Actual source code: fe.c
1: /* Basis Jet Tabulation
3: We would like to tabulate the nodal basis functions and derivatives at a set of points, usually quadrature points. We
4: follow here the derviation in http://www.math.ttu.edu/~kirby/papers/fiat-toms-2004.pdf. The nodal basis $\psi_i$ can
5: be expressed in terms of a prime basis $\phi_i$ which can be stably evaluated. In PETSc, we will use the Legendre basis
6: as a prime basis.
8: \psi_i = \sum_k \alpha_{ki} \phi_k
10: Our nodal basis is defined in terms of the dual basis $n_j$
12: n_j \cdot \psi_i = \delta_{ji}
14: and we may act on the first equation to obtain
16: n_j \cdot \psi_i = \sum_k \alpha_{ki} n_j \cdot \phi_k
17: \delta_{ji} = \sum_k \alpha_{ki} V_{jk}
18: I = V \alpha
20: so the coefficients of the nodal basis in the prime basis are
22: \alpha = V^{-1}
24: We will define the dual basis vectors $n_j$ using a quadrature rule.
26: Right now, we will just use the polynomial spaces P^k. I know some elements use the space of symmetric polynomials
27: (I think Nedelec), but we will neglect this for now. Constraints in the space, e.g. Arnold-Winther elements, can
28: be implemented exactly as in FIAT using functionals $L_j$.
30: I will have to count the degrees correctly for the Legendre product when we are on simplices.
32: We will have three objects:
33: - Space, P: this just need point evaluation I think
34: - Dual Space, P'+K: This looks like a set of functionals that can act on members of P, each n is defined by a Q
35: - FEM: This keeps {P, P', Q}
36: */
37: #include <petsc/private/petscfeimpl.h>
38: #include <petscdmplex.h>
40: PetscBool FEcite = PETSC_FALSE;
41: const char FECitation[] = "@article{kirby2004,\n"
42: " title = {Algorithm 839: FIAT, a New Paradigm for Computing Finite Element Basis Functions},\n"
43: " journal = {ACM Transactions on Mathematical Software},\n"
44: " author = {Robert C. Kirby},\n"
45: " volume = {30},\n"
46: " number = {4},\n"
47: " pages = {502--516},\n"
48: " doi = {10.1145/1039813.1039820},\n"
49: " year = {2004}\n}\n";
51: PetscClassId PETSCFE_CLASSID = 0;
53: PetscLogEvent PETSCFE_SetUp;
55: PetscFunctionList PetscFEList = NULL;
56: PetscBool PetscFERegisterAllCalled = PETSC_FALSE;
58: /*@C
59: PetscFERegister - Adds a new `PetscFEType`
61: Not Collective, No Fortran Support
63: Input Parameters:
64: + sname - The name of a new user-defined creation routine
65: - function - The creation routine
67: Example Usage:
68: .vb
69: PetscFERegister("my_fe", MyPetscFECreate);
70: .ve
72: Then, your PetscFE type can be chosen with the procedural interface via
73: .vb
74: PetscFECreate(MPI_Comm, PetscFE *);
75: PetscFESetType(PetscFE, "my_fe");
76: .ve
77: or at runtime via the option
78: .vb
79: -petscfe_type my_fe
80: .ve
82: Level: advanced
84: Note:
85: `PetscFERegister()` may be called multiple times to add several user-defined `PetscFE`s
87: .seealso: `PetscFE`, `PetscFEType`, `PetscFERegisterAll()`, `PetscFERegisterDestroy()`
88: @*/
89: PetscErrorCode PetscFERegister(const char sname[], PetscErrorCode (*function)(PetscFE))
90: {
91: PetscFunctionBegin;
92: PetscCall(PetscFunctionListAdd(&PetscFEList, sname, function));
93: PetscFunctionReturn(PETSC_SUCCESS);
94: }
96: /*@
97: PetscFESetType - Builds a particular `PetscFE`
99: Collective
101: Input Parameters:
102: + fem - The `PetscFE` object
103: - name - The kind of FEM space
105: Options Database Key:
106: . -petscfe_type <type> - Sets the `PetscFE` type; use -help for a list of available types
108: Level: intermediate
110: .seealso: `PetscFEType`, `PetscFE`, `PetscFEGetType()`, `PetscFECreate()`
111: @*/
112: PetscErrorCode PetscFESetType(PetscFE fem, PetscFEType name)
113: {
114: PetscErrorCode (*r)(PetscFE);
115: PetscBool match;
117: PetscFunctionBegin;
119: PetscCall(PetscObjectTypeCompare((PetscObject)fem, name, &match));
120: if (match) PetscFunctionReturn(PETSC_SUCCESS);
122: if (!PetscFERegisterAllCalled) PetscCall(PetscFERegisterAll());
123: PetscCall(PetscFunctionListFind(PetscFEList, name, &r));
124: PetscCheck(r, PetscObjectComm((PetscObject)fem), PETSC_ERR_ARG_UNKNOWN_TYPE, "Unknown PetscFE type: %s", name);
126: PetscTryTypeMethod(fem, destroy);
127: fem->ops->destroy = NULL;
129: PetscCall((*r)(fem));
130: PetscCall(PetscObjectChangeTypeName((PetscObject)fem, name));
131: PetscFunctionReturn(PETSC_SUCCESS);
132: }
134: /*@
135: PetscFEGetType - Gets the `PetscFEType` (as a string) from the `PetscFE` object.
137: Not Collective
139: Input Parameter:
140: . fem - The `PetscFE`
142: Output Parameter:
143: . name - The `PetscFEType` name
145: Level: intermediate
147: .seealso: `PetscFEType`, `PetscFE`, `PetscFESetType()`, `PetscFECreate()`
148: @*/
149: PetscErrorCode PetscFEGetType(PetscFE fem, PetscFEType *name)
150: {
151: PetscFunctionBegin;
153: PetscAssertPointer(name, 2);
154: if (!PetscFERegisterAllCalled) PetscCall(PetscFERegisterAll());
155: *name = ((PetscObject)fem)->type_name;
156: PetscFunctionReturn(PETSC_SUCCESS);
157: }
159: /*@
160: PetscFEViewFromOptions - View from a `PetscFE` based on values in the options database
162: Collective
164: Input Parameters:
165: + A - the `PetscFE` object
166: . obj - Optional object that provides the options prefix, pass `NULL` to use the options prefix of `A`
167: - name - command line option name
169: Level: intermediate
171: .seealso: `PetscFE`, `PetscFEView()`, `PetscObjectViewFromOptions()`, `PetscFECreate()`
172: @*/
173: PetscErrorCode PetscFEViewFromOptions(PetscFE A, PeOp PetscObject obj, const char name[])
174: {
175: PetscFunctionBegin;
177: PetscCall(PetscObjectViewFromOptions((PetscObject)A, obj, name));
178: PetscFunctionReturn(PETSC_SUCCESS);
179: }
181: /*@
182: PetscFEView - Views a `PetscFE`
184: Collective
186: Input Parameters:
187: + fem - the `PetscFE` object to view
188: - viewer - the viewer
190: Level: beginner
192: .seealso: `PetscFE`, `PetscViewer`, `PetscFEDestroy()`, `PetscFEViewFromOptions()`
193: @*/
194: PetscErrorCode PetscFEView(PetscFE fem, PetscViewer viewer)
195: {
196: PetscBool isascii;
198: PetscFunctionBegin;
201: if (!viewer) PetscCall(PetscViewerASCIIGetStdout(PetscObjectComm((PetscObject)fem), &viewer));
202: PetscCall(PetscObjectPrintClassNamePrefixType((PetscObject)fem, viewer));
203: PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &isascii));
204: PetscTryTypeMethod(fem, view, viewer);
205: PetscFunctionReturn(PETSC_SUCCESS);
206: }
208: /*@
209: PetscFESetFromOptions - sets parameters in a `PetscFE` from the options database
211: Collective
213: Input Parameter:
214: . fem - the `PetscFE` object to set options for
216: Options Database Keys:
217: + -petscfe_num_blocks - the number of cell blocks to integrate concurrently
218: - -petscfe_num_batches - the number of cell batches to integrate serially
220: Level: intermediate
222: .seealso: `PetscFE`, `PetscFEView()`
223: @*/
224: PetscErrorCode PetscFESetFromOptions(PetscFE fem)
225: {
226: const char *defaultType;
227: char name[256];
228: PetscBool flg;
230: PetscFunctionBegin;
232: if (!((PetscObject)fem)->type_name) {
233: defaultType = PETSCFEBASIC;
234: } else {
235: defaultType = ((PetscObject)fem)->type_name;
236: }
237: if (!PetscFERegisterAllCalled) PetscCall(PetscFERegisterAll());
239: PetscObjectOptionsBegin((PetscObject)fem);
240: PetscCall(PetscOptionsFList("-petscfe_type", "Finite element space", "PetscFESetType", PetscFEList, defaultType, name, 256, &flg));
241: if (flg) {
242: PetscCall(PetscFESetType(fem, name));
243: } else if (!((PetscObject)fem)->type_name) {
244: PetscCall(PetscFESetType(fem, defaultType));
245: }
246: PetscCall(PetscOptionsBoundedInt("-petscfe_num_blocks", "The number of cell blocks to integrate concurrently", "PetscSpaceSetTileSizes", fem->numBlocks, &fem->numBlocks, NULL, 1));
247: PetscCall(PetscOptionsBoundedInt("-petscfe_num_batches", "The number of cell batches to integrate serially", "PetscSpaceSetTileSizes", fem->numBatches, &fem->numBatches, NULL, 1));
248: PetscTryTypeMethod(fem, setfromoptions, PetscOptionsObject);
249: /* process any options handlers added with PetscObjectAddOptionsHandler() */
250: PetscCall(PetscObjectProcessOptionsHandlers((PetscObject)fem, PetscOptionsObject));
251: PetscOptionsEnd();
252: PetscCall(PetscFEViewFromOptions(fem, NULL, "-petscfe_view"));
253: PetscFunctionReturn(PETSC_SUCCESS);
254: }
256: /*@
257: PetscFESetUp - Construct data structures for the `PetscFE` after the `PetscFEType` has been set
259: Collective
261: Input Parameter:
262: . fem - the `PetscFE` object to setup
264: Level: intermediate
266: .seealso: `PetscFE`, `PetscFEView()`, `PetscFEDestroy()`
267: @*/
268: PetscErrorCode PetscFESetUp(PetscFE fem)
269: {
270: PetscFunctionBegin;
272: if (fem->setupcalled) PetscFunctionReturn(PETSC_SUCCESS);
273: PetscCall(PetscLogEventBegin(PETSCFE_SetUp, fem, 0, 0, 0));
274: fem->setupcalled = PETSC_TRUE;
275: PetscTryTypeMethod(fem, setup);
276: PetscCall(PetscLogEventEnd(PETSCFE_SetUp, fem, 0, 0, 0));
277: PetscFunctionReturn(PETSC_SUCCESS);
278: }
280: /*@
281: PetscFEDestroy - Destroys a `PetscFE` object
283: Collective
285: Input Parameter:
286: . fem - the `PetscFE` object to destroy
288: Level: beginner
290: .seealso: `PetscFE`, `PetscFEView()`
291: @*/
292: PetscErrorCode PetscFEDestroy(PetscFE *fem)
293: {
294: PetscFunctionBegin;
295: if (!*fem) PetscFunctionReturn(PETSC_SUCCESS);
298: if (--((PetscObject)*fem)->refct > 0) {
299: *fem = NULL;
300: PetscFunctionReturn(PETSC_SUCCESS);
301: }
302: ((PetscObject)*fem)->refct = 0;
304: if ((*fem)->subspaces) {
305: PetscInt dim, d;
307: PetscCall(PetscDualSpaceGetDimension((*fem)->dualSpace, &dim));
308: for (d = 0; d < dim; ++d) PetscCall(PetscFEDestroy(&(*fem)->subspaces[d]));
309: }
310: PetscCall(PetscFree((*fem)->subspaces));
311: PetscCall(PetscFree((*fem)->invV));
312: PetscCall(PetscTabulationDestroy(&(*fem)->T));
313: PetscCall(PetscTabulationDestroy(&(*fem)->Tf));
314: PetscCall(PetscTabulationDestroy(&(*fem)->Tc));
315: PetscCall(PetscSpaceDestroy(&(*fem)->basisSpace));
316: PetscCall(PetscDualSpaceDestroy(&(*fem)->dualSpace));
317: PetscCall(PetscQuadratureDestroy(&(*fem)->quadrature));
318: PetscCall(PetscQuadratureDestroy(&(*fem)->faceQuadrature));
319: #ifdef PETSC_HAVE_LIBCEED
320: PetscCallCEED(CeedBasisDestroy(&(*fem)->ceedBasis));
321: PetscCallCEED(CeedDestroy(&(*fem)->ceed));
322: #endif
324: PetscTryTypeMethod(*fem, destroy);
325: PetscCall(PetscHeaderDestroy(fem));
326: PetscFunctionReturn(PETSC_SUCCESS);
327: }
329: /*@
330: PetscFECreate - Creates an empty `PetscFE` object. The type can then be set with `PetscFESetType()`.
