538:       #endif
539:     #elif defined(PETSC_USE_REAL___FLOAT128) && defined(PETSC_HAVE_C99_COMPLEX)
540:       #define PETSC_HAVE_COMPLEX 1
541:     #endif
542:   #else /* !PETSC_CLANGUAGE_CXX */
543:     #if !defined(PETSC_USE_REAL___FP16)
545:         #define PETSC_HAVE_COMPLEX 1
546:       #elif defined(__cplusplus) && defined(PETSC_HAVE_C99_COMPLEX) && defined(PETSC_HAVE_CXX_COMPLEX) /* User code only - conditional on library code complex support */
547:         #define PETSC_HAVE_COMPLEX 1
548:       #endif
549:     #endif
550:   #endif /* PETSC_CLANGUAGE_CXX */
551: #endif   /* !PETSC_SKIP_COMPLEX */

553: #if defined(PETSC_HAVE_COMPLEX)
554:   #if defined(__cplusplus) /* C++ complex support */
555:     /* Locate a C++ complex template library */
556:     #if defined(PETSC_DESIRE_KOKKOS_COMPLEX) /* Defined in petscvec_kokkos.hpp for *.kokkos.cxx files */
557:       #define petsccomplexlib Kokkos
558:       #include <Kokkos_Complex.hpp>
559:     #elif (defined(__CUDACC__) && defined(PETSC_HAVE_CUDA)) || (defined(__HIPCC__) && defined(PETSC_HAVE_HIP))
560:       #define petsccomplexlib thrust
561:       #include <thrust/complex.h>
562:     #elif defined(PETSC_USE_REAL___FLOAT128)
563:       #include <complex.h>
564:     #else
565:       #define petsccomplexlib std
566:       #include <complex>
567:     #endif

569:     /* Define PetscComplex based on the precision */
570:     #if defined(PETSC_USE_REAL_SINGLE)
571: typedef petsccomplexlib::complex<float> PetscComplex;
572:     #elif defined(PETSC_USE_REAL_DOUBLE)
573: typedef petsccomplexlib::complex<double> PetscComplex;
574:     #elif defined(PETSC_USE_REAL___FLOAT128)
575: typedef __complex128 PetscComplex;
576:     #endif

578:     /* Include a PETSc C++ complex 'fix'. Check PetscComplex manual page for details */
579:     #if defined(PETSC_HAVE_CXX_COMPLEX_FIX) && !defined(PETSC_SKIP_CXX_COMPLEX_FIX)
580: #include <petsccxxcomplexfix.h>
581:     #endif
582:   #else /* c99 complex support */
583:     #include <complex.h>
584:     #if defined(PETSC_USE_REAL_SINGLE) || defined(PETSC_USE_REAL___FP16)
585: typedef float _Complex PetscComplex;
586:     #elif defined(PETSC_USE_REAL_DOUBLE)
587: typedef double _Complex PetscComplex;
588:     #elif defined(PETSC_USE_REAL___FLOAT128)
589: typedef __complex128 PetscComplex;
590:     #endif /* PETSC_USE_REAL_* */
591:   #endif   /* !__cplusplus */
592: #endif     /* PETSC_HAVE_COMPLEX */

594: /*MC
595:    PetscScalar - PETSc type that represents either a double precision real number, a double precision
596:                  complex number, a single precision real number, a __float128 real or complex or a __fp16 real - if the code is configured
597:                  with `--with-scalar-type`=real,complex `--with-precision`=single,double,__float128,__fp16

599:    Level: beginner

601:    Note:
602:    For MPI calls that require datatypes, use `MPIU_SCALAR` as the datatype for `PetscScalar` and `MPIU_SUM`, etc for operations. They will automatically work correctly regardless of the size of `PetscScalar`.

