TaoBRGNRegularizationType#
The regularization added in the TAOBRGN solver.
Synopsis#
Values#
- TAOBRGN_REGULARIZATION_USER - A user-defined regularizer 
- TAOBRGN_REGULARIZATION_L2PROX - \(\tfrac{1}{2}\|x - x_k\|_2^\), where \(x_k\) is the latest solution 
- TAOBRGN_REGULARIZATION_L2PURE - \(\tfrac{1}{2}\|x\|_2^2\) 
- TAOBRGN_REGULARIZATION_L1DICT - \(\|D x\|_1\), where \(D\) is a dictionary matrix 
- TAOBRGN_REGULARIZATION_LM - Levenberg-Marquardt, \(\tfrac{1}{2} x^T \mathrm{diag}(J^T J) x\), where \(J\) is the Jacobian of the least-squares residual 
Options database Key#
- -tao_brgn_regularization_type <user,l2prox,l2pure,l1dict,lm> - one of the above regularization types 
Notes#
If TAOBRGN_REGULARIZATION_USER, the regularizer is set either by calling
TaoBRGNSetRegularizerObjectiveAndGradientRoutine() and
TaoBRGNSetRegulazerHessianRoutine() or by calling TaoBRGNSetRegularizerTerm().
If TAOBRGN_REGULARIZATION_L1DICT, the dictionary matrix is set with TaoBRGNSetDictionaryMatrix() and the smoothing parameter of the
approximate \(\ell_1\) norm is set with TaoBRGNSetL1SmoothEpsilon().
If TAOBRGN_REGULARIZATION_LM, the diagonal damping vector \(\mathrm{diag}(J^T J)\) can be obtained with TaoBRGNGetDampingVector().
See Also#
TAO: Optimization Solvers, Tao, TaoBRGNGetSubsolver(), TaoBRGNSetRegularizerWeight(), TaoBRGNSetL1SmoothEpsilon(), TaoBRGNSetDictionaryMatrix(),
TaoBRGNSetRegularizerObjectiveAndGradientRoutine(), TaoBRGNSetRegularizerHessianRoutine(),
TaoBRGNGetRegularizationType(), TaoBRGNSetRegularizationType()
Level#
advanced
Location#
Examples#
Examples#
Examples#
src/tao/leastsquares/tutorials/cs1.c
Index of all Tao routines
Table of Contents for all manual pages
Index of all manual pages