332: Collective
334: Input Parameter:
335: . comm - The communicator for the `PetscFE` object
337: Output Parameter:
338: . fem - The `PetscFE` object
340: Level: beginner
342: .seealso: `PetscFE`, `PetscFEType`, `PetscFESetType()`, `PetscFECreateDefault()`, `PETSCFEGALERKIN`
343: @*/
344: PetscErrorCode PetscFECreate(MPI_Comm comm, PetscFE *fem)
345: {
346: PetscFE f;
348: PetscFunctionBegin;
349: PetscAssertPointer(fem, 2);
350: PetscCall(PetscCitationsRegister(FECitation, &FEcite));
351: PetscCall(PetscFEInitializePackage());
353: PetscCall(PetscHeaderCreate(f, PETSCFE_CLASSID, "PetscFE", "Finite Element", "PetscFE", comm, PetscFEDestroy, PetscFEView));
355: f->basisSpace = NULL;
356: f->dualSpace = NULL;
357: f->numComponents = 1;
358: f->subspaces = NULL;
359: f->invV = NULL;
360: f->T = NULL;
361: f->Tf = NULL;
362: f->Tc = NULL;
363: PetscCall(PetscArrayzero(&f->quadrature, 1));
364: PetscCall(PetscArrayzero(&f->faceQuadrature, 1));
365: f->blockSize = 0;
366: f->numBlocks = 1;
367: f->batchSize = 0;
368: f->numBatches = 1;
370: *fem = f;
371: PetscFunctionReturn(PETSC_SUCCESS);
372: }
374: /*@
375: PetscFEGetSpatialDimension - Returns the spatial dimension of the element
377: Not Collective
379: Input Parameter:
380: . fem - The `PetscFE` object
382: Output Parameter:
383: . dim - The spatial dimension
385: Level: intermediate
387: .seealso: `PetscFE`, `PetscFECreate()`
388: @*/
389: PetscErrorCode PetscFEGetSpatialDimension(PetscFE fem, PetscInt *dim)
390: {
391: DM dm;
393: PetscFunctionBegin;
395: PetscAssertPointer(dim, 2);
396: PetscCall(PetscDualSpaceGetDM(fem->dualSpace, &dm));
397: PetscCall(DMGetDimension(dm, dim));
398: PetscFunctionReturn(PETSC_SUCCESS);
399: }
401: /*@
402: PetscFESetNumComponents - Sets the number of field components in the element
404: Not Collective
406: Input Parameters:
407: + fem - The `PetscFE` object
408: - comp - The number of field components
410: Level: intermediate
412: .seealso: `PetscFE`, `PetscFECreate()`, `PetscFEGetSpatialDimension()`, `PetscFEGetNumComponents()`
413: @*/
414: PetscErrorCode PetscFESetNumComponents(PetscFE fem, PetscInt comp)
415: {
416: PetscFunctionBegin;
418: fem->numComponents = comp;
419: PetscFunctionReturn(PETSC_SUCCESS);
420: }
422: /*@
423: PetscFEGetNumComponents - Returns the number of components in the element
425: Not Collective
427: Input Parameter:
428: . fem - The `PetscFE` object
430: Output Parameter:
431: . comp - The number of field components
433: Level: intermediate
435: .seealso: `PetscFE`, `PetscFECreate()`, `PetscFEGetSpatialDimension()`
436: @*/
437: PetscErrorCode PetscFEGetNumComponents(PetscFE fem, PetscInt *comp)
438: {
439: PetscFunctionBegin;
441: PetscAssertPointer(comp, 2);
442: *comp = fem->numComponents;
443: PetscFunctionReturn(PETSC_SUCCESS);
444: }
446: /*@
447: PetscFESetTileSizes - Sets the tile sizes for evaluation
449: Not Collective
451: Input Parameters:
452: + fem - The `PetscFE` object
453: . blockSize - The number of elements in a block
454: . numBlocks - The number of blocks in a batch
455: . batchSize - The number of elements in a batch
456: - numBatches - The number of batches in a chunk
458: Level: intermediate
460: .seealso: `PetscFE`, `PetscFECreate()`, `PetscFEGetTileSizes()`
461: @*/
462: PetscErrorCode PetscFESetTileSizes(PetscFE fem, PetscInt blockSize, PetscInt numBlocks, PetscInt batchSize, PetscInt numBatches)
463: {
464: PetscFunctionBegin;
466: fem->blockSize = blockSize;
467: fem->numBlocks = numBlocks;
468: fem->batchSize = batchSize;
469: fem->numBatches = numBatches;
470: PetscFunctionReturn(PETSC_SUCCESS);
471: }
473: /*@
474: PetscFEGetTileSizes - Returns the tile sizes for evaluation
476: Not Collective
478: Input Parameter:
479: . fem - The `PetscFE` object
481: Output Parameters:
482: + blockSize - The number of elements in a block, pass `NULL` if not needed
483: . numBlocks - The number of blocks in a batch, pass `NULL` if not needed
484: . batchSize - The number of elements in a batch, pass `NULL` if not needed
485: - numBatches - The number of batches in a chunk, pass `NULL` if not needed
487: Level: intermediate
489: .seealso: `PetscFE`, `PetscFECreate()`, `PetscFESetTileSizes()`
490: @*/
491: PetscErrorCode PetscFEGetTileSizes(PetscFE fem, PeOp PetscInt *blockSize, PeOp PetscInt *numBlocks, PeOp PetscInt *batchSize, PeOp PetscInt *numBatches)
492: {
493: PetscFunctionBegin;
495: if (blockSize) PetscAssertPointer(blockSize, 2);
496: if (numBlocks) PetscAssertPointer(numBlocks, 3);
497: if (batchSize) PetscAssertPointer(batchSize, 4);
498: if (numBatches) PetscAssertPointer(numBatches, 5);
499: if (blockSize) *blockSize = fem->blockSize;
500: if (numBlocks) *numBlocks = fem->numBlocks;
501: if (batchSize) *batchSize = fem->batchSize;
502: if (numBatches) *numBatches = fem->numBatches;
503: PetscFunctionReturn(PETSC_SUCCESS);
504: }
506: /*@
507: PetscFEGetBasisSpace - Returns the `PetscSpace` used for the approximation of the solution for the `PetscFE`
509: Not Collective
511: Input Parameter:
512: . fem - The `PetscFE` object
514: Output Parameter:
515: . sp - The `PetscSpace` object
517: Level: intermediate
519: .seealso: `PetscFE`, `PetscSpace`, `PetscFECreate()`
520: @*/
521: PetscErrorCode PetscFEGetBasisSpace(PetscFE fem, PetscSpace *sp)
522: {
523: PetscFunctionBegin;
525: PetscAssertPointer(sp, 2);
526: *sp = fem->basisSpace;
527: PetscFunctionReturn(PETSC_SUCCESS);
528: }
530: /*@
531: PetscFESetBasisSpace - Sets the `PetscSpace` used for the approximation of the solution
533: Not Collective
535: Input Parameters:
536: + fem - The `PetscFE` object
537: - sp - The `PetscSpace` object
539: Level: intermediate
541: Developer Notes:
542: There is `PetscFESetBasisSpace()` but the `PetscFESetDualSpace()`, likely the Basis is unneeded in the function name
544: .seealso: `PetscFE`, `PetscSpace`, `PetscDualSpace`, `PetscFECreate()`, `PetscFESetDualSpace()`
545: @*/
546: PetscErrorCode PetscFESetBasisSpace(PetscFE fem, PetscSpace sp)
547: {
548: PetscFunctionBegin;
551: PetscCall(PetscSpaceDestroy(&fem->basisSpace));
552: fem->basisSpace = sp;
553: PetscCall(PetscObjectReference((PetscObject)fem->basisSpace));
554: PetscFunctionReturn(PETSC_SUCCESS);
555: }
557: /*@
558: PetscFEGetDualSpace - Returns the `PetscDualSpace` used to define the inner product for a `PetscFE`
560: Not Collective
562: Input Parameter:
563: . fem - The `PetscFE` object
565: Output Parameter:
566: . sp - The `PetscDualSpace` object
568: Level: intermediate
570: .seealso: `PetscFE`, `PetscSpace`, `PetscDualSpace`, `PetscFECreate()`
571: @*/
572: PetscErrorCode PetscFEGetDualSpace(PetscFE fem, PetscDualSpace *sp)
573: {
574: PetscFunctionBegin;
576: PetscAssertPointer(sp, 2);
577: *sp = fem->dualSpace;
578: PetscFunctionReturn(PETSC_SUCCESS);
579: }
581: /*@
582: PetscFESetDualSpace - Sets the `PetscDualSpace` used to define the inner product
584: Not Collective
586: Input Parameters:
587: + fem - The `PetscFE` object
588: - sp - The `PetscDualSpace` object
590: Level: intermediate
592: .seealso: `PetscFE`, `PetscSpace`, `PetscDualSpace`, `PetscFECreate()`, `PetscFESetBasisSpace()`
593: @*/
594: PetscErrorCode PetscFESetDualSpace(PetscFE fem, PetscDualSpace sp)
595: {
596: PetscFunctionBegin;
599: PetscCall(PetscDualSpaceDestroy(&fem->dualSpace));
600: fem->dualSpace = sp;
601: PetscCall(PetscObjectReference((PetscObject)fem->dualSpace));
602: PetscFunctionReturn(PETSC_SUCCESS);
603: }
605: /*@
606: PetscFEGetQuadrature - Returns the `PetscQuadrature` used to calculate inner products
608: Not Collective
610: Input Parameter:
611: . fem - The `PetscFE` object
613: Output Parameter:
614: . q - The `PetscQuadrature` object
616: Level: intermediate
618: .seealso: `PetscFE`, `PetscSpace`, `PetscDualSpace`, `PetscQuadrature`, `PetscFECreate()`
619: @*/
620: PetscErrorCode PetscFEGetQuadrature(PetscFE fem, PetscQuadrature *q)
621: {
622: PetscFunctionBegin;
624: PetscAssertPointer(q, 2);
625: *q = fem->quadrature;
626: PetscFunctionReturn(PETSC_SUCCESS);
627: }
629: /*@
630: PetscFESetQuadrature - Sets the `PetscQuadrature` used to calculate inner products
632: Not Collective
634: Input Parameters:
635: + fem - The `PetscFE` object
636: - q - The `PetscQuadrature` object
638: Level: intermediate
640: .seealso: `PetscFE`, `PetscSpace`, `PetscDualSpace`, `PetscQuadrature`, `PetscFECreate()`, `PetscFEGetFaceQuadrature()`
641: @*/
642: PetscErrorCode PetscFESetQuadrature(PetscFE fem, PetscQuadrature q)
643: {
644: PetscInt Nc, qNc;
646: PetscFunctionBegin;
648: if (q == fem->quadrature) PetscFunctionReturn(PETSC_SUCCESS);
649: PetscCall(PetscFEGetNumComponents(fem, &Nc));
650: PetscCall(PetscQuadratureGetNumComponents(q, &qNc));
651: PetscCheck(!(qNc != 1) || !(Nc != qNc), PetscObjectComm((PetscObject)fem), PETSC_ERR_ARG_SIZ, "FE components %" PetscInt_FMT " != Quadrature components %" PetscInt_FMT " and non-scalar quadrature", Nc, qNc);
652: PetscCall(PetscTabulationDestroy(&fem->T));
653: PetscCall(PetscTabulationDestroy(&fem->Tc));
654: PetscCall(PetscObjectReference((PetscObject)q));
655: PetscCall(PetscQuadratureDestroy(&fem->quadrature));
656: fem->quadrature = q;
657: PetscFunctionReturn(PETSC_SUCCESS);
658: }
660: /*@
661: PetscFEGetFaceQuadrature - Returns the `PetscQuadrature` used to calculate inner products on faces
663: Not Collective
665: Input Parameter:
666: . fem - The `PetscFE` object
668: Output Parameter:
669: . q - The `PetscQuadrature` object
671: Level: intermediate
673: Developer Notes:
674: There is a special face quadrature but not edge, likely this API would benefit from a refactorization
676: .seealso: `PetscFE`, `PetscSpace`, `PetscDualSpace`, `PetscQuadrature`, `PetscFECreate()`, `PetscFESetQuadrature()`, `PetscFESetFaceQuadrature()`
677: @*/
678: PetscErrorCode PetscFEGetFaceQuadrature(PetscFE fem, PetscQuadrature *q)
679: {
680: PetscFunctionBegin;
682: PetscAssertPointer(q, 2);
683: *q = fem->faceQuadrature;
684: PetscFunctionReturn(PETSC_SUCCESS);
685: }
687: /*@
688: PetscFESetFaceQuadrature - Sets the `PetscQuadrature` used to calculate inner products on faces
690: Not Collective
692: Input Parameters:
693: + fem - The `PetscFE` object
694: - q - The `PetscQuadrature` object
696: Level: intermediate
698: .seealso: `PetscFE`, `PetscSpace`, `PetscDualSpace`, `PetscQuadrature`, `PetscFECreate()`, `PetscFESetQuadrature()`
699: @*/
700: PetscErrorCode PetscFESetFaceQuadrature(PetscFE fem, PetscQuadrature q)
701: {
702: PetscInt Nc, qNc;
704: PetscFunctionBegin;
706: if (q == fem->faceQuadrature) PetscFunctionReturn(PETSC_SUCCESS);
707: PetscCall(PetscFEGetNumComponents(fem, &Nc));
708: PetscCall(PetscQuadratureGetNumComponents(q, &qNc));
709: PetscCheck(!(qNc != 1) || !(Nc != qNc), PetscObjectComm((PetscObject)fem), PETSC_ERR_ARG_SIZ, "FE components %" PetscInt_FMT " != Quadrature components %" PetscInt_FMT " and non-scalar quadrature", Nc, qNc);
710: PetscCall(PetscTabulationDestroy(&fem->Tf));
711: PetscCall(PetscObjectReference((PetscObject)q));
712: PetscCall(PetscQuadratureDestroy(&fem->faceQuadrature));
713: fem->faceQuadrature = q;
714: PetscFunctionReturn(PETSC_SUCCESS);
715: }
717: /*@
718: PetscFECopyQuadrature - Copy both volumetric and surface quadrature to a new `PetscFE`
720: Not Collective
722: Input Parameters:
723: + sfe - The `PetscFE` source for the quadratures
724: - tfe - The `PetscFE` target for the quadratures
726: Level: intermediate
728: .seealso: `PetscFE`, `PetscSpace`, `PetscDualSpace`, `PetscQuadrature`, `PetscFECreate()`, `PetscFESetQuadrature()`, `PetscFESetFaceQuadrature()`
729: @*/
730: PetscErrorCode PetscFECopyQuadrature(PetscFE sfe, PetscFE tfe)
731: {
732: PetscQuadrature q;
734: PetscFunctionBegin;
737: PetscCall(PetscFEGetQuadrature(sfe, &q));
738: PetscCall(PetscFESetQuadrature(tfe, q));
739: PetscCall(PetscFEGetFaceQuadrature(sfe, &q));
740: PetscCall(PetscFESetFaceQuadrature(tfe, q));
741: PetscFunctionReturn(PETSC_SUCCESS);
742: }
744: /*@C
745: PetscFEGetNumDof - Returns the number of dofs (dual basis vectors) associated to mesh points on the reference cell of a given dimension
747: Not Collective
749: Input Parameter:
750: . fem - The `PetscFE` object
752: Output Parameter:
753: . numDof - Array of length `dim` with the number of dofs in each dimension
755: Level: intermediate
757: .seealso: `PetscFE`, `PetscSpace`, `PetscDualSpace`, `PetscFECreate()`
758: @*/
759: PetscErrorCode PetscFEGetNumDof(PetscFE fem, const PetscInt *numDof[])
760: {
761: PetscFunctionBegin;
763: PetscAssertPointer(numDof, 2);
764: PetscCall(PetscDualSpaceGetNumDof(fem->dualSpace, numDof));
765: PetscFunctionReturn(PETSC_SUCCESS);
766: }
768: /*@C
769: PetscFEGetCellTabulation - Returns the tabulation of the basis functions at the quadrature points on the reference cell
771: Not Collective
773: Input Parameters:
774: + fem - The `PetscFE` object
775: - k - The highest derivative we need to tabulate, very often 1
777: Output Parameter:
778: . T - The basis function values and derivatives at quadrature points
780: Level: intermediate
782: Note:
783: .vb
784: T->T[0] = B[(p*pdim + i)*Nc + c] is the value at point p for basis function i and component c
785: T->T[1] = D[((p*pdim + i)*Nc + c)*dim + d] is the derivative value at point p for basis function i, component c, in direction d
786: T->T[2] = H[(((p*pdim + i)*Nc + c)*dim + d)*dim + e] is the value at point p for basis function i, component c, in directions d and e
787: .ve
789: .seealso: `PetscFE`, `PetscSpace`, `PetscDualSpace`, `PetscTabulation`, `PetscFECreateTabulation()`, `PetscTabulationDestroy()`
790: @*/
791: PetscErrorCode PetscFEGetCellTabulation(PetscFE fem, PetscInt k, PetscTabulation *T)
792: {
793: PetscInt npoints;
794: const PetscReal *points;
796: PetscFunctionBegin;
798: PetscAssertPointer(T, 3);
799: PetscCall(PetscQuadratureGetData(fem->quadrature, NULL, NULL, &npoints, &points, NULL));
800: if (!fem->T) PetscCall(PetscFECreateTabulation(fem, 1, npoints, points, k, &fem->T));
801: PetscCheck(!fem->T || k <= fem->T->K || (!fem->T->cdim && !fem->T->K), PetscObjectComm((PetscObject)fem), PETSC_ERR_ARG_OUTOFRANGE, "Requested %" PetscInt_FMT " derivatives, but only tabulated %" PetscInt_FMT, k, fem->T->K);
802: *T = fem->T;
803: PetscFunctionReturn(PETSC_SUCCESS);
804: }
806: PetscErrorCode PetscFEExpandFaceQuadrature(PetscFE fe, PetscQuadrature fq, PetscQuadrature *efq)
807: {
808: DM dm;
809: PetscDualSpace sp;
810: const PetscInt *faces;
811: const PetscReal *points, *weights;
812: DMPolytopeType ct;
813: PetscReal *facePoints, *faceWeights;
814: PetscInt dim, cStart, Nf, Nc, Np, order;
816: PetscFunctionBegin;
817: PetscCall(PetscFEGetDualSpace(fe, &sp));
818: PetscCall(PetscDualSpaceGetDM(sp, &dm));
819: PetscCall(DMGetDimension(dm, &dim));
820: PetscCall(DMPlexGetHeightStratum(dm, 0, &cStart, NULL));
821: PetscCall(DMPlexGetConeSize(dm, cStart, &Nf));
822: PetscCall(DMPlexGetCone(dm, cStart, &faces));
823: PetscCall(PetscQuadratureGetData(fq, NULL, &Nc, &Np, &points, &weights));
824: PetscCall(PetscMalloc1(Nf * Np * dim, &facePoints));
825: PetscCall(PetscMalloc1(Nf * Np * Nc, &faceWeights));
826: for (PetscInt f = 0; f < Nf; ++f) {
827: const PetscReal xi0[3] = {-1., -1., -1.};
828: PetscReal v0[3], J[9], detJ;
830: PetscCall(DMPlexComputeCellGeometryFEM(dm, faces[f], NULL, v0, J, NULL, &detJ));
831: for (PetscInt q = 0; q < Np; ++q) {
832: CoordinatesRefToReal(dim, dim - 1, xi0, v0, J, &points[q * (dim - 1)], &facePoints[(f * Np + q) * dim]);
833: for (PetscInt c = 0; c < Nc; ++c) faceWeights[(f * Np + q) * Nc + c] = weights[q * Nc + c];
834: }
835: }
836: PetscCall(PetscQuadratureCreate(PetscObjectComm((PetscObject)fq), efq));
837: PetscCall(PetscQuadratureGetCellType(fq, &ct));
838: PetscCall(PetscQuadratureSetCellType(*efq, ct));
839: PetscCall(PetscQuadratureGetOrder(fq, &order));
840: PetscCall(PetscQuadratureSetOrder(*efq, order));
841: PetscCall(PetscQuadratureSetData(*efq, dim, Nc, Nf * Np, facePoints, faceWeights));
842: PetscFunctionReturn(PETSC_SUCCESS);
843: }
845: /*@C
846: PetscFEGetFaceTabulation - Returns the tabulation of the basis functions at the face quadrature points for each face of the reference cell
848: Not Collective
850: Input Parameters:
851: + fem - The `PetscFE` object
852: - k - The highest derivative we need to tabulate, very often 1
854: Output Parameter:
855: . Tf - The basis function values and derivatives at face quadrature points
857: Level: intermediate
859: Note:
860: .vb
861: T->T[0] = Bf[((f*Nq + q)*pdim + i)*Nc + c] is the value at point f,q for basis function i and component c
862: T->T[1] = Df[(((f*Nq + q)*pdim + i)*Nc + c)*dim + d] is the derivative value at point f,q for basis function i, component c, in direction d
863: T->T[2] = Hf[((((f*Nq + q)*pdim + i)*Nc + c)*dim + d)*dim + e] is the value at point f,q for basis function i, component c, in directions d and e
864: .ve
866: .seealso: `PetscFE`, `PetscSpace`, `PetscDualSpace`, `PetscTabulation`, `PetscFEGetCellTabulation()`, `PetscFECreateTabulation()`, `PetscTabulationDestroy()`
867: @*/
868: PetscErrorCode PetscFEGetFaceTabulation(PetscFE fem, PetscInt k, PetscTabulation *Tf)
869: {
870: PetscFunctionBegin;
872: PetscAssertPointer(Tf, 3);
873: if (!fem->Tf) {
874: PetscQuadrature fq;
876: PetscCall(PetscFEGetFaceQuadrature(fem, &fq));
877: if (fq) {
878: PetscQuadrature efq;
879: const PetscReal *facePoints;
880: PetscInt Np, eNp;
882: PetscCall(PetscFEExpandFaceQuadrature(fem, fq, &efq));
883: PetscCall(PetscQuadratureGetData(fq, NULL, NULL, &Np, NULL, NULL));
884: PetscCall(PetscQuadratureGetData(efq, NULL, NULL, &eNp, &facePoints, NULL));
885: if (PetscDefined(USE_DEBUG)) {
886: PetscDualSpace sp;
887: DM dm;
888: PetscInt cStart, Nf;
890: PetscCall(PetscFEGetDualSpace(fem, &sp));
891: PetscCall(PetscDualSpaceGetDM(sp, &dm));
892: PetscCall(DMPlexGetHeightStratum(dm, 0, &cStart, NULL));
893: PetscCall(DMPlexGetConeSize(dm, cStart, &Nf));
894: PetscCheck(Nf == eNp / Np, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Number of faces %" PetscInt_FMT " != %" PetscInt_FMT " number of quadrature replicas", Nf, eNp / Np);
895: }
896: PetscCall(PetscFECreateTabulation(fem, eNp / Np, Np, facePoints, k, &fem->Tf));
897: PetscCall(PetscQuadratureDestroy(&efq));
898: }
899: }
900: PetscCheck(!fem->Tf || k <= fem->Tf->K, PetscObjectComm((PetscObject)fem), PETSC_ERR_ARG_OUTOFRANGE, "Requested %" PetscInt_FMT " derivatives, but only tabulated %" PetscInt_FMT, k, fem->Tf->K);
901: *Tf = fem->Tf;
902: PetscFunctionReturn(PETSC_SUCCESS);
903: }
905: /*@C
906: PetscFEGetFaceCentroidTabulation - Returns the tabulation of the basis functions at the face centroid points
908: Not Collective
910: Input Parameter:
911: . fem - The `PetscFE` object
913: Output Parameter:
914: . Tc - The basis function values at face centroid points
916: Level: intermediate
918: Note:
919: .vb
920: T->T[0] = Bf[(f*pdim + i)*Nc + c] is the value at point f for basis function i and component c
921: .ve
923: .seealso: `PetscFE`, `PetscSpace`, `PetscDualSpace`, `PetscTabulation`, `PetscFEGetFaceTabulation()`, `PetscFEGetCellTabulation()`, `PetscFECreateTabulation()`, `PetscTabulationDestroy()`
924: @*/
925: PetscErrorCode PetscFEGetFaceCentroidTabulation(PetscFE fem, PetscTabulation *Tc)
926: {
927: PetscFunctionBegin;
929: PetscAssertPointer(Tc, 2);
930: if (!fem->Tc) {
931: PetscDualSpace sp;
932: DM dm;
933: const PetscInt *cone;
934: PetscReal *centroids;
935: PetscInt dim, numFaces, f;
937: PetscCall(PetscFEGetDualSpace(fem, &sp));
938: PetscCall(PetscDualSpaceGetDM(sp, &dm));
939: PetscCall(DMGetDimension(dm, &dim));
940: PetscCall(DMPlexGetConeSize(dm, 0, &numFaces));
941: PetscCall(DMPlexGetCone(dm, 0, &cone));
942: PetscCall(PetscMalloc1(numFaces * dim, ¢roids));
943: for (f = 0; f < numFaces; ++f) PetscCall(DMPlexComputeCellGeometryFVM(dm, cone[f], NULL, ¢roids[f * dim], NULL));
944: PetscCall(PetscFECreateTabulation(fem, 1, numFaces, centroids, 0, &fem->Tc));
945: PetscCall(PetscFree(centroids));
946: }
947: *Tc = fem->Tc;
948: PetscFunctionReturn(PETSC_SUCCESS);
949: }
951: /*@C
952: PetscFECreateTabulation - Tabulates the basis functions, and perhaps derivatives, at the points provided.