604: .seealso: `PetscReal`, `PetscComplex`, `PetscInt`, `MPIU_REAL`, `MPIU_SCALAR`, `MPIU_COMPLEX`, `MPIU_INT`, `PetscRealPart()`, `PetscImaginaryPart()`
605: M*/

607: #if defined(PETSC_USE_COMPLEX) && defined(PETSC_HAVE_COMPLEX)
608: typedef PetscComplex PetscScalar;
609: #else  /* PETSC_USE_COMPLEX */
610: typedef PetscReal PetscScalar;
611: #endif /* PETSC_USE_COMPLEX */

613: /*E
614:     PetscCopyMode  - Determines how an array or `PetscObject` passed to certain functions is copied or retained by the aggregate `PetscObject`

616:    Values for array input:
617: +   `PETSC_COPY_VALUES` - the array values are copied into new space, the user is free to reuse or delete the passed in array
618: .   `PETSC_OWN_POINTER` - the array values are NOT copied, the object takes ownership of the array and will free it later, the user cannot change or
619:                           delete the array. The array MUST have been obtained with `PetscMalloc()`. Hence this mode cannot be used in Fortran.
620: -   `PETSC_USE_POINTER` - the array values are NOT copied, the object uses the array but does NOT take ownership of the array. The user cannot use
621:                           the array but the user must delete the array after the object is destroyed.

623:    Values for PetscObject:
624: +   `PETSC_COPY_VALUES` - the input `PetscObject` is cloned into the aggregate `PetscObject`; the user is free to reuse/modify the input `PetscObject` without side effects.
625: .   `PETSC_OWN_POINTER` - the input `PetscObject` is referenced by pointer (with reference count), thus should not be modified by the user.
626:                           increases its reference count).
627: -   `PETSC_USE_POINTER` - invalid for `PetscObject` inputs.

629:    Level: beginner

631: .seealso: `PetscInsertMode`
632: E*/
633: typedef enum {
634:   PETSC_COPY_VALUES,
635:   PETSC_OWN_POINTER,
636:   PETSC_USE_POINTER
637: } PetscCopyMode;
638: PETSC_EXTERN const char *const PetscCopyModes[];

640: /*MC
641:     PETSC_FALSE - False value of `PetscBool`

643:     Level: beginner

645:     Note:
646:     Zero integer

648: .seealso: `PetscBool`, `PetscBool3`, `PETSC_TRUE`
649: M*/

651: /*MC
652:     PETSC_TRUE - True value of `PetscBool`

654:     Level: beginner

656:     Note:
657:     Nonzero integer

659: .seealso: `PetscBool`, `PetscBool3`, `PETSC_FALSE`
660: M*/

662: /*MC
663:     PetscLogDouble - Used for logging times

665:   Level: developer

667:   Note:
668:   Contains double precision numbers that are not used in the numerical computations, but rather in logging, timing etc.

670: .seealso: `PetscBool`, `PetscDataType`
671: M*/
672: typedef double PetscLogDouble;

674: /*E
675:     PetscDataType - Used for handling different basic data types.

677:    Level: beginner

679:    Notes:
680:    Use of this should be avoided if one can directly use `MPI_Datatype` instead.

682:    `PETSC_INT` is the datatype for a `PetscInt`, regardless of whether it is 4 or 8 bytes.
683:    `PETSC_REAL`, `PETSC_COMPLEX` and `PETSC_SCALAR` are the datatypes for `PetscReal`, `PetscComplex` and `PetscScalar`, regardless of their sizes.

685:    Developer Notes:
686:    It would be nice if we could always just use MPI Datatypes, why can we not?

