TaoBRGNRegularizationType#
The regularization added in the TAOBRGN
solver.
Synopsis#
Values#
TAOBRGN_REGULARIZATION_USER - A user-defined regularizer
TAOBRGN_REGULARIZATION_L2PROX - \(\tfrac{1}{2}\|x - x_k\|_2^\), where \(x_k\) is the latest solution
TAOBRGN_REGULARIZATION_L2PURE - \(\tfrac{1}{2}\|x\|_2^2\)
TAOBRGN_REGULARIZATION_L1DICT - \(\|D x\|_1\), where \(D\) is a dictionary matrix
TAOBRGN_REGULARIZATION_LM - Levenberg-Marquardt, \(\tfrac{1}{2} x^T \mathrm{diag}(J^T J) x\), where \(J\) is the Jacobian of the least-squares residual
Options database Key#
-tao_brgn_regularization_type <user,l2prox,l2pure,l1dict,lm> - one of the above regularization types
Notes#
If TAOBRGN_REGULARIZATION_USER
, the regularizer is set either by calling
TaoBRGNSetRegularizerObjectiveAndGradientRoutine()
and
TaoBRGNSetRegulazerHessianRoutine()
or by calling TaoBRGNSetRegularizerTerm()
.
If TAOBRGN_REGULARIZATION_L1DICT
, the dictionary matrix is set with TaoBRGNSetDictionaryMatrix()
and the smoothing parameter of the
approximate \(\ell_1\) norm is set with TaoBRGNSetL1SmoothEpsilon()
.
If TAOBRGN_REGULARIZATION_LM
, the diagonal damping vector \(\mathrm{diag}(J^T J)\) can be obtained with TaoBRGNGetDampingVector()
.
See Also#
TAO: Optimization Solvers, Tao
, TaoBRGNGetSubsolver()
, TaoBRGNSetRegularizerWeight()
, TaoBRGNSetL1SmoothEpsilon()
, TaoBRGNSetDictionaryMatrix()
,
TaoBRGNSetRegularizerObjectiveAndGradientRoutine()
, TaoBRGNSetRegularizerHessianRoutine()
,
TaoBRGNGetRegularizationType()
, TaoBRGNSetRegularizationType()
Level#
advanced
Location#
Examples#
Examples#
Examples#
src/tao/leastsquares/tutorials/cs1.c
Index of all Tao routines
Table of Contents for all manual pages
Index of all manual pages