954: Not Collective
956: Input Parameters:
957: + fem - The `PetscFE` object
958: . nrepl - The number of replicas
959: . npoints - The number of tabulation points in a replica
960: . points - The tabulation point coordinates
961: - K - The number of derivatives calculated
963: Output Parameter:
964: . T - The basis function values and derivatives at tabulation points
966: Level: intermediate
968: Note:
969: .vb
970: T->T[0] = B[(p*pdim + i)*Nc + c] is the value at point p for basis function i and component c
971: T->T[1] = D[((p*pdim + i)*Nc + c)*dim + d] is the derivative value at point p for basis function i, component c, in direction d
972: T->T[2] = H[(((p*pdim + i)*Nc + c)*dim + d)*dim + e] is the value at point p for basis
973: T->function i, component c, in directions d and e
974: .ve
976: .seealso: `PetscTabulation`, `PetscFEGetCellTabulation()`, `PetscTabulationDestroy()`
977: @*/
978: PetscErrorCode PetscFECreateTabulation(PetscFE fem, PetscInt nrepl, PetscInt npoints, const PetscReal points[], PetscInt K, PetscTabulation *T)
979: {
980: DM dm;
981: PetscDualSpace Q;
982: PetscInt Nb; /* Dimension of FE space P */
983: PetscInt Nc; /* Field components */
984: PetscInt cdim; /* Reference coordinate dimension */
985: PetscInt k;
987: PetscFunctionBegin;
988: if (!npoints || !fem->dualSpace || K < 0) {
989: *T = NULL;
990: PetscFunctionReturn(PETSC_SUCCESS);
991: }
993: PetscAssertPointer(points, 4);
994: PetscAssertPointer(T, 6);
995: PetscCall(PetscFEGetDualSpace(fem, &Q));
996: PetscCall(PetscDualSpaceGetDM(Q, &dm));
997: PetscCall(DMGetDimension(dm, &cdim));
998: PetscCall(PetscDualSpaceGetDimension(Q, &Nb));
999: PetscCall(PetscFEGetNumComponents(fem, &Nc));
1000: PetscCall(PetscMalloc1(1, T));
1001: (*T)->K = !cdim ? 0 : K;
1002: (*T)->Nr = nrepl;
1003: (*T)->Np = npoints;
1004: (*T)->Nb = Nb;
1005: (*T)->Nc = Nc;
1006: (*T)->cdim = cdim;
1007: PetscCall(PetscMalloc1((*T)->K + 1, &(*T)->T));
1008: for (k = 0; k <= (*T)->K; ++k) PetscCall(PetscCalloc1(nrepl * npoints * Nb * Nc * PetscPowInt(cdim, k), &(*T)->T[k]));
1009: PetscUseTypeMethod(fem, computetabulation, nrepl * npoints, points, K, *T);
1010: PetscFunctionReturn(PETSC_SUCCESS);
1011: }
1013: /*@C
1014: PetscFEComputeTabulation - Tabulates the basis functions, and perhaps derivatives, at the points provided.
1016: Not Collective
1018: Input Parameters:
1019: + fem - The `PetscFE` object
1020: . npoints - The number of tabulation points
1021: . points - The tabulation point coordinates
1022: . K - The number of derivatives calculated
1023: - T - An existing tabulation object with enough allocated space
1025: Output Parameter:
1026: . T - The basis function values and derivatives at tabulation points
1028: Level: intermediate
1030: Note:
1031: .vb
1032: T->T[0] = B[(p*pdim + i)*Nc + c] is the value at point p for basis function i and component c
1033: T->T[1] = D[((p*pdim + i)*Nc + c)*dim + d] is the derivative value at point p for basis function i, component c, in direction d
1034: T->T[2] = H[(((p*pdim + i)*Nc + c)*dim + d)*dim + e] is the value at point p for basis function i, component c, in directions d and e
1035: .ve
1037: .seealso: `PetscTabulation`, `PetscFEGetCellTabulation()`, `PetscTabulationDestroy()`
1038: @*/
1039: PetscErrorCode PetscFEComputeTabulation(PetscFE fem, PetscInt npoints, const PetscReal points[], PetscInt K, PetscTabulation T)
1040: {
1041: PetscFunctionBeginHot;
1042: if (!npoints || !fem->dualSpace || K < 0) PetscFunctionReturn(PETSC_SUCCESS);
1044: PetscAssertPointer(points, 3);
1045: PetscAssertPointer(T, 5);
1046: if (PetscDefined(USE_DEBUG)) {
1047: DM dm;
1048: PetscDualSpace Q;
1049: PetscInt Nb; /* Dimension of FE space P */
1050: PetscInt Nc; /* Field components */
1051: PetscInt cdim; /* Reference coordinate dimension */
1053: PetscCall(PetscFEGetDualSpace(fem, &Q));
1054: PetscCall(PetscDualSpaceGetDM(Q, &dm));
1055: PetscCall(DMGetDimension(dm, &cdim));
1056: PetscCall(PetscDualSpaceGetDimension(Q, &Nb));
1057: PetscCall(PetscFEGetNumComponents(fem, &Nc));
1058: PetscCheck(T->K == (!cdim ? 0 : K), PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Tabulation K %" PetscInt_FMT " must match requested K %" PetscInt_FMT, T->K, !cdim ? 0 : K);
1059: PetscCheck(T->Nb == Nb, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Tabulation Nb %" PetscInt_FMT " must match requested Nb %" PetscInt_FMT, T->Nb, Nb);
1060: PetscCheck(T->Nc == Nc, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Tabulation Nc %" PetscInt_FMT " must match requested Nc %" PetscInt_FMT, T->Nc, Nc);
1061: PetscCheck(T->cdim == cdim, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Tabulation cdim %" PetscInt_FMT " must match requested cdim %" PetscInt_FMT, T->cdim, cdim);
1062: }
1063: T->Nr = 1;
1064: T->Np = npoints;
1065: PetscUseTypeMethod(fem, computetabulation, npoints, points, K, T);
1066: PetscFunctionReturn(PETSC_SUCCESS);
1067: }
1069: /*@
1070: PetscTabulationDestroy - Frees memory from the associated tabulation.
1072: Not Collective
1074: Input Parameter:
1075: . T - The tabulation
1077: Level: intermediate
1079: .seealso: `PetscTabulation`, `PetscFECreateTabulation()`, `PetscFEGetCellTabulation()`
1080: @*/
1081: PetscErrorCode PetscTabulationDestroy(PetscTabulation *T)
1082: {
1083: PetscInt k;
1085: PetscFunctionBegin;
1086: PetscAssertPointer(T, 1);
1087: if (!T || !*T) PetscFunctionReturn(PETSC_SUCCESS);
1088: for (k = 0; k <= (*T)->K; ++k) PetscCall(PetscFree((*T)->T[k]));
1089: PetscCall(PetscFree((*T)->T));
1090: PetscCall(PetscFree(*T));
1091: *T = NULL;
1092: PetscFunctionReturn(PETSC_SUCCESS);
1093: }
1095: static PetscErrorCode PetscFECreatePointTraceDefault_Internal(PetscFE fe, PetscInt refPoint, PetscFE *trFE)
1096: {
1097: PetscSpace bsp, bsubsp;
1098: PetscDualSpace dsp, dsubsp;
1099: PetscInt dim, depth, numComp, i, j, coneSize, order;
1100: DM dm;
1101: DMLabel label;
1102: PetscReal *xi, *v, *J, detJ;
1103: const char *name;
1104: PetscQuadrature origin, fullQuad, subQuad;
1106: PetscFunctionBegin;
1107: PetscCall(PetscFEGetBasisSpace(fe, &bsp));
1108: PetscCall(PetscFEGetDualSpace(fe, &dsp));
1109: PetscCall(PetscDualSpaceGetDM(dsp, &dm));
1110: PetscCall(DMGetDimension(dm, &dim));
1111: PetscCall(DMPlexGetDepthLabel(dm, &label));
1112: PetscCall(DMLabelGetValue(label, refPoint, &depth));
1113: PetscCall(PetscCalloc1(depth, &xi));
1114: PetscCall(PetscMalloc1(dim, &v));
1115: PetscCall(PetscMalloc1(dim * dim, &J));
1116: for (i = 0; i < depth; i++) xi[i] = 0.;
1117: PetscCall(PetscQuadratureCreate(PETSC_COMM_SELF, &origin));
1118: PetscCall(PetscQuadratureSetData(origin, depth, 0, 1, xi, NULL));
1119: PetscCall(DMPlexComputeCellGeometryFEM(dm, refPoint, origin, v, J, NULL, &detJ));
1120: /* CellGeometryFEM computes the expanded Jacobian, we want the true jacobian */
1121: for (i = 1; i < dim; i++) {
1122: for (j = 0; j < depth; j++) J[i * depth + j] = J[i * dim + j];
1123: }
1124: PetscCall(PetscQuadratureDestroy(&origin));
1125: PetscCall(PetscDualSpaceGetPointSubspace(dsp, refPoint, &dsubsp));
1126: PetscCall(PetscSpaceCreateSubspace(bsp, dsubsp, v, J, NULL, NULL, PETSC_OWN_POINTER, &bsubsp));
1127: PetscCall(PetscSpaceSetUp(bsubsp));
1128: PetscCall(PetscFECreate(PetscObjectComm((PetscObject)fe), trFE));
1129: PetscCall(PetscFESetType(*trFE, PETSCFEBASIC));
1130: PetscCall(PetscFEGetNumComponents(fe, &numComp));
1131: PetscCall(PetscFESetNumComponents(*trFE, numComp));
1132: PetscCall(PetscFESetBasisSpace(*trFE, bsubsp));
1133: PetscCall(PetscFESetDualSpace(*trFE, dsubsp));
1134: PetscCall(PetscObjectGetName((PetscObject)fe, &name));
1135: if (name) PetscCall(PetscFESetName(*trFE, name));
1136: PetscCall(PetscFEGetQuadrature(fe, &fullQuad));
1137: PetscCall(PetscQuadratureGetOrder(fullQuad, &order));
1138: PetscCall(DMPlexGetConeSize(dm, refPoint, &coneSize));
1139: if (coneSize == 2 * depth) PetscCall(PetscDTGaussTensorQuadrature(depth, 1, (order + 2) / 2, -1., 1., &subQuad));
1140: else PetscCall(PetscDTSimplexQuadrature(depth, order, PETSCDTSIMPLEXQUAD_DEFAULT, &subQuad));
1141: PetscCall(PetscFESetQuadrature(*trFE, subQuad));
1142: PetscCall(PetscFESetUp(*trFE));
1143: PetscCall(PetscQuadratureDestroy(&subQuad));
1144: PetscCall(PetscSpaceDestroy(&bsubsp));
1145: PetscFunctionReturn(PETSC_SUCCESS);
1146: }
1148: PETSC_EXTERN PetscErrorCode PetscFECreatePointTrace(PetscFE fe, PetscInt refPoint, PetscFE *trFE)
1149: {
1150: PetscFunctionBegin;
1152: PetscAssertPointer(trFE, 3);
1153: if (fe->ops->createpointtrace) PetscUseTypeMethod(fe, createpointtrace, refPoint, trFE);
1154: else PetscCall(PetscFECreatePointTraceDefault_Internal(fe, refPoint, trFE));
1155: PetscFunctionReturn(PETSC_SUCCESS);
1156: }
1158: PetscErrorCode PetscFECreateHeightTrace(PetscFE fe, PetscInt height, PetscFE *trFE)
1159: {
1160: PetscInt hStart, hEnd;
1161: PetscDualSpace dsp;
1162: DM dm;
1164: PetscFunctionBegin;
1166: PetscAssertPointer(trFE, 3);
1167: *trFE = NULL;
1168: PetscCall(PetscFEGetDualSpace(fe, &dsp));
1169: PetscCall(PetscDualSpaceGetDM(dsp, &dm));
1170: PetscCall(DMPlexGetHeightStratum(dm, height, &hStart, &hEnd));
1171: if (hEnd <= hStart) PetscFunctionReturn(PETSC_SUCCESS);
1172: PetscCall(PetscFECreatePointTrace(fe, hStart, trFE));
1173: PetscFunctionReturn(PETSC_SUCCESS);
1174: }
1176: /*@
1177: PetscFEGetDimension - Get the dimension of the finite element space on a cell
1179: Not Collective
1181: Input Parameter:
1182: . fem - The `PetscFE`
1184: Output Parameter:
1185: . dim - The dimension
1187: Level: intermediate
1189: .seealso: `PetscFE`, `PetscFECreate()`, `PetscSpaceGetDimension()`, `PetscDualSpaceGetDimension()`
1190: @*/
1191: PetscErrorCode PetscFEGetDimension(PetscFE fem, PetscInt *dim)
1192: {
1193: PetscFunctionBegin;
1195: PetscAssertPointer(dim, 2);
1196: PetscTryTypeMethod(fem, getdimension, dim);
1197: PetscFunctionReturn(PETSC_SUCCESS);
1198: }
1200: /*@
1201: PetscFEPushforward - Map the reference element function to real space
1203: Input Parameters:
1204: + fe - The `PetscFE`
1205: . fegeom - The cell geometry
1206: . Nv - The number of function values
1207: - vals - The function values
1209: Output Parameter:
1210: . vals - The transformed function values
1212: Level: advanced
1214: Notes:
1215: This just forwards the call onto `PetscDualSpacePushforward()`.
1217: It only handles transformations when the embedding dimension of the geometry in fegeom is the same as the reference dimension.