688:    If you change any values in `PetscDatatype` make sure you update their usage in
689:    share/petsc/matlab/PetscBagRead.m and share/petsc/matlab/@PetscOpenSocket/read/write.m

691:    TODO:
692:    Remove use of improper `PETSC_ENUM`

694: .seealso: `PetscBinaryRead()`, `PetscBinaryWrite()`, `PetscDataTypeToMPIDataType()`,
695:           `PetscDataTypeGetSize()`
696: E*/
697: typedef enum {
698:   PETSC_DATATYPE_UNKNOWN = 0,
699:   PETSC_DOUBLE           = 1,
700:   PETSC_COMPLEX          = 2,
701:   PETSC_LONG             = 3,
702:   PETSC_SHORT            = 4,
703:   PETSC_FLOAT            = 5,
704:   PETSC_CHAR             = 6,
705:   PETSC_BIT_LOGICAL      = 7,
706:   PETSC_ENUM             = 8,
707:   PETSC_BOOL             = 9,
708:   PETSC___FLOAT128       = 10,
709:   PETSC_OBJECT           = 11,
710:   PETSC_FUNCTION         = 12,
711:   PETSC_STRING           = 13,
712:   PETSC___FP16           = 14,
713:   PETSC_STRUCT           = 15,
714:   PETSC_INT              = 16,
715:   PETSC_INT64            = 17,
716:   PETSC_COUNT            = 18,
717:   PETSC_INT32            = 19,
718: } PetscDataType;
719: PETSC_EXTERN const char *const PetscDataTypes[];

721: #if defined(PETSC_USE_REAL_SINGLE)
722:   #define PETSC_REAL PETSC_FLOAT
723: #elif defined(PETSC_USE_REAL_DOUBLE)
724:   #define PETSC_REAL PETSC_DOUBLE
725: #elif defined(PETSC_USE_REAL___FLOAT128)
726:   #define PETSC_REAL PETSC___FLOAT128
727: #elif defined(PETSC_USE_REAL___FP16)
728:   #define PETSC_REAL PETSC___FP16
729: #else
730:   #define PETSC_REAL PETSC_DOUBLE
731: #endif

733: #if defined(PETSC_USE_COMPLEX)
734:   #define PETSC_SCALAR PETSC_COMPLEX
735: #else
736:   #define PETSC_SCALAR PETSC_REAL
737: #endif

739: #define PETSC_FORTRANADDR PETSC_LONG

741: /*S
742:   PetscToken - 'Token' used for managing tokenizing strings

744:   Level: intermediate

746: .seealso: `PetscTokenCreate()`, `PetscTokenFind()`, `PetscTokenDestroy()`
747: S*/
748: typedef struct _n_PetscToken *PetscToken;

750: /*S
751:    PetscObject - any PETSc object, for example: `PetscViewer`, `Mat`, `Vec`, `KSP`, `DM`

753:    Level: beginner

755:    Notes:
756:    This is the base class from which all PETSc objects are derived.

758:    In certain situations one can cast an object, for example a `Vec`, to a `PetscObject` with (`PetscObject`)vec

760: .seealso: `PetscObjectDestroy()`, `PetscObjectView()`, `PetscObjectGetName()`, `PetscObjectSetName()`, `PetscObjectReference()`, `PetscObjectDereference()`
761: S*/
762: typedef struct _p_PetscObject *PetscObject;

764: /*MC
765:     PetscObjectId - unique integer Id for a `PetscObject`

767:     Level: developer

769:     Note:
770:     Unlike pointer values, object ids are never reused so one may save a `PetscObjectId` and compare it to one obtained later from a `PetscObject` to determine
771:     if the objects are the same. Never compare two object pointer values.

773: .seealso: `PetscObjectState`, `PetscObjectGetId()`
774: M*/
775: typedef PetscInt64 PetscObjectId;

777: /*MC
778:     PetscObjectState - integer state for a `PetscObject`

780:     Level: developer

782:     Note:
783:     Object state is always-increasing and (for objects that track state) can be used to determine if an object has
784:     changed since the last time you interacted with it.  It is 64-bit so that it will not overflow for a very long time.

