MATSOLVERMKL_CPARDISO#

A matrix type providing direct solvers (LU) for parallel matrices via the external package MKL Cluster PARDISO https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2023-2/onemkl-pardiso-parallel-direct-sparse-solver-iface.html Works with MATMPIAIJ matrices

Use -pc_type lu -pc_factor_mat_solver_type mkl_cpardiso to use this direct solver

Options Database Keys#

  • -mat_mkl_cpardiso_65 - Suggested number of threads to use within MKL Cluster PARDISO

  • -mat_mkl_cpardiso_66 - Maximum number of factors with identical sparsity structure that must be kept in memory at the same time

  • -mat_mkl_cpardiso_67 - Indicates the actual matrix for the solution phase

  • -mat_mkl_cpardiso_68 - Message level information, use 1 to get detailed information on the solver options

  • -mat_mkl_cpardiso_69 - Defines the matrix type. IMPORTANT: When you set this flag, iparm parameters are going to be set to the default ones for the matrix type

  • -mat_mkl_cpardiso_1 - Use default values

  • -mat_mkl_cpardiso_2 - Fill-in reducing ordering for the input matrix

  • -mat_mkl_cpardiso_4 - Preconditioned CGS/CG

  • -mat_mkl_cpardiso_5 - User permutation

  • -mat_mkl_cpardiso_6 - Write solution on x

  • -mat_mkl_cpardiso_8 - Iterative refinement step

  • -mat_mkl_cpardiso_10 - Pivoting perturbation

  • -mat_mkl_cpardiso_11 - Scaling vectors

  • -mat_mkl_cpardiso_12 - Solve with transposed or conjugate transposed matrix A

  • -mat_mkl_cpardiso_13 - Improved accuracy using (non-) symmetric weighted matching

  • -mat_mkl_cpardiso_18 - Numbers of non-zero elements

  • -mat_mkl_cpardiso_19 - Report number of floating point operations

  • -mat_mkl_cpardiso_21 - Pivoting for symmetric indefinite matrices

  • -mat_mkl_cpardiso_24 - Parallel factorization control

  • -mat_mkl_cpardiso_25 - Parallel forward/backward solve control

  • -mat_mkl_cpardiso_27 - Matrix checker

  • -mat_mkl_cpardiso_31 - Partial solve and computing selected components of the solution vectors

  • -mat_mkl_cpardiso_34 - Optimal number of threads for conditional numerical reproducibility (CNR) mode

  • -mat_mkl_cpardiso_60 - Intel MKL Cluster PARDISO mode

Notes#

Use -mat_mkl_cpardiso_68 1 to display the number of threads the solver is using. MKL does not provide a way to directly access this information.

For more information on the options check https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2023-2/onemkl-pardiso-parallel-direct-sparse-solver-iface.html

See Also#

Matrices, Mat, PCFactorSetMatSolverType(), MatSolverType, MatMkl_CPardisoSetCntl(), MatGetFactor(), MATSOLVERMKL_PARDISO

Level#

beginner

Location#

src/mat/impls/aij/mpi/mkl_cpardiso/mkl_cpardiso.c


Index of all Mat routines
Table of Contents for all manual pages
Index of all manual pages