1219: .seealso: `PetscFE`, `PetscFEGeom`, `PetscDualSpace`, `PetscDualSpacePushforward()`
1220: @*/
1221: PetscErrorCode PetscFEPushforward(PetscFE fe, PetscFEGeom *fegeom, PetscInt Nv, PetscScalar vals[])
1222: {
1223: PetscFunctionBeginHot;
1224: PetscCall(PetscDualSpacePushforward(fe->dualSpace, fegeom, Nv, fe->numComponents, vals));
1225: PetscFunctionReturn(PETSC_SUCCESS);
1226: }
1228: /*@
1229: PetscFEPushforwardGradient - Map the reference element function gradient to real space
1231: Input Parameters:
1232: + fe - The `PetscFE`
1233: . fegeom - The cell geometry
1234: . Nv - The number of function gradient values
1235: - vals - The function gradient values
1237: Output Parameter:
1238: . vals - The transformed function gradient values
1240: Level: advanced
1242: Notes:
1243: This just forwards the call onto `PetscDualSpacePushforwardGradient()`.
1245: It only handles transformations when the embedding dimension of the geometry in fegeom is the same as the reference dimension.
1247: .seealso: `PetscFE`, `PetscFEGeom`, `PetscDualSpace`, `PetscFEPushforward()`, `PetscDualSpacePushforwardGradient()`, `PetscDualSpacePushforward()`
1248: @*/
1249: PetscErrorCode PetscFEPushforwardGradient(PetscFE fe, PetscFEGeom *fegeom, PetscInt Nv, PetscScalar vals[])
1250: {
1251: PetscFunctionBeginHot;
1252: PetscCall(PetscDualSpacePushforwardGradient(fe->dualSpace, fegeom, Nv, fe->numComponents, vals));
1253: PetscFunctionReturn(PETSC_SUCCESS);
1254: }
1256: /*@
1257: PetscFEPushforwardHessian - Map the reference element function Hessian to real space
1259: Input Parameters:
1260: + fe - The `PetscFE`
1261: . fegeom - The cell geometry
1262: . Nv - The number of function Hessian values
1263: - vals - The function Hessian values
1265: Output Parameter:
1266: . vals - The transformed function Hessian values
1268: Level: advanced
1270: Notes:
1271: This just forwards the call onto `PetscDualSpacePushforwardHessian()`.
1273: It only handles transformations when the embedding dimension of the geometry in fegeom is the same as the reference dimension.
1275: Developer Notes:
1276: It is unclear why all these one line convenience routines are desirable
1278: .seealso: `PetscFE`, `PetscFEGeom`, `PetscDualSpace`, `PetscFEPushforward()`, `PetscDualSpacePushforwardHessian()`, `PetscDualSpacePushforward()`
1279: @*/
1280: PetscErrorCode PetscFEPushforwardHessian(PetscFE fe, PetscFEGeom *fegeom, PetscInt Nv, PetscScalar vals[])
1281: {
1282: PetscFunctionBeginHot;
1283: PetscCall(PetscDualSpacePushforwardHessian(fe->dualSpace, fegeom, Nv, fe->numComponents, vals));
1284: PetscFunctionReturn(PETSC_SUCCESS);
1285: }
1287: /*
1288: Purpose: Compute element vector for chunk of elements
1290: Input:
1291: Sizes:
1292: Ne: number of elements
1293: Nf: number of fields
1294: PetscFE
1295: dim: spatial dimension
1296: Nb: number of basis functions
1297: Nc: number of field components
1298: PetscQuadrature
1299: Nq: number of quadrature points
1301: Geometry:
1302: PetscFEGeom[Ne] possibly *Nq
1303: PetscReal v0s[dim]
1304: PetscReal n[dim]
1305: PetscReal jacobians[dim*dim]
1306: PetscReal jacobianInverses[dim*dim]
1307: PetscReal jacobianDeterminants
1308: FEM:
1309: PetscFE
1310: PetscQuadrature
1311: PetscReal quadPoints[Nq*dim]
1312: PetscReal quadWeights[Nq]
1313: PetscReal basis[Nq*Nb*Nc]
1314: PetscReal basisDer[Nq*Nb*Nc*dim]
1315: PetscScalar coefficients[Ne*Nb*Nc]
1316: PetscScalar elemVec[Ne*Nb*Nc]
1318: Problem:
1319: PetscInt f: the active field
1320: f0, f1
1322: Work Space:
1323: PetscFE
1324: PetscScalar f0[Nq*dim];
1325: PetscScalar f1[Nq*dim*dim];
1326: PetscScalar u[Nc];
1327: PetscScalar gradU[Nc*dim];
1328: PetscReal x[dim];
1329: PetscScalar realSpaceDer[dim];
1331: Purpose: Compute element vector for N_cb batches of elements
1333: Input:
1334: Sizes:
1335: N_cb: Number of serial cell batches
1337: Geometry:
1338: PetscReal v0s[Ne*dim]
1339: PetscReal jacobians[Ne*dim*dim] possibly *Nq
1340: PetscReal jacobianInverses[Ne*dim*dim] possibly *Nq
1341: PetscReal jacobianDeterminants[Ne] possibly *Nq
1342: FEM:
1343: static PetscReal quadPoints[Nq*dim]
1344: static PetscReal quadWeights[Nq]
1345: static PetscReal basis[Nq*Nb*Nc]
1346: static PetscReal basisDer[Nq*Nb*Nc*dim]
1347: PetscScalar coefficients[Ne*Nb*Nc]
1348: PetscScalar elemVec[Ne*Nb*Nc]
1350: ex62.c:
1351: PetscErrorCode PetscFEIntegrateResidualBatch(PetscInt Ne, PetscInt numFields, PetscInt field, PetscQuadrature quad[], const PetscScalar coefficients[],
1352: const PetscReal v0s[], const PetscReal jacobians[], const PetscReal jacobianInverses[], const PetscReal jacobianDeterminants[],
1353: void (*f0_func)(const PetscScalar u[], const PetscScalar gradU[], const PetscReal x[], PetscScalar f0[]),
1354: void (*f1_func)(const PetscScalar u[], const PetscScalar gradU[], const PetscReal x[], PetscScalar f1[]), PetscScalar elemVec[])
1356: ex52.c:
1357: PetscErrorCode IntegrateLaplacianBatchCPU(PetscInt Ne, PetscInt Nb, const PetscScalar coefficients[], const PetscReal jacobianInverses[], const PetscReal jacobianDeterminants[], PetscInt Nq, const PetscReal quadPoints[], const PetscReal quadWeights[], const PetscReal basisTabulation[], const PetscReal basisDerTabulation[], PetscScalar elemVec[], AppCtx *user)
1358: PetscErrorCode IntegrateElasticityBatchCPU(PetscInt Ne, PetscInt Nb, PetscInt Ncomp, const PetscScalar coefficients[], const PetscReal jacobianInverses[], const PetscReal jacobianDeterminants[], PetscInt Nq, const PetscReal quadPoints[], const PetscReal quadWeights[], const PetscReal basisTabulation[], const PetscReal basisDerTabulation[], PetscScalar elemVec[], AppCtx *user)
1360: ex52_integrateElement.cu
1361: __global__ void integrateElementQuadrature(int N_cb, realType *coefficients, realType *jacobianInverses, realType *jacobianDeterminants, realType *elemVec)
1363: PETSC_EXTERN PetscErrorCode IntegrateElementBatchGPU(PetscInt spatial_dim, PetscInt Ne, PetscInt Ncb, PetscInt Nbc, PetscInt Nbl, const PetscScalar coefficients[],
1364: const PetscReal jacobianInverses[], const PetscReal jacobianDeterminants[], PetscScalar elemVec[],
1365: PetscLogEvent event, PetscInt debug, PetscInt pde_op)
1367: ex52_integrateElementOpenCL.c:
1368: PETSC_EXTERN PetscErrorCode IntegrateElementBatchGPU(PetscInt spatial_dim, PetscInt Ne, PetscInt Ncb, PetscInt Nbc, PetscInt N_bl, const PetscScalar coefficients[],
1369: const PetscReal jacobianInverses[], const PetscReal jacobianDeterminants[], PetscScalar elemVec[],
1370: PetscLogEvent event, PetscInt debug, PetscInt pde_op)
1372: __kernel void integrateElementQuadrature(int N_cb, __global float *coefficients, __global float *jacobianInverses, __global float *jacobianDeterminants, __global float *elemVec)
1373: */
1375: /*@
1376: PetscFEIntegrate - Produce the integral for the given field for a chunk of elements by quadrature integration
1378: Not Collective
1380: Input Parameters:
1381: + prob - The `PetscDS` specifying the discretizations and continuum functions
1382: . field - The field being integrated
1383: . Ne - The number of elements in the chunk
1384: . cgeom - The cell geometry for each cell in the chunk
1385: . coefficients - The array of FEM basis coefficients for the elements
1386: . probAux - The `PetscDS` specifying the auxiliary discretizations
1387: - coefficientsAux - The array of FEM auxiliary basis coefficients for the elements
1389: Output Parameter:
1390: . integral - the integral for this field
1392: Level: intermediate
1394: Developer Notes:
1395: The function name begins with `PetscFE` and yet the first argument is `PetscDS` and it has no `PetscFE` arguments.
1397: .seealso: `PetscFE`, `PetscDS`, `PetscFEIntegrateResidual()`, `PetscFEIntegrateBd()`
1398: @*/
1399: PetscErrorCode PetscFEIntegrate(PetscDS prob, PetscInt field, PetscInt Ne, PetscFEGeom *cgeom, const PetscScalar coefficients[], PetscDS probAux, const PetscScalar coefficientsAux[], PetscScalar integral[])
1400: {
1401: PetscFE fe;
1403: PetscFunctionBegin;
1405: PetscCall(PetscDSGetDiscretization(prob, field, (PetscObject *)&fe));
1406: if (fe->ops->integrate) PetscCall((*fe->ops->integrate)(prob, field, Ne, cgeom, coefficients, probAux, coefficientsAux, integral));
1407: PetscFunctionReturn(PETSC_SUCCESS);
1408: }
1410: /*@C
1411: PetscFEIntegrateBd - Produce the integral for the given field for a chunk of elements by quadrature integration
1413: Not Collective
1415: Input Parameters:
1416: + prob - The `PetscDS` specifying the discretizations and continuum functions
1417: . field - The field being integrated
1418: . obj_func - The function to be integrated
1419: . Ne - The number of elements in the chunk
1420: . geom - The face geometry for each face in the chunk
1421: . coefficients - The array of FEM basis coefficients for the elements
1422: . probAux - The `PetscDS` specifying the auxiliary discretizations
1423: - coefficientsAux - The array of FEM auxiliary basis coefficients for the elements
1425: Output Parameter:
1426: . integral - the integral for this field
1428: Level: intermediate
1430: Developer Notes:
1431: The function name begins with `PetscFE` and yet the first argument is `PetscDS` and it has no `PetscFE` arguments.
1433: .seealso: `PetscFE`, `PetscDS`, `PetscFEIntegrateResidual()`, `PetscFEIntegrate()`
1434: @*/
1435: PetscErrorCode PetscFEIntegrateBd(PetscDS prob, PetscInt field, void (*obj_func)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, const PetscReal[], const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]), PetscInt Ne, PetscFEGeom *geom, const PetscScalar coefficients[], PetscDS probAux, const PetscScalar coefficientsAux[], PetscScalar integral[])
1436: {
1437: PetscFE fe;
1439: PetscFunctionBegin;
1441: PetscCall(PetscDSGetDiscretization(prob, field, (PetscObject *)&fe));
1442: if (fe->ops->integratebd) PetscCall((*fe->ops->integratebd)(prob, field, obj_func, Ne, geom, coefficients, probAux, coefficientsAux, integral));
1443: PetscFunctionReturn(PETSC_SUCCESS);
1444: }
1446: /*@
1447: PetscFEIntegrateResidual - Produce the element residual vector for a chunk of elements by quadrature integration
1449: Not Collective
1451: Input Parameters:
1452: + ds - The `PetscDS` specifying the discretizations and continuum functions
1453: . key - The (label+value, field) being integrated
1454: . Ne - The number of elements in the chunk
1455: . cgeom - The cell geometry for each cell in the chunk
1456: . coefficients - The array of FEM basis coefficients for the elements
1457: . coefficients_t - The array of FEM basis time derivative coefficients for the elements
1458: . probAux - The `PetscDS` specifying the auxiliary discretizations
1459: . coefficientsAux - The array of FEM auxiliary basis coefficients for the elements
1460: - t - The time
1462: Output Parameter:
1463: . elemVec - the element residual vectors from each element
1465: Level: intermediate
1467: Note:
1468: .vb
1469: Loop over batch of elements (e):
1470: Loop over quadrature points (q):
1471: Make u_q and gradU_q (loops over fields,Nb,Ncomp) and x_q
1472: Call f_0 and f_1
1473: Loop over element vector entries (f,fc --> i):
1474: elemVec[i] += \psi^{fc}_f(q) f0_{fc}(u, \nabla u) + \nabla\psi^{fc}_f(q) \cdot f1_{fc,df}(u, \nabla u)
1475: .ve
1477: .seealso: `PetscFEIntegrateBdResidual()`
1478: @*/
1479: PetscErrorCode PetscFEIntegrateResidual(PetscDS ds, PetscFormKey key, PetscInt Ne, PetscFEGeom *cgeom, const PetscScalar coefficients[], const PetscScalar coefficients_t[], PetscDS probAux, const PetscScalar coefficientsAux[], PetscReal t, PetscScalar elemVec[])
1480: {
1481: PetscFE fe;
1483: PetscFunctionBeginHot;
1485: PetscCall(PetscDSGetDiscretization(ds, key.field, (PetscObject *)&fe));
1486: if (fe->ops->integrateresidual) PetscCall((*fe->ops->integrateresidual)(ds, key, Ne, cgeom, coefficients, coefficients_t, probAux, coefficientsAux, t, elemVec));
1487: PetscFunctionReturn(PETSC_SUCCESS);
1488: }
1490: /*@
1491: PetscFEIntegrateBdResidual - Produce the element residual vector for a chunk of elements by quadrature integration over a boundary
1493: Not Collective
1495: Input Parameters:
1496: + ds - The `PetscDS` specifying the discretizations and continuum functions
1497: . wf - The PetscWeakForm object holding the pointwise functions
1498: . key - The (label+value, field) being integrated
1499: . Ne - The number of elements in the chunk
1500: . fgeom - The face geometry for each cell in the chunk
1501: . coefficients - The array of FEM basis coefficients for the elements
1502: . coefficients_t - The array of FEM basis time derivative coefficients for the elements
1503: . probAux - The `PetscDS` specifying the auxiliary discretizations
1504: . coefficientsAux - The array of FEM auxiliary basis coefficients for the elements
1505: - t - The time
1507: Output Parameter:
1508: . elemVec - the element residual vectors from each element
1510: Level: intermediate
1512: .seealso: `PetscFEIntegrateResidual()`
1513: @*/
1514: PetscErrorCode PetscFEIntegrateBdResidual(PetscDS ds, PetscWeakForm wf, PetscFormKey key, PetscInt Ne, PetscFEGeom *fgeom, const PetscScalar coefficients[], const PetscScalar coefficients_t[], PetscDS probAux, const PetscScalar coefficientsAux[], PetscReal t, PetscScalar elemVec[])
1515: {
1516: PetscFE fe;
1518: PetscFunctionBegin;
1520: PetscCall(PetscDSGetDiscretization(ds, key.field, (PetscObject *)&fe));
1521: if (fe->ops->integratebdresidual) PetscCall((*fe->ops->integratebdresidual)(ds, wf, key, Ne, fgeom, coefficients, coefficients_t, probAux, coefficientsAux, t, elemVec));
1522: PetscFunctionReturn(PETSC_SUCCESS);
1523: }
1525: /*@
1526: PetscFEIntegrateHybridResidual - Produce the element residual vector for a chunk of hybrid element faces by quadrature integration
1528: Not Collective
1530: Input Parameters:
1531: + ds - The `PetscDS` specifying the discretizations and continuum functions
1532: . dsIn - The `PetscDS` specifying the discretizations and continuum functions for input
1533: . key - The (label+value, field) being integrated
1534: . s - The side of the cell being integrated, 0 for negative and 1 for positive
1535: . Ne - The number of elements in the chunk
1536: . fgeom - The face geometry for each cell in the chunk
1537: . cgeom - The cell geometry for each neighbor cell in the chunk
1538: . coefficients - The array of FEM basis coefficients for the elements
1539: . coefficients_t - The array of FEM basis time derivative coefficients for the elements
1540: . probAux - The `PetscDS` specifying the auxiliary discretizations
1541: . coefficientsAux - The array of FEM auxiliary basis coefficients for the elements
1542: - t - The time
1544: Output Parameter:
1545: . elemVec - the element residual vectors from each element
1547: Level: developer
1549: .seealso: `PetscFEIntegrateResidual()`
1550: @*/
1551: PetscErrorCode PetscFEIntegrateHybridResidual(PetscDS ds, PetscDS dsIn, PetscFormKey key, PetscInt s, PetscInt Ne, PetscFEGeom *fgeom, PetscFEGeom *cgeom, const PetscScalar coefficients[], const PetscScalar coefficients_t[], PetscDS probAux, const PetscScalar coefficientsAux[], PetscReal t, PetscScalar elemVec[])
1552: {
1553: PetscFE fe;
1555: PetscFunctionBegin;
1558: PetscCall(PetscDSGetDiscretization(ds, key.field, (PetscObject *)&fe));