786: .seealso: `PetscObjectId`, `PetscObjectStateGet()`, `PetscObjectStateIncrease()`, `PetscObjectStateSet()`
787: M*/
788: typedef PetscInt64 PetscObjectState;

790: /*S
791:      PetscFunctionList - Linked list of functions, possibly stored in dynamic libraries, accessed
792:       by string name

794:    Level: advanced

796: .seealso: `PetscFunctionListAdd()`, `PetscFunctionListDestroy()`
797: S*/
798: typedef struct _n_PetscFunctionList *PetscFunctionList;

800: /*E
801:   PetscFileMode - Access mode for a file.

803:   Values:
804: +  `FILE_MODE_UNDEFINED`     - initial invalid value
805: .  `FILE_MODE_READ`          - open a file at its beginning for reading
806: .  `FILE_MODE_WRITE`         - open a file at its beginning for writing (will create if the file does not exist)
807: .  `FILE_MODE_APPEND`        - open a file at end for writing
808: .  `FILE_MODE_UPDATE`        - open a file for updating, meaning for reading and writing
809: -  `FILE_MODE_APPEND_UPDATE` - open a file for updating, meaning for reading and writing, at the end

811:   Level: beginner

813: .seealso: `PetscViewerFileSetMode()`
814: E*/
815: typedef enum {
816:   FILE_MODE_UNDEFINED     = -1,
817:   FILE_MODE_READ          = 0,
818:   FILE_MODE_WRITE         = 1,
819:   FILE_MODE_APPEND        = 2,
820:   FILE_MODE_UPDATE        = 3,
821:   FILE_MODE_APPEND_UPDATE = 4
822: } PetscFileMode;
823: PETSC_EXTERN const char *const PetscFileModes[];

825: typedef void *PetscDLHandle;
826: typedef enum {
827:   PETSC_DL_DECIDE = 0,
828:   PETSC_DL_NOW    = 1,
829:   PETSC_DL_LOCAL  = 2
830: } PetscDLMode;

832: /*S
833:    PetscObjectList - Linked list of PETSc objects, each accessible by string name

835:    Level: developer

837:    Note:
838:    Used by `PetscObjectCompose()` and `PetscObjectQuery()`

840: .seealso: `PetscObjectListAdd()`, `PetscObjectListDestroy()`, `PetscObjectListFind()`, `PetscObjectCompose()`, `PetscObjectQuery()`, `PetscFunctionList`
841: S*/
842: typedef struct _n_PetscObjectList *PetscObjectList;

844: /*S
845:    PetscDLLibrary - Linked list of dynamic libraries to search for functions

847:    Level: developer

849: .seealso: `PetscDLLibraryOpen()`
850: S*/
851: typedef struct _n_PetscDLLibrary *PetscDLLibrary;

853: /*S
854:    PetscContainer - Simple PETSc object that contains a pointer to any required data

856:    Level: advanced

858:    Note:
859:    This is useful to attach arbitrary data to a `PetscObject` with `PetscObjectCompose()` and `PetscObjectQuery()`

861: .seealso: `PetscObject`, `PetscContainerCreate()`, `PetscObjectCompose()`, `PetscObjectQuery()`
862: S*/
863: typedef struct _p_PetscContainer *PetscContainer;

865: /*S
866:    PetscRandom - Abstract PETSc object that manages generating random numbers

868:    Level: intermediate

870: .seealso: `PetscRandomCreate()`, `PetscRandomGetValue()`, `PetscRandomType`
871: S*/
872: typedef struct _p_PetscRandom *PetscRandom;

874: /*
875:    In binary files variables are stored using the following lengths,
876:   regardless of how they are stored in memory on any one particular
877:   machine. Use these rather than sizeof() in computing sizes for
878:   PetscBinarySeek().
879: */
880: #define PETSC_BINARY_INT_SIZE    (32 / 8)
881: #define PETSC_BINARY_FLOAT_SIZE  (32 / 8)
882: #define PETSC_BINARY_CHAR_SIZE   (8 / 8)
883: #define PETSC_BINARY_SHORT_SIZE  (16 / 8)
884: #define PETSC_BINARY_DOUBLE_SIZE (64 / 8)
885: #define PETSC_BINARY_SCALAR_SIZE sizeof(PetscScalar)

887: /*E
888:   PetscBinarySeekType - argument to `PetscBinarySeek()`

890:   Values:
891: +  `PETSC_BINARY_SEEK_SET` - offset is an absolute location in the file
892: .  `PETSC_BINARY_SEEK_CUR` - offset is an offset from the current location of the file pointer
893: -  `PETSC_BINARY_SEEK_END` - offset is an offset from the end of the file

895:   Level: advanced

897: .seealso: `PetscBinarySeek()`, `PetscBinarySynchronizedSeek()`
898: E*/
899: typedef enum {
900:   PETSC_BINARY_SEEK_SET = 0,
901:   PETSC_BINARY_SEEK_CUR = 1,
902:   PETSC_BINARY_SEEK_END = 2
903: } PetscBinarySeekType;

905: /*E
906:    PetscBuildTwoSidedType - algorithm for setting up two-sided communication for use with `PetscSF`

908:    Values:
909: +  `PETSC_BUILDTWOSIDED_ALLREDUCE`  - classical algorithm using an `MPI_Allreduce()` with
910:                                       a buffer of length equal to the communicator size. Not memory-scalable due to
911:                                       the large reduction size. Requires only an MPI-1 implementation.
912: .  `PETSC_BUILDTWOSIDED_IBARRIER`   - nonblocking algorithm based on `MPI_Issend()` and `MPI_Ibarrier()`.
913:                                       Proved communication-optimal in Hoefler, Siebert, and Lumsdaine (2010). Requires an MPI-3 implementation.
914: -  `PETSC_BUILDTWOSIDED_REDSCATTER` - similar to above, but use more optimized function
915:                                       that only communicates the part of the reduction that is necessary.  Requires an MPI-2 implementation.

917:    Level: developer

919: .seealso: `PetscCommBuildTwoSided()`, `PetscCommBuildTwoSidedSetType()`, `PetscCommBuildTwoSidedGetType()`
920: E*/
921: typedef enum {
922:   PETSC_BUILDTWOSIDED_NOTSET     = -1,
923:   PETSC_BUILDTWOSIDED_ALLREDUCE  = 0,
924:   PETSC_BUILDTWOSIDED_IBARRIER   = 1,
925:   PETSC_BUILDTWOSIDED_REDSCATTER = 2
926:   /* Updates here must be accompanied by updates in finclude/petscsys.h and the string array in mpits.c */
927: } PetscBuildTwoSidedType;
928: PETSC_EXTERN const char *const PetscBuildTwoSidedTypes[];

930: /*E
931:   InsertMode - How the entries are combined with the current values in the vectors or matrices

933:   Values:
934: +  `NOT_SET_VALUES`    - do not actually use the values
935: .  `INSERT_VALUES`     - replace the current values with the provided values, unless the index is marked as constrained by the `PetscSection`
936: .  `ADD_VALUES`        - add the values to the current values, unless the index is marked as constrained by the `PetscSection`
937: .  `MAX_VALUES`        - use the maximum of each current value and provided value
938: .  `MIN_VALUES`        - use the minimum of each current value and provided value
939: .  `INSERT_ALL_VALUES` - insert, even if indices that are not marked as constrained by the `PetscSection`
940: .  `ADD_ALL_VALUES`    - add, even if indices that are not marked as constrained by the `PetscSection`
941: .  `INSERT_BC_VALUES`  - insert, but ignore indices that are not marked as constrained by the `PetscSection`
942: -  `ADD_BC_VALUES`     - add, but ignore indices that are not marked as constrained by the `PetscSection`

944:   Level: beginner

946:   Note:
947:   The `PetscSection` that determines the effects of the `InsertMode` values can be obtained by the `Vec` object with `VecGetDM()`
948:   and `DMGetLocalSection()`.

950:   Not all options are supported for all operations or PETSc object types.