1559: if (fe->ops->integratehybridresidual) PetscCall((*fe->ops->integratehybridresidual)(ds, dsIn, key, s, Ne, fgeom, cgeom, coefficients, coefficients_t, probAux, coefficientsAux, t, elemVec));
1560: PetscFunctionReturn(PETSC_SUCCESS);
1561: }
1563: /*@
1564: PetscFEIntegrateJacobian - Produce the element Jacobian for a chunk of elements by quadrature integration
1566: Not Collective
1568: Input Parameters:
1569: + rds - The `PetscDS` specifying the row discretizations and continuum functions
1570: . cds - The `PetscDS` specifying the column discretizations
1571: . jtype - The type of matrix pointwise functions that should be used
1572: . key - The (label+value, fieldI*Nf + fieldJ) being integrated
1573: . Ne - The number of elements in the chunk
1574: . cgeom - The cell geometry for each cell in the chunk
1575: . coefficients - The array of FEM basis coefficients for the elements for the Jacobian evaluation point
1576: . coefficients_t - The array of FEM basis time derivative coefficients for the elements
1577: . dsAux - The `PetscDS` specifying the auxiliary discretizations
1578: . coefficientsAux - The array of FEM auxiliary basis coefficients for the elements
1579: . t - The time
1580: - u_tshift - A multiplier for the dF/du_t term (as opposed to the dF/du term)
1582: Output Parameter:
1583: . elemMat - the element matrices for the Jacobian from each element
1585: Level: intermediate
1587: Note:
1588: .vb
1589: Loop over batch of elements (e):
1590: Loop over element matrix entries (f,fc,g,gc --> i,j):
1591: Loop over quadrature points (q):
1592: Make u_q and gradU_q (loops over fields,Nb,Ncomp)
1593: elemMat[i,j] += \psi^{fc}_f(q) g0_{fc,gc}(u, \nabla u) \phi^{gc}_g(q)
1594: + \psi^{fc}_f(q) \cdot g1_{fc,gc,dg}(u, \nabla u) \nabla\phi^{gc}_g(q)
1595: + \nabla\psi^{fc}_f(q) \cdot g2_{fc,gc,df}(u, \nabla u) \phi^{gc}_g(q)
1596: + \nabla\psi^{fc}_f(q) \cdot g3_{fc,gc,df,dg}(u, \nabla u) \nabla\phi^{gc}_g(q)
1597: .ve
1599: .seealso: `PetscFEIntegrateResidual()`
1600: @*/
1601: PetscErrorCode PetscFEIntegrateJacobian(PetscDS rds, PetscDS cds, PetscFEJacobianType jtype, PetscFormKey key, PetscInt Ne, PetscFEGeom *cgeom, const PetscScalar coefficients[], const PetscScalar coefficients_t[], PetscDS dsAux, const PetscScalar coefficientsAux[], PetscReal t, PetscReal u_tshift, PetscScalar elemMat[])
1602: {
1603: PetscFE fe;
1604: PetscInt Nf;
1606: PetscFunctionBegin;
1609: PetscCall(PetscDSGetNumFields(rds, &Nf));
1610: PetscCall(PetscDSGetDiscretization(rds, key.field / Nf, (PetscObject *)&fe));
1611: if (fe->ops->integratejacobian) PetscCall((*fe->ops->integratejacobian)(rds, cds, jtype, key, Ne, cgeom, coefficients, coefficients_t, dsAux, coefficientsAux, t, u_tshift, elemMat));
1612: PetscFunctionReturn(PETSC_SUCCESS);
1613: }
1615: /*@
1616: PetscFEIntegrateBdJacobian - Produce the boundary element Jacobian for a chunk of elements by quadrature integration
1618: Not Collective
1620: Input Parameters:
1621: + ds - The `PetscDS` specifying the discretizations and continuum functions
1622: . wf - The PetscWeakForm holding the pointwise functions
1623: . jtype - The type of matrix pointwise functions that should be used
1624: . key - The (label+value, fieldI*Nf + fieldJ) being integrated
1625: . Ne - The number of elements in the chunk
1626: . fgeom - The face geometry for each cell in the chunk
1627: . coefficients - The array of FEM basis coefficients for the elements for the Jacobian evaluation point
1628: . coefficients_t - The array of FEM basis time derivative coefficients for the elements
1629: . probAux - The `PetscDS` specifying the auxiliary discretizations
1630: . coefficientsAux - The array of FEM auxiliary basis coefficients for the elements
1631: . t - The time
1632: - u_tshift - A multiplier for the dF/du_t term (as opposed to the dF/du term)
1634: Output Parameter:
1635: . elemMat - the element matrices for the Jacobian from each element
1637: Level: intermediate
1639: Note:
1640: .vb
1641: Loop over batch of elements (e):
1642: Loop over element matrix entries (f,fc,g,gc --> i,j):
1643: Loop over quadrature points (q):
1644: Make u_q and gradU_q (loops over fields,Nb,Ncomp)
1645: elemMat[i,j] += \psi^{fc}_f(q) g0_{fc,gc}(u, \nabla u) \phi^{gc}_g(q)
1646: + \psi^{fc}_f(q) \cdot g1_{fc,gc,dg}(u, \nabla u) \nabla\phi^{gc}_g(q)
1647: + \nabla\psi^{fc}_f(q) \cdot g2_{fc,gc,df}(u, \nabla u) \phi^{gc}_g(q)
1648: + \nabla\psi^{fc}_f(q) \cdot g3_{fc,gc,df,dg}(u, \nabla u) \nabla\phi^{gc}_g(q)
1649: .ve
1651: .seealso: `PetscFEIntegrateJacobian()`, `PetscFEIntegrateResidual()`
1652: @*/
1653: PetscErrorCode PetscFEIntegrateBdJacobian(PetscDS ds, PetscWeakForm wf, PetscFEJacobianType jtype, PetscFormKey key, PetscInt Ne, PetscFEGeom *fgeom, const PetscScalar coefficients[], const PetscScalar coefficients_t[], PetscDS probAux, const PetscScalar coefficientsAux[], PetscReal t, PetscReal u_tshift, PetscScalar elemMat[])
1654: {
1655: PetscFE fe;
1656: PetscInt Nf;
1658: PetscFunctionBegin;
1660: PetscCall(PetscDSGetNumFields(ds, &Nf));
1661: PetscCall(PetscDSGetDiscretization(ds, key.field / Nf, (PetscObject *)&fe));
1662: if (fe->ops->integratebdjacobian) PetscCall((*fe->ops->integratebdjacobian)(ds, wf, jtype, key, Ne, fgeom, coefficients, coefficients_t, probAux, coefficientsAux, t, u_tshift, elemMat));
1663: PetscFunctionReturn(PETSC_SUCCESS);
1664: }
1666: /*@
1667: PetscFEIntegrateHybridJacobian - Produce the boundary element Jacobian for a chunk of hybrid elements by quadrature integration
1669: Not Collective
1671: Input Parameters:
1672: + ds - The `PetscDS` specifying the discretizations and continuum functions for the output
1673: . dsIn - The `PetscDS` specifying the discretizations and continuum functions for the input
1674: . jtype - The type of matrix pointwise functions that should be used
1675: . key - The (label+value, fieldI*Nf + fieldJ) being integrated
1676: . s - The side of the cell being integrated, 0 for negative and 1 for positive
1677: . Ne - The number of elements in the chunk
1678: . fgeom - The face geometry for each cell in the chunk
1679: . cgeom - The cell geometry for each neighbor cell in the chunk
1680: . coefficients - The array of FEM basis coefficients for the elements for the Jacobian evaluation point
1681: . coefficients_t - The array of FEM basis time derivative coefficients for the elements
1682: . probAux - The `PetscDS` specifying the auxiliary discretizations
1683: . coefficientsAux - The array of FEM auxiliary basis coefficients for the elements
1684: . t - The time
1685: - u_tshift - A multiplier for the dF/du_t term (as opposed to the dF/du term)
1687: Output Parameter:
1688: . elemMat - the element matrices for the Jacobian from each element
1690: Level: developer
1692: Note:
1693: .vb
1694: Loop over batch of elements (e):
1695: Loop over element matrix entries (f,fc,g,gc --> i,j):
1696: Loop over quadrature points (q):
1697: Make u_q and gradU_q (loops over fields,Nb,Ncomp)
1698: elemMat[i,j] += \psi^{fc}_f(q) g0_{fc,gc}(u, \nabla u) \phi^{gc}_g(q)
1699: + \psi^{fc}_f(q) \cdot g1_{fc,gc,dg}(u, \nabla u) \nabla\phi^{gc}_g(q)
1700: + \nabla\psi^{fc}_f(q) \cdot g2_{fc,gc,df}(u, \nabla u) \phi^{gc}_g(q)
1701: + \nabla\psi^{fc}_f(q) \cdot g3_{fc,gc,df,dg}(u, \nabla u) \nabla\phi^{gc}_g(q)
1702: .ve
1704: .seealso: `PetscFEIntegrateJacobian()`, `PetscFEIntegrateResidual()`
1705: @*/
1706: PetscErrorCode PetscFEIntegrateHybridJacobian(PetscDS ds, PetscDS dsIn, PetscFEJacobianType jtype, PetscFormKey key, PetscInt s, PetscInt Ne, PetscFEGeom *fgeom, PetscFEGeom *cgeom, const PetscScalar coefficients[], const PetscScalar coefficients_t[], PetscDS probAux, const PetscScalar coefficientsAux[], PetscReal t, PetscReal u_tshift, PetscScalar elemMat[])
1707: {
1708: PetscFE fe;
1709: PetscInt Nf;
1711: PetscFunctionBegin;
1713: PetscCall(PetscDSGetNumFields(ds, &Nf));
1714: PetscCall(PetscDSGetDiscretization(ds, key.field / Nf, (PetscObject *)&fe));
1715: if (fe->ops->integratehybridjacobian) PetscCall((*fe->ops->integratehybridjacobian)(ds, dsIn, jtype, key, s, Ne, fgeom, cgeom, coefficients, coefficients_t, probAux, coefficientsAux, t, u_tshift, elemMat));
1716: PetscFunctionReturn(PETSC_SUCCESS);
1717: }
1719: /*@
1720: PetscFEGetHeightSubspace - Get the subspace of this space for a mesh point of a given height
1722: Input Parameters:
1723: + fe - The finite element space
1724: - height - The height of the `DMPLEX` point
1726: Output Parameter:
1727: . subfe - The subspace of this `PetscFE` space
1729: Level: advanced
1731: Note:
1732: For example, if we want the subspace of this space for a face, we would choose height = 1.
1734: .seealso: `PetscFECreateDefault()`
1735: @*/
1736: PetscErrorCode PetscFEGetHeightSubspace(PetscFE fe, PetscInt height, PetscFE *subfe)
1737: {
1738: PetscSpace P, subP;
1739: PetscDualSpace Q, subQ;
1740: PetscQuadrature subq;
1741: PetscInt dim, Nc;
1743: PetscFunctionBegin;
1745: PetscAssertPointer(subfe, 3);
1746: if (height == 0) {
1747: *subfe = fe;
1748: PetscFunctionReturn(PETSC_SUCCESS);
1749: }
1750: PetscCall(PetscFEGetBasisSpace(fe, &P));
1751: PetscCall(PetscFEGetDualSpace(fe, &Q));
1752: PetscCall(PetscFEGetNumComponents(fe, &Nc));
1753: PetscCall(PetscFEGetFaceQuadrature(fe, &subq));
1754: PetscCall(PetscDualSpaceGetDimension(Q, &dim));
1755: PetscCheck(height <= dim && height >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Asked for space at height %" PetscInt_FMT " for dimension %" PetscInt_FMT " space", height, dim);
1756: if (!fe->subspaces) PetscCall(PetscCalloc1(dim, &fe->subspaces));
1757: if (height <= dim) {
1758: if (!fe->subspaces[height - 1]) {
1759: PetscFE sub = NULL;
1760: const char *name;
1762: PetscCall(PetscSpaceGetHeightSubspace(P, height, &subP));
1763: PetscCall(PetscDualSpaceGetHeightSubspace(Q, height, &subQ));
1764: if (subQ) {
1765: PetscCall(PetscObjectReference((PetscObject)subP));
1766: PetscCall(PetscObjectReference((PetscObject)subQ));
1767: PetscCall(PetscObjectReference((PetscObject)subq));
1768: PetscCall(PetscFECreateFromSpaces(subP, subQ, subq, NULL, &sub));
1769: }
1770: if (sub) {
1771: PetscCall(PetscObjectGetName((PetscObject)fe, &name));
1772: if (name) PetscCall(PetscFESetName(sub, name));
1773: }
1774: fe->subspaces[height - 1] = sub;
1775: }
1776: *subfe = fe->subspaces[height - 1];
1777: } else {
1778: *subfe = NULL;
1779: }
1780: PetscFunctionReturn(PETSC_SUCCESS);
1781: }
1783: /*@
1784: PetscFERefine - Create a "refined" `PetscFE` object that refines the reference cell into
1785: smaller copies.
1787: Collective
1789: Input Parameter:
1790: . fe - The initial `PetscFE`
1792: Output Parameter:
1793: . feRef - The refined `PetscFE`
1795: Level: advanced
1797: Notes:
1798: This is typically used to generate a preconditioner for a higher order method from a lower order method on a
1799: refined mesh having the same number of dofs (but more sparsity). It is also used to create an
1800: interpolation between regularly refined meshes.
1802: .seealso: `PetscFEType`, `PetscFECreate()`, `PetscFESetType()`
1803: @*/
1804: PetscErrorCode PetscFERefine(PetscFE fe, PetscFE *feRef)
1805: {
1806: PetscSpace P, Pref;
1807: PetscDualSpace Q, Qref;
1808: DM K, Kref;
1809: PetscQuadrature q, qref;
1810: const PetscReal *v0, *jac;
1811: PetscInt numComp, numSubelements;
1812: PetscInt cStart, cEnd, c;
1813: PetscDualSpace *cellSpaces;
1815: PetscFunctionBegin;
1816: PetscCall(PetscFEGetBasisSpace(fe, &P));
1817: PetscCall(PetscFEGetDualSpace(fe, &Q));
1818: PetscCall(PetscFEGetQuadrature(fe, &q));
1819: PetscCall(PetscDualSpaceGetDM(Q, &K));
1820: /* Create space */
1821: PetscCall(PetscObjectReference((PetscObject)P));
1822: Pref = P;
1823: /* Create dual space */
1824: PetscCall(PetscDualSpaceDuplicate(Q, &Qref));
1825: PetscCall(PetscDualSpaceSetType(Qref, PETSCDUALSPACEREFINED));
1826: PetscCall(DMRefine(K, PetscObjectComm((PetscObject)fe), &Kref));
1827: PetscCall(DMGetCoordinatesLocalSetUp(Kref));
1828: PetscCall(PetscDualSpaceSetDM(Qref, Kref));
1829: PetscCall(DMPlexGetHeightStratum(Kref, 0, &cStart, &cEnd));
1830: PetscCall(PetscMalloc1(cEnd - cStart, &cellSpaces));
1831: /* TODO: fix for non-uniform refinement */
1832: for (c = 0; c < cEnd - cStart; c++) cellSpaces[c] = Q;
1833: PetscCall(PetscDualSpaceRefinedSetCellSpaces(Qref, cellSpaces));
1834: PetscCall(PetscFree(cellSpaces));
1835: PetscCall(DMDestroy(&Kref));
1836: PetscCall(PetscDualSpaceSetUp(Qref));
1837: /* Create element */
1838: PetscCall(PetscFECreate(PetscObjectComm((PetscObject)fe), feRef));
1839: PetscCall(PetscFESetType(*feRef, PETSCFECOMPOSITE));
1840: PetscCall(PetscFESetBasisSpace(*feRef, Pref));
1841: PetscCall(PetscFESetDualSpace(*feRef, Qref));
1842: PetscCall(PetscFEGetNumComponents(fe, &numComp));
1843: PetscCall(PetscFESetNumComponents(*feRef, numComp));
1844: PetscCall(PetscFESetUp(*feRef));
1845: PetscCall(PetscSpaceDestroy(&Pref));
1846: PetscCall(PetscDualSpaceDestroy(&Qref));
1847: /* Create quadrature */
1848: PetscCall(PetscFECompositeGetMapping(*feRef, &numSubelements, &v0, &jac, NULL));
1849: PetscCall(PetscQuadratureExpandComposite(q, numSubelements, v0, jac, &qref));
1850: PetscCall(PetscFESetQuadrature(*feRef, qref));
1851: PetscCall(PetscQuadratureDestroy(&qref));
1852: PetscFunctionReturn(PETSC_SUCCESS);
1853: }
1855: static PetscErrorCode PetscFESetDefaultName_Private(PetscFE fe)
1856: {
1857: PetscSpace P;
1858: PetscDualSpace Q;
1859: DM K;
1860: DMPolytopeType ct;
1861: PetscInt degree;
1862: char name[64];
1864: PetscFunctionBegin;
1865: PetscCall(PetscFEGetBasisSpace(fe, &P));
1866: PetscCall(PetscSpaceGetDegree(P, °ree, NULL));
1867: PetscCall(PetscFEGetDualSpace(fe, &Q));
1868: PetscCall(PetscDualSpaceGetDM(Q, &K));
1869: PetscCall(DMPlexGetCellType(K, 0, &ct));
1870: switch (ct) {
1871: case DM_POLYTOPE_SEGMENT:
1872: case DM_POLYTOPE_POINT_PRISM_TENSOR:
1873: case DM_POLYTOPE_QUADRILATERAL:
1874: case DM_POLYTOPE_SEG_PRISM_TENSOR:
1875: case DM_POLYTOPE_HEXAHEDRON:
1876: case DM_POLYTOPE_QUAD_PRISM_TENSOR:
1877: PetscCall(PetscSNPrintf(name, sizeof(name), "Q%" PetscInt_FMT, degree));
1878: break;
1879: case DM_POLYTOPE_TRIANGLE:
1880: case DM_POLYTOPE_TETRAHEDRON:
1881: PetscCall(PetscSNPrintf(name, sizeof(name), "P%" PetscInt_FMT, degree));
1882: break;
1883: case DM_POLYTOPE_TRI_PRISM:
1884: case DM_POLYTOPE_TRI_PRISM_TENSOR:
1885: PetscCall(PetscSNPrintf(name, sizeof(name), "P%" PetscInt_FMT "xQ%" PetscInt_FMT, degree, degree));
1886: break;
1887: default:
1888: PetscCall(PetscSNPrintf(name, sizeof(name), "FE"));
1889: }
1890: PetscCall(PetscFESetName(fe, name));
1891: PetscFunctionReturn(PETSC_SUCCESS);
1892: }
1894: /*@
1895: PetscFECreateFromSpaces - Create a `PetscFE` from the basis and dual spaces
1897: Collective
1899: Input Parameters:
1900: + P - The basis space
1901: . Q - The dual space
1902: . q - The cell quadrature
1903: - fq - The face quadrature
1905: Output Parameter:
1906: . fem - The `PetscFE` object
1908: Level: beginner
1910: Note:
1911: The `PetscFE` takes ownership of these spaces by calling destroy on each. They should not be used after this call, and for borrowed references from `PetscFEGetSpace()` and the like, the caller must use `PetscObjectReference` before this call.
1913: .seealso: `PetscFE`, `PetscSpace`, `PetscDualSpace`, `PetscQuadrature`,
1914: `PetscFECreateLagrangeByCell()`, `PetscFECreateDefault()`, `PetscFECreateByCell()`, `PetscFECreate()`, `PetscSpaceCreate()`, `PetscDualSpaceCreate()`
1915: @*/
1916: PetscErrorCode PetscFECreateFromSpaces(PetscSpace P, PetscDualSpace Q, PetscQuadrature q, PetscQuadrature fq, PetscFE *fem)
1917: {
1918: PetscInt Nc;
1919: PetscInt p_Ns = -1, p_Nc = -1, q_Ns = -1, q_Nc = -1;
1920: PetscBool p_is_uniform_sum = PETSC_FALSE, p_interleave_basis = PETSC_FALSE, p_interleave_components = PETSC_FALSE;
1921: PetscBool q_is_uniform_sum = PETSC_FALSE, q_interleave_basis = PETSC_FALSE, q_interleave_components = PETSC_FALSE;
1922: const char *prefix;
1924: PetscFunctionBegin;
1925: PetscCall(PetscObjectTypeCompare((PetscObject)P, PETSCSPACESUM, &p_is_uniform_sum));
1926: if (p_is_uniform_sum) {
1927: PetscSpace subsp_0 = NULL;
1928: PetscCall(PetscSpaceSumGetNumSubspaces(P, &p_Ns));
1929: PetscCall(PetscSpaceGetNumComponents(P, &p_Nc));
1930: PetscCall(PetscSpaceSumGetConcatenate(P, &p_is_uniform_sum));
1931: PetscCall(PetscSpaceSumGetInterleave(P, &p_interleave_basis, &p_interleave_components));
1932: for (PetscInt s = 0; s < p_Ns; s++) {
1933: PetscSpace subsp;
1935: PetscCall(PetscSpaceSumGetSubspace(P, s, &subsp));
1936: if (!s) {
1937: subsp_0 = subsp;
1938: } else if (subsp != subsp_0) {
1939: p_is_uniform_sum = PETSC_FALSE;
1940: }
1941: }
1942: }
1943: PetscCall(PetscObjectTypeCompare((PetscObject)Q, PETSCDUALSPACESUM, &q_is_uniform_sum));
1944: if (q_is_uniform_sum) {
1945: PetscDualSpace subsp_0 = NULL;
1946: PetscCall(PetscDualSpaceSumGetNumSubspaces(Q, &q_Ns));
1947: PetscCall(PetscDualSpaceGetNumComponents(Q, &q_Nc));
1948: PetscCall(PetscDualSpaceSumGetConcatenate(Q, &q_is_uniform_sum));
1949: PetscCall(PetscDualSpaceSumGetInterleave(Q, &q_interleave_basis, &q_interleave_components));
1950: for (PetscInt s = 0; s < q_Ns; s++) {
1951: PetscDualSpace subsp;
1953: PetscCall(PetscDualSpaceSumGetSubspace(Q, s, &subsp));
1954: if (!s) {
1955: subsp_0 = subsp;
1956: } else if (subsp != subsp_0) {
1957: q_is_uniform_sum = PETSC_FALSE;
1958: }
1959: }
1960: }
1961: if (p_is_uniform_sum && q_is_uniform_sum && (p_interleave_basis == q_interleave_basis) && (p_interleave_components == q_interleave_components) && (p_Ns == q_Ns) && (p_Nc == q_Nc)) {
1962: PetscSpace scalar_space;
1963: PetscDualSpace scalar_dspace;
1964: PetscFE scalar_fe;
1966: PetscCall(PetscSpaceSumGetSubspace(P, 0, &scalar_space));
1967: PetscCall(PetscDualSpaceSumGetSubspace(Q, 0, &scalar_dspace));
1968: PetscCall(PetscObjectReference((PetscObject)scalar_space));
1969: PetscCall(PetscObjectReference((PetscObject)scalar_dspace));
1970: PetscCall(PetscObjectReference((PetscObject)q));
1971: PetscCall(PetscObjectReference((PetscObject)fq));
1972: PetscCall(PetscFECreateFromSpaces(scalar_space, scalar_dspace, q, fq, &scalar_fe));
1973: PetscCall(PetscFECreateVector(scalar_fe, p_Ns, p_interleave_basis, p_interleave_components, fem));
1974: PetscCall(PetscFEDestroy(&scalar_fe));
1975: } else {
1976: PetscCall(PetscFECreate(PetscObjectComm((PetscObject)P), fem));
1977: PetscCall(PetscFESetType(*fem, PETSCFEBASIC));
1978: }
1979: PetscCall(PetscSpaceGetNumComponents(P, &Nc));
1980: PetscCall(PetscFESetNumComponents(*fem, Nc));
1981: PetscCall(PetscFESetBasisSpace(*fem, P));
1982: PetscCall(PetscFESetDualSpace(*fem, Q));
1983: PetscCall(PetscObjectGetOptionsPrefix((PetscObject)P, &prefix));
1984: PetscCall(PetscObjectSetOptionsPrefix((PetscObject)*fem, prefix));
1985: PetscCall(PetscFESetUp(*fem));
1986: PetscCall(PetscSpaceDestroy(&P));
1987: PetscCall(PetscDualSpaceDestroy(&Q));
1988: PetscCall(PetscFESetQuadrature(*fem, q));
1989: PetscCall(PetscFESetFaceQuadrature(*fem, fq));
1990: PetscCall(PetscQuadratureDestroy(&q));
1991: PetscCall(PetscQuadratureDestroy(&fq));
1992: PetscCall(PetscFESetDefaultName_Private(*fem));
1993: PetscFunctionReturn(PETSC_SUCCESS);
1994: }
1996: static PetscErrorCode PetscFECreate_Internal(MPI_Comm comm, PetscInt dim, PetscInt Nc, DMPolytopeType ct, const char prefix[], PetscInt degree, PetscInt qorder, PetscBool setFromOptions, PetscFE *fem)
1997: {
1998: DM K;
1999: PetscSpace P;
2000: PetscDualSpace Q;
2001: PetscQuadrature q, fq;
2002: PetscBool tensor;
2004: PetscFunctionBegin;
2005: if (prefix) PetscAssertPointer(prefix, 5);
2006: PetscAssertPointer(fem, 9);
2007: switch (ct) {
2008: case DM_POLYTOPE_SEGMENT:
2009: case DM_POLYTOPE_POINT_PRISM_TENSOR:
2010: case DM_POLYTOPE_QUADRILATERAL:
2011: case DM_POLYTOPE_SEG_PRISM_TENSOR:
2012: case DM_POLYTOPE_HEXAHEDRON:
2013: case DM_POLYTOPE_QUAD_PRISM_TENSOR:
2014: tensor = PETSC_TRUE;
2015: break;
2016: default:
2017: tensor = PETSC_FALSE;
2018: }
2019: /* Create space */
2020: PetscCall(PetscSpaceCreate(comm, &P));
2021: PetscCall(PetscSpaceSetType(P, PETSCSPACEPOLYNOMIAL));
2022: PetscCall(PetscObjectSetOptionsPrefix((PetscObject)P, prefix));
2023: PetscCall(PetscSpacePolynomialSetTensor(P, tensor));
2024: PetscCall(PetscSpaceSetNumComponents(P, Nc));
2025: PetscCall(PetscSpaceSetNumVariables(P, dim));
2026: if (degree >= 0) {
2027: PetscCall(PetscSpaceSetDegree(P, degree, PETSC_DETERMINE));
2028: if (ct == DM_POLYTOPE_TRI_PRISM || ct == DM_POLYTOPE_TRI_PRISM_TENSOR) {
2029: PetscSpace Pend, Pside;
2031: PetscCall(PetscSpaceSetNumComponents(P, 1));
2032: PetscCall(PetscSpaceCreate(comm, &Pend));
2033: PetscCall(PetscSpaceSetType(Pend, PETSCSPACEPOLYNOMIAL));
2034: PetscCall(PetscSpacePolynomialSetTensor(Pend, PETSC_FALSE));
2035: PetscCall(PetscSpaceSetNumComponents(Pend, 1));
2036: PetscCall(PetscSpaceSetNumVariables(Pend, dim - 1));
2037: PetscCall(PetscSpaceSetDegree(Pend, degree, PETSC_DETERMINE));
2038: PetscCall(PetscSpaceCreate(comm, &Pside));
2039: PetscCall(PetscSpaceSetType(Pside, PETSCSPACEPOLYNOMIAL));
2040: PetscCall(PetscSpacePolynomialSetTensor(Pside, PETSC_FALSE));
2041: PetscCall(PetscSpaceSetNumComponents(Pside, 1));
2042: PetscCall(PetscSpaceSetNumVariables(Pside, 1));
2043: PetscCall(PetscSpaceSetDegree(Pside, degree, PETSC_DETERMINE));
2044: PetscCall(PetscSpaceSetType(P, PETSCSPACETENSOR));
2045: PetscCall(PetscSpaceTensorSetNumSubspaces(P, 2));
2046: PetscCall(PetscSpaceTensorSetSubspace(P, 0, Pend));
2047: PetscCall(PetscSpaceTensorSetSubspace(P, 1, Pside));
2048: PetscCall(PetscSpaceDestroy(&Pend));
2049: PetscCall(PetscSpaceDestroy(&Pside));
2051: if (Nc > 1) {
2052: PetscSpace scalar_P = P;
2054: PetscCall(PetscSpaceCreate(comm, &P));
2055: PetscCall(PetscSpaceSetNumVariables(P, dim));
2056: PetscCall(PetscSpaceSetNumComponents(P, Nc));
2057: PetscCall(PetscSpaceSetType(P, PETSCSPACESUM));
2058: PetscCall(PetscSpaceSumSetNumSubspaces(P, Nc));
2059: PetscCall(PetscSpaceSumSetConcatenate(P, PETSC_TRUE));
2060: PetscCall(PetscSpaceSumSetInterleave(P, PETSC_TRUE, PETSC_FALSE));
2061: for (PetscInt i = 0; i < Nc; i++) PetscCall(PetscSpaceSumSetSubspace(P, i, scalar_P));
2062: PetscCall(PetscSpaceDestroy(&scalar_P));
2063: }
2064: }
2065: }
2066: if (setFromOptions) PetscCall(PetscSpaceSetFromOptions(P));
2067: PetscCall(PetscSpaceSetUp(P));
2068: PetscCall(PetscSpaceGetDegree(P, °ree, NULL));
2069: PetscCall(PetscSpacePolynomialGetTensor(P, &tensor));
2070: PetscCall(PetscSpaceGetNumComponents(P, &Nc));
2071: /* Create dual space */
2072: PetscCall(PetscDualSpaceCreate(comm, &Q));
2073: PetscCall(PetscDualSpaceSetType(Q, PETSCDUALSPACELAGRANGE));
2074: PetscCall(PetscObjectSetOptionsPrefix((PetscObject)Q, prefix));
2075: PetscCall(DMPlexCreateReferenceCell(PETSC_COMM_SELF, ct, &K));
2076: PetscCall(PetscDualSpaceSetDM(Q, K));
2077: PetscCall(DMDestroy(&K));
2078: PetscCall(PetscDualSpaceSetNumComponents(Q, Nc));
2079: PetscCall(PetscDualSpaceSetOrder(Q, degree));
2080: PetscCall(PetscDualSpaceLagrangeSetTensor(Q, (tensor || (ct == DM_POLYTOPE_TRI_PRISM)) ? PETSC_TRUE : PETSC_FALSE));
2081: if (setFromOptions) PetscCall(PetscDualSpaceSetFromOptions(Q));
2082: PetscCall(PetscDualSpaceSetUp(Q));
2083: /* Create quadrature */
2084: PetscDTSimplexQuadratureType qtype = PETSCDTSIMPLEXQUAD_DEFAULT;
2086: qorder = qorder >= 0 ? qorder : degree;
2087: if (setFromOptions) {
2088: PetscObjectOptionsBegin((PetscObject)P);
2089: PetscCall(PetscOptionsBoundedInt("-petscfe_default_quadrature_order", "Quadrature order is one less than quadrature points per edge", "PetscFECreateDefault", qorder, &qorder, NULL, 0));
2090: PetscCall(PetscOptionsEnum("-petscfe_default_quadrature_type", "Simplex quadrature type", "PetscDTSimplexQuadratureType", PetscDTSimplexQuadratureTypes, (PetscEnum)qtype, (PetscEnum *)&qtype, NULL));
2091: PetscOptionsEnd();
2092: }
2093: PetscCall(PetscDTCreateQuadratureByCell(ct, qorder, qtype, &q, &fq));
2094: /* Create finite element */
2095: PetscCall(PetscFECreateFromSpaces(P, Q, q, fq, fem));
2096: if (setFromOptions) PetscCall(PetscFESetFromOptions(*fem));
2097: PetscFunctionReturn(PETSC_SUCCESS);
2098: }
2100: /*@
2101: PetscFECreateDefault - Create a `PetscFE` for basic FEM computation
2103: Collective
2105: Input Parameters:
2106: + comm - The MPI comm
2107: . dim - The spatial dimension
2108: . Nc - The number of components
2109: . isSimplex - Flag for simplex reference cell, otherwise its a tensor product
2110: . prefix - The options prefix, or `NULL`
2111: - qorder - The quadrature order or `PETSC_DETERMINE` to use `PetscSpace` polynomial degree
2113: Output Parameter:
2114: . fem - The `PetscFE` object
2116: Level: beginner
2118: Note:
2119: Each subobject is SetFromOption() during creation, so that the object may be customized from the command line, using the prefix specified above. See the links below for the particular options available.
2121: .seealso: `PetscFECreateLagrange()`, `PetscFECreateByCell()`, `PetscSpaceSetFromOptions()`, `PetscDualSpaceSetFromOptions()`, `PetscFESetFromOptions()`, `PetscFECreate()`, `PetscSpaceCreate()`, `PetscDualSpaceCreate()`
2122: @*/
2123: PetscErrorCode PetscFECreateDefault(MPI_Comm comm, PetscInt dim, PetscInt Nc, PetscBool isSimplex, const char prefix[], PetscInt qorder, PetscFE *fem)
2124: {
2125: PetscFunctionBegin;
2126: PetscCall(PetscFECreate_Internal(comm, dim, Nc, DMPolytopeTypeSimpleShape(dim, isSimplex), prefix, PETSC_DECIDE, qorder, PETSC_TRUE, fem));
2127: PetscFunctionReturn(PETSC_SUCCESS);
2128: }
2130: /*@
2131: PetscFECreateByCell - Create a `PetscFE` for basic FEM computation
2133: Collective
2135: Input Parameters:
2136: + comm - The MPI comm
2137: . dim - The spatial dimension
2138: . Nc - The number of components
2139: . ct - The celltype of the reference cell
2140: . prefix - The options prefix, or `NULL`
2141: - qorder - The quadrature order or `PETSC_DETERMINE` to use `PetscSpace` polynomial degree
2143: Output Parameter:
2144: . fem - The `PetscFE` object
2146: Level: beginner
2148: Note:
2149: Each subobject is SetFromOption() during creation, so that the object may be customized from the command line, using the prefix specified above. See the links below for the particular options available.
2151: .seealso: `PetscFECreateDefault()`, `PetscFECreateLagrange()`, `PetscSpaceSetFromOptions()`, `PetscDualSpaceSetFromOptions()`, `PetscFESetFromOptions()`, `PetscFECreate()`, `PetscSpaceCreate()`, `PetscDualSpaceCreate()`
2152: @*/
2153: PetscErrorCode PetscFECreateByCell(MPI_Comm comm, PetscInt dim, PetscInt Nc, DMPolytopeType ct, const char prefix[], PetscInt qorder, PetscFE *fem)
2154: {
2155: PetscFunctionBegin;
2156: PetscCall(PetscFECreate_Internal(comm, dim, Nc, ct, prefix, PETSC_DECIDE, qorder, PETSC_TRUE, fem));
2157: PetscFunctionReturn(PETSC_SUCCESS);
2158: }
2160: /*@
2161: PetscFECreateLagrange - Create a `PetscFE` for the basic Lagrange space of degree k
2163: Collective
2165: Input Parameters:
2166: + comm - The MPI comm
2167: . dim - The spatial dimension
2168: . Nc - The number of components
2169: . isSimplex - Flag for simplex reference cell, otherwise its a tensor product
2170: . k - The degree k of the space
2171: - qorder - The quadrature order or `PETSC_DETERMINE` to use `PetscSpace` polynomial degree
2173: Output Parameter:
2174: . fem - The `PetscFE` object
2176: Level: beginner
2178: Note:
2179: For simplices, this element is the space of maximum polynomial degree k, otherwise it is a tensor product of 1D polynomials, each with maximal degree k.