952: .seealso: `VecSetValues()`, `MatSetValues()`, `VecSetValue()`, `VecSetValuesBlocked()`,
953:           `VecSetValuesLocal()`, `VecSetValuesBlockedLocal()`, `MatSetValuesBlocked()`,
954:           `MatSetValuesBlockedLocal()`, `MatSetValuesLocal()`, `VecScatterBegin()`, `VecScatterEnd()`
955: E*/
956: typedef enum {
957:   NOT_SET_VALUES,
958:   INSERT_VALUES,
959:   ADD_VALUES,
960:   MAX_VALUES,
961:   MIN_VALUES,
962:   INSERT_ALL_VALUES,
963:   ADD_ALL_VALUES,
964:   INSERT_BC_VALUES,
965:   ADD_BC_VALUES
966: } InsertMode;

968: /*MC
969:     INSERT_VALUES - Put a value into a vector or matrix, overwrites any previous value

971:     Level: beginner

973: .seealso: `InsertMode`, `VecSetValues()`, `MatSetValues()`, `VecSetValue()`, `VecSetValuesBlocked()`,
974:           `VecSetValuesLocal()`, `VecSetValuesBlockedLocal()`, `MatSetValuesBlocked()`, `ADD_VALUES`,
975:           `MatSetValuesBlockedLocal()`, `MatSetValuesLocal()`, `VecScatterBegin()`, `VecScatterEnd()`, `MAX_VALUES`
976: M*/

978: /*MC
979:     ADD_VALUES - Adds a value into a vector or matrix, if there previously was no value, just puts the
980:                  value into that location

982:     Level: beginner

984: .seealso: `InsertMode`, `VecSetValues()`, `MatSetValues()`, `VecSetValue()`, `VecSetValuesBlocked()`,
985:           `VecSetValuesLocal()`, `VecSetValuesBlockedLocal()`, `MatSetValuesBlocked()`, `INSERT_VALUES`,
986:           `MatSetValuesBlockedLocal()`, `MatSetValuesLocal()`, `VecScatterBegin()`, `VecScatterEnd()`, `MAX_VALUES`
987: M*/

989: /*MC
990:     MAX_VALUES - Puts the maximum of the scattered/gathered value and the current value into each location

992:     Level: beginner

994: .seealso: `InsertMode`, `VecScatterBegin()`, `VecScatterEnd()`, `ADD_VALUES`, `INSERT_VALUES`
995: M*/

997: /*MC
998:     MIN_VALUES - Puts the minimal of the scattered/gathered value and the current value into each location

1000:     Level: beginner

1002: .seealso: `InsertMode`, `VecScatterBegin()`, `VecScatterEnd()`, `ADD_VALUES`, `INSERT_VALUES`
1003: M*/

1005: /*S
1006:    PetscSubcomm - A decomposition of an MPI communicator into subcommunicators

1008:    Values:
1009: +   `PETSC_SUBCOMM_GENERAL`    - similar to `MPI_Comm_split()` each process sets the new communicator (color) they will belong to and the order within that communicator
1010: .   `PETSC_SUBCOMM_CONTIGUOUS` - each new communicator contains a set of process with contiguous ranks in the original MPI communicator
1011: -   `PETSC_SUBCOMM_INTERLACED` - each new communictor contains a set of processes equally far apart in rank from the others in that new communicator

1013:    Sample Usage:
1014: .vb
1015:        PetscSubcommCreate()
1016:        PetscSubcommSetNumber()
1017:        PetscSubcommSetType(PETSC_SUBCOMM_INTERLACED);
1018:        ccomm = PetscSubcommChild()
1019:        PetscSubcommDestroy()
1020: .ve

1022:    Example:
1023:    Consider a communicator with six processes split into 3 subcommunicators.
1024: .vb
1025:    PETSC_SUBCOMM_CONTIGUOUS - the first communicator contains rank 0,1  the second rank 2,3 and the third rank 4,5 in the original ordering of the original communicator
1026:    PETSC_SUBCOMM_INTERLACED - the first communicator contains rank 0,3, the second 1,4 and the third 2,5
1027: .ve