2181: .seealso: `PetscFECreateLagrangeByCell()`, `PetscFECreateDefault()`, `PetscFECreateByCell()`, `PetscFECreate()`, `PetscSpaceCreate()`, `PetscDualSpaceCreate()`
2182: @*/
2183: PetscErrorCode PetscFECreateLagrange(MPI_Comm comm, PetscInt dim, PetscInt Nc, PetscBool isSimplex, PetscInt k, PetscInt qorder, PetscFE *fem)
2184: {
2185: PetscFunctionBegin;
2186: PetscCall(PetscFECreate_Internal(comm, dim, Nc, DMPolytopeTypeSimpleShape(dim, isSimplex), NULL, k, qorder, PETSC_FALSE, fem));
2187: PetscFunctionReturn(PETSC_SUCCESS);
2188: }
2190: /*@
2191: PetscFECreateLagrangeByCell - Create a `PetscFE` for the basic Lagrange space of degree k
2193: Collective
2195: Input Parameters:
2196: + comm - The MPI comm
2197: . dim - The spatial dimension
2198: . Nc - The number of components
2199: . ct - The celltype of the reference cell
2200: . k - The degree k of the space
2201: - qorder - The quadrature order or `PETSC_DETERMINE` to use `PetscSpace` polynomial degree
2203: Output Parameter:
2204: . fem - The `PetscFE` object
2206: Level: beginner
2208: Note:
2209: For simplices, this element is the space of maximum polynomial degree k, otherwise it is a tensor product of 1D polynomials, each with maximal degree k.
2211: .seealso: `PetscFECreateLagrange()`, `PetscFECreateDefault()`, `PetscFECreateByCell()`, `PetscFECreate()`, `PetscSpaceCreate()`, `PetscDualSpaceCreate()`
2212: @*/
2213: PetscErrorCode PetscFECreateLagrangeByCell(MPI_Comm comm, PetscInt dim, PetscInt Nc, DMPolytopeType ct, PetscInt k, PetscInt qorder, PetscFE *fem)
2214: {
2215: PetscFunctionBegin;
2216: PetscCall(PetscFECreate_Internal(comm, dim, Nc, ct, NULL, k, qorder, PETSC_FALSE, fem));
2217: PetscFunctionReturn(PETSC_SUCCESS);
2218: }
2220: /*@
2221: PetscFELimitDegree - Copy a `PetscFE` but limit the degree to be in the given range
2223: Collective
2225: Input Parameters:
2226: + fe - The `PetscFE`
2227: . minDegree - The minimum degree, or `PETSC_DETERMINE` for no limit
2228: - maxDegree - The maximum degree, or `PETSC_DETERMINE` for no limit
2230: Output Parameter:
2231: . newfe - The `PetscFE` object
2233: Level: advanced
2235: Note:
2236: This currently only works for Lagrange elements.
2238: .seealso: `PetscFECreateLagrange()`, `PetscFECreateDefault()`, `PetscFECreateByCell()`, `PetscFECreate()`, `PetscSpaceCreate()`, `PetscDualSpaceCreate()`
2239: @*/
2240: PetscErrorCode PetscFELimitDegree(PetscFE fe, PetscInt minDegree, PetscInt maxDegree, PetscFE *newfe)
2241: {
2242: PetscDualSpace Q;
2243: PetscBool islag, issum;
2244: PetscInt oldk = 0, k;
2246: PetscFunctionBegin;
2247: PetscCall(PetscFEGetDualSpace(fe, &Q));
2248: PetscCall(PetscObjectTypeCompare((PetscObject)Q, PETSCDUALSPACELAGRANGE, &islag));
2249: PetscCall(PetscObjectTypeCompare((PetscObject)Q, PETSCDUALSPACESUM, &issum));
2250: if (islag) {
2251: PetscCall(PetscDualSpaceGetOrder(Q, &oldk));
2252: } else if (issum) {
2253: PetscDualSpace subQ;
2255: PetscCall(PetscDualSpaceSumGetSubspace(Q, 0, &subQ));
2256: PetscCall(PetscDualSpaceGetOrder(subQ, &oldk));
2257: } else {
2258: PetscCall(PetscObjectReference((PetscObject)fe));
2259: *newfe = fe;
2260: PetscFunctionReturn(PETSC_SUCCESS);
2261: }
2262: k = oldk;
2263: if (minDegree >= 0) k = PetscMax(k, minDegree);
2264: if (maxDegree >= 0) k = PetscMin(k, maxDegree);
2265: if (k != oldk) {
2266: DM K;
2267: PetscSpace P;
2268: PetscQuadrature q;
2269: DMPolytopeType ct;
2270: PetscInt dim, Nc;
2272: PetscCall(PetscFEGetBasisSpace(fe, &P));
2273: PetscCall(PetscSpaceGetNumVariables(P, &dim));
2274: PetscCall(PetscSpaceGetNumComponents(P, &Nc));
2275: PetscCall(PetscDualSpaceGetDM(Q, &K));
2276: PetscCall(DMPlexGetCellType(K, 0, &ct));
2277: PetscCall(PetscFECreateLagrangeByCell(PetscObjectComm((PetscObject)fe), dim, Nc, ct, k, PETSC_DETERMINE, newfe));
2278: PetscCall(PetscFEGetQuadrature(fe, &q));
2279: PetscCall(PetscFESetQuadrature(*newfe, q));
2280: } else {
2281: PetscCall(PetscObjectReference((PetscObject)fe));
2282: *newfe = fe;
2283: }
2284: PetscFunctionReturn(PETSC_SUCCESS);
2285: }
2287: /*@
2288: PetscFECreateBrokenElement - Create a discontinuous version of the input `PetscFE`
2290: Collective
2292: Input Parameters:
2293: . cgfe - The continuous `PetscFE` object
2295: Output Parameter:
2296: . dgfe - The discontinuous `PetscFE` object
2298: Level: advanced
2300: Note:
2301: This only works for Lagrange elements.
2303: .seealso: `PetscFECreate()`, `PetscSpaceCreate()`, `PetscDualSpaceCreate()`, `PetscFECreateLagrange()`, `PetscFECreateLagrangeByCell()`, `PetscDualSpaceLagrangeSetContinuity()`
2304: @*/
2305: PetscErrorCode PetscFECreateBrokenElement(PetscFE cgfe, PetscFE *dgfe)
2306: {
2307: PetscSpace P;
2308: PetscDualSpace Q, dgQ;
2309: PetscQuadrature q, fq;
2310: PetscBool is_lagrange, is_sum;
2312: PetscFunctionBegin;
2313: PetscCall(PetscFEGetBasisSpace(cgfe, &P));
2314: PetscCall(PetscObjectReference((PetscObject)P));
2315: PetscCall(PetscFEGetDualSpace(cgfe, &Q));
2316: PetscCall(PetscObjectTypeCompare((PetscObject)Q, PETSCDUALSPACELAGRANGE, &is_lagrange));
2317: PetscCall(PetscObjectTypeCompare((PetscObject)Q, PETSCDUALSPACESUM, &is_sum));
2318: PetscCheck(is_lagrange || is_sum, PETSC_COMM_SELF, PETSC_ERR_SUP, "Can only create broken elements of Lagrange elements");
2319: PetscCall(PetscDualSpaceDuplicate(Q, &dgQ));
2320: PetscCall(PetscDualSpaceLagrangeSetContinuity(dgQ, PETSC_FALSE));
2321: PetscCall(PetscDualSpaceSetUp(dgQ));
2322: PetscCall(PetscFEGetQuadrature(cgfe, &q));
2323: PetscCall(PetscObjectReference((PetscObject)q));
2324: PetscCall(PetscFEGetFaceQuadrature(cgfe, &fq));
2325: PetscCall(PetscObjectReference((PetscObject)fq));
2326: PetscCall(PetscFECreateFromSpaces(P, dgQ, q, fq, dgfe));
2327: PetscFunctionReturn(PETSC_SUCCESS);
2328: }
2330: /*@
2331: PetscFESetName - Names the `PetscFE` and its subobjects
2333: Not Collective
2335: Input Parameters:
2336: + fe - The `PetscFE`
2337: - name - The name
2339: Level: intermediate
2341: .seealso: `PetscFECreate()`, `PetscSpaceCreate()`, `PetscDualSpaceCreate()`
2342: @*/
2343: PetscErrorCode PetscFESetName(PetscFE fe, const char name[])
2344: {
2345: PetscSpace P;
2346: PetscDualSpace Q;
2348: PetscFunctionBegin;
2349: PetscCall(PetscFEGetBasisSpace(fe, &P));
2350: PetscCall(PetscFEGetDualSpace(fe, &Q));
2351: PetscCall(PetscObjectSetName((PetscObject)fe, name));
2352: PetscCall(PetscObjectSetName((PetscObject)P, name));
2353: PetscCall(PetscObjectSetName((PetscObject)Q, name));
2354: PetscFunctionReturn(PETSC_SUCCESS);
2355: }
2357: PetscErrorCode PetscFEEvaluateFieldJets_Internal(PetscDS ds, PetscInt Nf, PetscInt r, PetscInt q, PetscTabulation T[], PetscFEGeom *fegeom, const PetscScalar coefficients[], const PetscScalar coefficients_t[], PetscScalar u[], PetscScalar u_x[], PetscScalar u_t[])
2358: {
2359: PetscInt dOffset = 0, fOffset = 0, f, g;
2361: for (f = 0; f < Nf; ++f) {
2362: PetscCheck(r < T[f]->Nr, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Replica number %" PetscInt_FMT " should be in [0, %" PetscInt_FMT ")", r, T[f]->Nr);
2363: PetscCheck(q < T[f]->Np, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Point number %" PetscInt_FMT " should be in [0, %" PetscInt_FMT ")", q, T[f]->Np);
2364: PetscFE fe;
2365: const PetscInt k = ds->jetDegree[f];
2366: const PetscInt cdim = T[f]->cdim;
2367: const PetscInt dE = fegeom->dimEmbed;
2368: const PetscInt Nq = T[f]->Np;
2369: const PetscInt Nbf = T[f]->Nb;
2370: const PetscInt Ncf = T[f]->Nc;
2371: const PetscReal *Bq = &T[f]->T[0][(r * Nq + q) * Nbf * Ncf];
2372: const PetscReal *Dq = &T[f]->T[1][(r * Nq + q) * Nbf * Ncf * cdim];
2373: const PetscReal *Hq = k > 1 ? &T[f]->T[2][(r * Nq + q) * Nbf * Ncf * cdim * cdim] : NULL;
2374: PetscInt hOffset = 0, b, c, d;
2376: PetscCall(PetscDSGetDiscretization(ds, f, (PetscObject *)&fe));
2377: for (c = 0; c < Ncf; ++c) u[fOffset + c] = 0.0;
2378: for (d = 0; d < dE * Ncf; ++d) u_x[fOffset * dE + d] = 0.0;
2379: for (b = 0; b < Nbf; ++b) {
2380: for (c = 0; c < Ncf; ++c) {
2381: const PetscInt cidx = b * Ncf + c;
2383: u[fOffset + c] += Bq[cidx] * coefficients[dOffset + b];
2384: for (d = 0; d < cdim; ++d) u_x[(fOffset + c) * dE + d] += Dq[cidx * cdim + d] * coefficients[dOffset + b];
2385: }
2386: }
2387: if (k > 1) {
2388: for (g = 0; g < Nf; ++g) hOffset += T[g]->Nc * dE;
2389: for (d = 0; d < dE * dE * Ncf; ++d) u_x[hOffset + fOffset * dE * dE + d] = 0.0;
2390: for (b = 0; b < Nbf; ++b) {
2391: for (c = 0; c < Ncf; ++c) {
2392: const PetscInt cidx = b * Ncf + c;
2394: for (d = 0; d < cdim * cdim; ++d) u_x[hOffset + (fOffset + c) * dE * dE + d] += Hq[cidx * cdim * cdim + d] * coefficients[dOffset + b];
2395: }
2396: }
2397: PetscCall(PetscFEPushforwardHessian(fe, fegeom, 1, &u_x[hOffset + fOffset * dE * dE]));
2398: }
2399: PetscCall(PetscFEPushforward(fe, fegeom, 1, &u[fOffset]));
2400: PetscCall(PetscFEPushforwardGradient(fe, fegeom, 1, &u_x[fOffset * dE]));
2401: if (u_t) {
2402: for (c = 0; c < Ncf; ++c) u_t[fOffset + c] = 0.0;
2403: for (b = 0; b < Nbf; ++b) {
2404: for (c = 0; c < Ncf; ++c) {
2405: const PetscInt cidx = b * Ncf + c;
2407: u_t[fOffset + c] += Bq[cidx] * coefficients_t[dOffset + b];
2408: }
2409: }
2410: PetscCall(PetscFEPushforward(fe, fegeom, 1, &u_t[fOffset]));
2411: }
2412: fOffset += Ncf;
2413: dOffset += Nbf;
2414: }
2415: return PETSC_SUCCESS;
2416: }
2418: PetscErrorCode PetscFEEvaluateFieldJets_Hybrid_Internal(PetscDS ds, PetscInt Nf, PetscInt rc, PetscInt qc, PetscTabulation Tab[], const PetscInt rf[], const PetscInt qf[], PetscTabulation Tabf[], PetscFEGeom *fegeom, PetscFEGeom *fegeomNbr, const PetscScalar coefficients[], const PetscScalar coefficients_t[], PetscScalar u[], PetscScalar u_x[], PetscScalar u_t[])
2419: {
2420: PetscInt dOffset = 0, fOffset = 0, f, g;
2422: /* f is the field number in the DS, g is the field number in u[] */
2423: for (f = 0, g = 0; f < Nf; ++f) {
2424: PetscBool isCohesive;
2425: PetscInt Ns, s;
2427: if (!Tab[f]) continue;
2428: PetscCall(PetscDSGetCohesive(ds, f, &isCohesive));
2429: Ns = isCohesive ? 1 : 2;
2430: {
2431: PetscTabulation T = isCohesive ? Tab[f] : Tabf[f];
2432: PetscFE fe = (PetscFE)ds->disc[f];
2433: const PetscInt dEt = T->cdim;
2434: const PetscInt dE = fegeom->dimEmbed;
2435: const PetscInt Nq = T->Np;
2436: const PetscInt Nbf = T->Nb;
2437: const PetscInt Ncf = T->Nc;
2439: for (s = 0; s < Ns; ++s, ++g) {
2440: const PetscInt r = isCohesive ? rc : rf[s];
2441: const PetscInt q = isCohesive ? qc : qf[s];
2442: const PetscReal *Bq = &T->T[0][(r * Nq + q) * Nbf * Ncf];
2443: const PetscReal *Dq = &T->T[1][(r * Nq + q) * Nbf * Ncf * dEt];
2444: PetscInt b, c, d;
2446: PetscCheck(r < T->Nr, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field %" PetscInt_FMT " Side %" PetscInt_FMT " Replica number %" PetscInt_FMT " should be in [0, %" PetscInt_FMT ")", f, s, r, T->Nr);
2447: PetscCheck(q < T->Np, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Field %" PetscInt_FMT " Side %" PetscInt_FMT " Point number %" PetscInt_FMT " should be in [0, %" PetscInt_FMT ")", f, s, q, T->Np);
2448: for (c = 0; c < Ncf; ++c) u[fOffset + c] = 0.0;
2449: for (d = 0; d < dE * Ncf; ++d) u_x[fOffset * dE + d] = 0.0;
2450: for (b = 0; b < Nbf; ++b) {
2451: for (c = 0; c < Ncf; ++c) {
2452: const PetscInt cidx = b * Ncf + c;
2454: u[fOffset + c] += Bq[cidx] * coefficients[dOffset + b];
2455: for (d = 0; d < dEt; ++d) u_x[(fOffset + c) * dE + d] += Dq[cidx * dEt + d] * coefficients[dOffset + b];
2456: }
2457: }
2458: PetscCall(PetscFEPushforward(fe, isCohesive ? fegeom : &fegeomNbr[s], 1, &u[fOffset]));
2459: PetscCall(PetscFEPushforwardGradient(fe, isCohesive ? fegeom : &fegeomNbr[s], 1, &u_x[fOffset * dE]));
2460: if (u_t) {
2461: for (c = 0; c < Ncf; ++c) u_t[fOffset + c] = 0.0;
2462: for (b = 0; b < Nbf; ++b) {
2463: for (c = 0; c < Ncf; ++c) {
2464: const PetscInt cidx = b * Ncf + c;
2466: u_t[fOffset + c] += Bq[cidx] * coefficients_t[dOffset + b];
2467: }
2468: }
2469: PetscCall(PetscFEPushforward(fe, fegeom, 1, &u_t[fOffset]));
2470: }
2471: fOffset += Ncf;
2472: dOffset += Nbf;
2473: }
2474: }
2475: }
2476: return PETSC_SUCCESS;
2477: }