1029:    Level: advanced

1031:    Note:
1032:    After a call to `PetscSubcommSetType()`, `PetscSubcommSetTypeGeneral()`, or `PetscSubcommSetFromOptions()` one may call
1033: .vb
1034:      PetscSubcommChild() returns the associated subcommunicator on this process
1035:      PetscSubcommContiguousParent() returns a parent communitor but with all child of the same subcommunicator having contiguous rank
1036: .ve

1038:    Developer Note:
1039:    This is used in objects such as `PCREDUNDANT` to manage the subcommunicators on which the redundant computations
1040:    are performed.

1042: .seealso: `PetscSubcommCreate()`, `PetscSubcommSetNumber()`, `PetscSubcommSetType()`, `PetscSubcommView()`, `PetscSubcommSetFromOptions()`
1043: S*/
1044: typedef struct _n_PetscSubcomm *PetscSubcomm;
1045: typedef enum {
1046:   PETSC_SUBCOMM_GENERAL    = 0,
1047:   PETSC_SUBCOMM_CONTIGUOUS = 1,
1048:   PETSC_SUBCOMM_INTERLACED = 2
1049: } PetscSubcommType;
1050: PETSC_EXTERN const char *const PetscSubcommTypes[];

1052: /*S
1053:    PetscHeap - A simple class for managing heaps

1055:    Level: intermediate

1057: .seealso: `PetscHeapCreate()`, `PetscHeapAdd()`, `PetscHeapPop()`, `PetscHeapPeek()`, `PetscHeapStash()`, `PetscHeapUnstash()`, `PetscHeapView()`, `PetscHeapDestroy()`
1058: S*/
1059: typedef struct _n_PetscHeap *PetscHeap;

1061: typedef struct _n_PetscShmComm *PetscShmComm;
1062: typedef struct _n_PetscOmpCtrl *PetscOmpCtrl;

1064: /*S
1065:    PetscSegBuffer - a segmented extendable buffer

1067:    Level: developer

1069: .seealso: `PetscSegBufferCreate()`, `PetscSegBufferGet()`, `PetscSegBufferExtract()`, `PetscSegBufferDestroy()`
1070: S*/
1071: typedef struct _n_PetscSegBuffer *PetscSegBuffer;

1073: typedef struct _n_PetscOptionsHelpPrinted *PetscOptionsHelpPrinted;

1075: /*S
1076:      PetscBT - PETSc bitarrays, efficient storage of arrays of boolean values

1078:      Level: advanced

1080:      Notes:
1081:      The following routines do not have their own manual pages

1083: .vb
1084:      PetscBTCreate(m,&bt)         - creates a bit array with enough room to hold m values
1085:      PetscBTDestroy(&bt)          - destroys the bit array
1086:      PetscBTMemzero(m,bt)         - zeros the entire bit array (sets all values to false)
1087:      PetscBTSet(bt,index)         - sets a particular entry as true
1088:      PetscBTClear(bt,index)       - sets a particular entry as false
1089:      PetscBTLookup(bt,index)      - returns the value
1090:      PetscBTLookupSet(bt,index)   - returns the value and then sets it true
1091:      PetscBTLookupClear(bt,index) - returns the value and then sets it false
1092:      PetscBTLength(m)             - returns number of bytes in array with m bits
1093:      PetscBTView(m,bt,viewer)     - prints all the entries in a bit array
1094: .ve

1096:     PETSc does not check error flags on `PetscBTLookup()`, `PetscBTLookupSet()`, `PetscBTLength()` because error checking
1097:     would cost hundreds more cycles then the operation.

1099: S*/
1100: typedef char *PetscBT;

1102: /* The number of bits in a byte */
1103: #define PETSC_BITS_PER_BYTE CHAR_BIT