2479: PetscErrorCode PetscFEEvaluateFaceFields_Internal(PetscDS prob, PetscInt field, PetscInt faceLoc, const PetscScalar coefficients[], PetscScalar u[])
2480: {
2481: PetscFE fe;
2482: PetscTabulation Tc;
2483: PetscInt b, c;
2485: if (!prob) return PETSC_SUCCESS;
2486: PetscCall(PetscDSGetDiscretization(prob, field, (PetscObject *)&fe));
2487: PetscCall(PetscFEGetFaceCentroidTabulation(fe, &Tc));
2488: {
2489: const PetscReal *faceBasis = Tc->T[0];
2490: const PetscInt Nb = Tc->Nb;
2491: const PetscInt Nc = Tc->Nc;
2493: for (c = 0; c < Nc; ++c) u[c] = 0.0;
2494: for (b = 0; b < Nb; ++b) {
2495: for (c = 0; c < Nc; ++c) u[c] += coefficients[b] * faceBasis[(faceLoc * Nb + b) * Nc + c];
2496: }
2497: }
2498: return PETSC_SUCCESS;
2499: }
2501: PetscErrorCode PetscFEUpdateElementVec_Internal(PetscFE fe, PetscTabulation T, PetscInt r, PetscScalar tmpBasis[], PetscScalar tmpBasisDer[], PetscInt e, PetscFEGeom *fegeom, PetscScalar f0[], PetscScalar f1[], PetscScalar elemVec[])
2502: {
2503: PetscFEGeom pgeom;
2504: const PetscInt dEt = T->cdim;
2505: const PetscInt dE = fegeom->dimEmbed;
2506: const PetscInt Nq = T->Np;
2507: const PetscInt Nb = T->Nb;
2508: const PetscInt Nc = T->Nc;
2509: const PetscReal *basis = &T->T[0][r * Nq * Nb * Nc];
2510: const PetscReal *basisDer = &T->T[1][r * Nq * Nb * Nc * dEt];
2511: PetscInt q, b, c, d;
2513: for (q = 0; q < Nq; ++q) {
2514: for (b = 0; b < Nb; ++b) {
2515: for (c = 0; c < Nc; ++c) {
2516: const PetscInt bcidx = b * Nc + c;
2518: tmpBasis[bcidx] = basis[q * Nb * Nc + bcidx];
2519: for (d = 0; d < dEt; ++d) tmpBasisDer[bcidx * dE + d] = basisDer[q * Nb * Nc * dEt + bcidx * dEt + d];
2520: for (d = dEt; d < dE; ++d) tmpBasisDer[bcidx * dE + d] = 0.0;
2521: }
2522: }
2523: PetscCall(PetscFEGeomGetCellPoint(fegeom, e, q, &pgeom));
2524: PetscCall(PetscFEPushforward(fe, &pgeom, Nb, tmpBasis));
2525: PetscCall(PetscFEPushforwardGradient(fe, &pgeom, Nb, tmpBasisDer));
2526: for (b = 0; b < Nb; ++b) {
2527: for (c = 0; c < Nc; ++c) {
2528: const PetscInt bcidx = b * Nc + c;
2529: const PetscInt qcidx = q * Nc + c;
2531: elemVec[b] += tmpBasis[bcidx] * f0[qcidx];
2532: for (d = 0; d < dE; ++d) elemVec[b] += tmpBasisDer[bcidx * dE + d] * f1[qcidx * dE + d];
2533: }
2534: }
2535: }
2536: return PETSC_SUCCESS;
2537: }
2539: PetscErrorCode PetscFEUpdateElementVec_Hybrid_Internal(PetscFE fe, PetscTabulation T, PetscInt r, PetscInt side, PetscScalar tmpBasis[], PetscScalar tmpBasisDer[], PetscFEGeom *fegeom, PetscScalar f0[], PetscScalar f1[], PetscScalar elemVec[])
2540: {
2541: const PetscInt dE = T->cdim;
2542: const PetscInt Nq = T->Np;
2543: const PetscInt Nb = T->Nb;
2544: const PetscInt Nc = T->Nc;
2545: const PetscReal *basis = &T->T[0][r * Nq * Nb * Nc];
2546: const PetscReal *basisDer = &T->T[1][r * Nq * Nb * Nc * dE];
2548: for (PetscInt q = 0; q < Nq; ++q) {
2549: for (PetscInt b = 0; b < Nb; ++b) {
2550: for (PetscInt c = 0; c < Nc; ++c) {
2551: const PetscInt bcidx = b * Nc + c;
2553: tmpBasis[bcidx] = basis[q * Nb * Nc + bcidx];
2554: for (PetscInt d = 0; d < dE; ++d) tmpBasisDer[bcidx * dE + d] = basisDer[q * Nb * Nc * dE + bcidx * dE + d];
2555: }
2556: }
2557: PetscCall(PetscFEPushforward(fe, fegeom, Nb, tmpBasis));
2558: // TODO This is currently broken since we do not pull the geometry down to the lower dimension
2559: // PetscCall(PetscFEPushforwardGradient(fe, fegeom, Nb, tmpBasisDer));
2560: if (side == 2) {
2561: // Integrating over whole cohesive cell, so insert for both sides
2562: for (PetscInt s = 0; s < 2; ++s) {
2563: for (PetscInt b = 0; b < Nb; ++b) {
2564: for (PetscInt c = 0; c < Nc; ++c) {
2565: const PetscInt bcidx = b * Nc + c;
2566: const PetscInt qcidx = (q * 2 + s) * Nc + c;
2568: elemVec[Nb * s + b] += tmpBasis[bcidx] * f0[qcidx];
2569: for (PetscInt d = 0; d < dE; ++d) elemVec[Nb * s + b] += tmpBasisDer[bcidx * dE + d] * f1[qcidx * dE + d];
2570: }
2571: }
2572: }
2573: } else {
2574: // Integrating over endcaps of cohesive cell, so insert for correct side
2575: for (PetscInt b = 0; b < Nb; ++b) {
2576: for (PetscInt c = 0; c < Nc; ++c) {
2577: const PetscInt bcidx = b * Nc + c;
2578: const PetscInt qcidx = q * Nc + c;
2580: elemVec[Nb * side + b] += tmpBasis[bcidx] * f0[qcidx];
2581: for (PetscInt d = 0; d < dE; ++d) elemVec[Nb * side + b] += tmpBasisDer[bcidx * dE + d] * f1[qcidx * dE + d];
2582: }
2583: }
2584: }
2585: }
2586: return PETSC_SUCCESS;
2587: }
2589: #define petsc_elemmat_kernel_g1(_NbI, _NcI, _NbJ, _NcJ, _dE) \
2590: do { \
2591: for (PetscInt fc = 0; fc < (_NcI); ++fc) { \
2592: for (PetscInt gc = 0; gc < (_NcJ); ++gc) { \
2593: const PetscScalar *G = g1 + (fc * (_NcJ) + gc) * _dE; \
2594: for (PetscInt f = 0; f < (_NbI); ++f) { \
2595: const PetscScalar tBIv = tmpBasisI[f * (_NcI) + fc]; \
2596: for (PetscInt g = 0; g < (_NbJ); ++g) { \
2597: const PetscScalar *tBDJ = tmpBasisDerJ + (g * (_NcJ) + gc) * (_dE); \
2598: PetscScalar s = 0.0; \
2599: for (PetscInt df = 0; df < _dE; ++df) s += G[df] * tBDJ[df]; \
2600: elemMat[(offsetI + f) * totDim + (offsetJ + g)] += s * tBIv; \
2601: } \
2602: } \
2603: } \
2604: } \
2605: } while (0)
2607: #define petsc_elemmat_kernel_g2(_NbI, _NcI, _NbJ, _NcJ, _dE) \
2608: do { \
2609: for (PetscInt gc = 0; gc < (_NcJ); ++gc) { \
2610: for (PetscInt fc = 0; fc < (_NcI); ++fc) { \
2611: const PetscScalar *G = g2 + (fc * (_NcJ) + gc) * _dE; \
2612: for (PetscInt g = 0; g < (_NbJ); ++g) { \
2613: const PetscScalar tBJv = tmpBasisJ[g * (_NcJ) + gc]; \
2614: for (PetscInt f = 0; f < (_NbI); ++f) { \
2615: const PetscScalar *tBDI = tmpBasisDerI + (f * (_NcI) + fc) * (_dE); \
2616: PetscScalar s = 0.0; \
2617: for (PetscInt df = 0; df < _dE; ++df) s += tBDI[df] * G[df]; \
2618: elemMat[(offsetI + f) * totDim + (offsetJ + g)] += s * tBJv; \
2619: } \
2620: } \
2621: } \
2622: } \
2623: } while (0)
2625: #define petsc_elemmat_kernel_g3(_NbI, _NcI, _NbJ, _NcJ, _dE) \
2626: do { \
2627: for (PetscInt fc = 0; fc < (_NcI); ++fc) { \
2628: for (PetscInt gc = 0; gc < (_NcJ); ++gc) { \
2629: const PetscScalar *G = g3 + (fc * (_NcJ) + gc) * (_dE) * (_dE); \
2630: for (PetscInt f = 0; f < (_NbI); ++f) { \
2631: const PetscScalar *tBDI = tmpBasisDerI + (f * (_NcI) + fc) * (_dE); \
2632: for (PetscInt g = 0; g < (_NbJ); ++g) { \
2633: PetscScalar s = 0.0; \
2634: const PetscScalar *tBDJ = tmpBasisDerJ + (g * (_NcJ) + gc) * (_dE); \
2635: for (PetscInt df = 0; df < (_dE); ++df) { \
2636: for (PetscInt dg = 0; dg < (_dE); ++dg) s += tBDI[df] * G[df * (_dE) + dg] * tBDJ[dg]; \
2637: } \
2638: elemMat[(offsetI + f) * totDim + (offsetJ + g)] += s; \
2639: } \
2640: } \
2641: } \
2642: } \
2643: } while (0)
2645: PetscErrorCode PetscFEUpdateElementMat_Internal(PetscFE feI, PetscFE feJ, PetscInt r, PetscInt q, PetscTabulation TI, PetscScalar tmpBasisI[], PetscScalar tmpBasisDerI[], PetscTabulation TJ, PetscScalar tmpBasisJ[], PetscScalar tmpBasisDerJ[], PetscFEGeom *fegeom, const PetscScalar g0[], const PetscScalar g1[], const PetscScalar g2[], const PetscScalar g3[], PetscInt totDim, PetscInt offsetI, PetscInt offsetJ, PetscScalar elemMat[])
2646: {
2647: const PetscInt cdim = TI->cdim;
2648: const PetscInt dE = fegeom->dimEmbed;
2649: const PetscInt NqI = TI->Np;
2650: const PetscInt NbI = TI->Nb;
2651: const PetscInt NcI = TI->Nc;
2652: const PetscReal *basisI = &TI->T[0][(r * NqI + q) * NbI * NcI];
2653: const PetscReal *basisDerI = &TI->T[1][(r * NqI + q) * NbI * NcI * cdim];
2654: const PetscInt NqJ = TJ->Np;
2655: const PetscInt NbJ = TJ->Nb;
2656: const PetscInt NcJ = TJ->Nc;
2657: const PetscReal *basisJ = &TJ->T[0][(r * NqJ + q) * NbJ * NcJ];
2658: const PetscReal *basisDerJ = &TJ->T[1][(r * NqJ + q) * NbJ * NcJ * cdim];
2660: for (PetscInt f = 0; f < NbI; ++f) {
2661: for (PetscInt fc = 0; fc < NcI; ++fc) {
2662: const PetscInt fidx = f * NcI + fc; /* Test function basis index */
2664: tmpBasisI[fidx] = basisI[fidx];
2665: for (PetscInt df = 0; df < cdim; ++df) tmpBasisDerI[fidx * dE + df] = basisDerI[fidx * cdim + df];
2666: }
2667: }
2668: PetscCall(PetscFEPushforward(feI, fegeom, NbI, tmpBasisI));
2669: PetscCall(PetscFEPushforwardGradient(feI, fegeom, NbI, tmpBasisDerI));
2670: if (feI != feJ) {
2671: for (PetscInt g = 0; g < NbJ; ++g) {
2672: for (PetscInt gc = 0; gc < NcJ; ++gc) {
2673: const PetscInt gidx = g * NcJ + gc; /* Trial function basis index */
2675: tmpBasisJ[gidx] = basisJ[gidx];
2676: for (PetscInt dg = 0; dg < cdim; ++dg) tmpBasisDerJ[gidx * dE + dg] = basisDerJ[gidx * cdim + dg];
2677: }
2678: }
2679: PetscCall(PetscFEPushforward(feJ, fegeom, NbJ, tmpBasisJ));
2680: PetscCall(PetscFEPushforwardGradient(feJ, fegeom, NbJ, tmpBasisDerJ));
2681: } else {
2682: tmpBasisJ = tmpBasisI;
2683: tmpBasisDerJ = tmpBasisDerI;
2684: }
2685: if (PetscUnlikely(g0)) {
2686: for (PetscInt f = 0; f < NbI; ++f) {
2687: const PetscInt i = offsetI + f; /* Element matrix row */
2689: for (PetscInt fc = 0; fc < NcI; ++fc) {
2690: const PetscScalar bI = tmpBasisI[f * NcI + fc]; /* Test function basis value */
2692: for (PetscInt g = 0; g < NbJ; ++g) {
2693: const PetscInt j = offsetJ + g; /* Element matrix column */
2694: const PetscInt fOff = i * totDim + j;
2696: for (PetscInt gc = 0; gc < NcJ; ++gc) elemMat[fOff] += bI * g0[fc * NcJ + gc] * tmpBasisJ[g * NcJ + gc];
2697: }
2698: }
2699: }
2700: }
2701: if (PetscUnlikely(g1)) {
2702: #if 1
2703: if (dE == 2) {
2704: petsc_elemmat_kernel_g1(NbI, NcI, NbJ, NcJ, 2);
2705: } else if (dE == 3) {
2706: petsc_elemmat_kernel_g1(NbI, NcI, NbJ, NcJ, 3);
2707: } else {
2708: petsc_elemmat_kernel_g1(NbI, NcI, NbJ, NcJ, dE);
2709: }
2710: #else
2711: for (PetscInt f = 0; f < NbI; ++f) {
2712: const PetscInt i = offsetI + f; /* Element matrix row */
2714: for (PetscInt fc = 0; fc < NcI; ++fc) {
2715: const PetscScalar bI = tmpBasisI[f * NcI + fc]; /* Test function basis value */
2717: for (PetscInt g = 0; g < NbJ; ++g) {
2718: const PetscInt j = offsetJ + g; /* Element matrix column */
2719: const PetscInt fOff = i * totDim + j;
2721: for (PetscInt gc = 0; gc < NcJ; ++gc) {
2722: const PetscInt gidx = g * NcJ + gc; /* Trial function basis index */
2724: for (PetscInt df = 0; df < dE; ++df) elemMat[fOff] += bI * g1[(fc * NcJ + gc) * dE + df] * tmpBasisDerJ[gidx * dE + df];
2725: }
2726: }
2727: }
2728: }
2729: #endif
2730: }
2731: if (PetscUnlikely(g2)) {
2732: #if 1
2733: if (dE == 2) {
2734: petsc_elemmat_kernel_g2(NbI, NcI, NbJ, NcJ, 2);
2735: } else if (dE == 3) {
2736: petsc_elemmat_kernel_g2(NbI, NcI, NbJ, NcJ, 3);
2737: } else {
2738: petsc_elemmat_kernel_g2(NbI, NcI, NbJ, NcJ, dE);
2739: }
2740: #else
2741: for (PetscInt g = 0; g < NbJ; ++g) {
2742: const PetscInt j = offsetJ + g; /* Element matrix column */
2744: for (PetscInt gc = 0; gc < NcJ; ++gc) {
2745: const PetscScalar bJ = tmpBasisJ[g * NcJ + gc]; /* Trial function basis value */
2747: for (PetscInt f = 0; f < NbI; ++f) {
2748: const PetscInt i = offsetI + f; /* Element matrix row */
2749: const PetscInt fOff = i * totDim + j;
2751: for (PetscInt fc = 0; fc < NcI; ++fc) {
2752: const PetscInt fidx = f * NcI + fc; /* Test function basis index */
2754: for (PetscInt df = 0; df < dE; ++df) elemMat[fOff] += tmpBasisDerI[fidx * dE + df] * g2[(fc * NcJ + gc) * dE + df] * bJ;
2755: }
2756: }
2757: }
2758: }
2759: #endif
2760: }
2761: if (PetscUnlikely(g3)) {
2762: #if 1
2763: if (dE == 2) {
2764: petsc_elemmat_kernel_g3(NbI, NcI, NbJ, NcJ, 2);
2765: } else if (dE == 3) {
2766: petsc_elemmat_kernel_g3(NbI, NcI, NbJ, NcJ, 3);
2767: } else {
2768: petsc_elemmat_kernel_g3(NbI, NcI, NbJ, NcJ, dE);
2769: }
2770: #else
2771: for (PetscInt f = 0; f < NbI; ++f) {
2772: const PetscInt i = offsetI + f; /* Element matrix row */
2774: for (PetscInt fc = 0; fc < NcI; ++fc) {
2775: const PetscInt fidx = f * NcI + fc; /* Test function basis index */
2777: for (PetscInt g = 0; g < NbJ; ++g) {
2778: const PetscInt j = offsetJ + g; /* Element matrix column */
2779: const PetscInt fOff = i * totDim + j;
2781: for (PetscInt gc = 0; gc < NcJ; ++gc) {
2782: const PetscInt gidx = g * NcJ + gc; /* Trial function basis index */
2784: for (PetscInt df = 0; df < dE; ++df) {
2785: for (PetscInt dg = 0; dg < dE; ++dg) elemMat[fOff] += tmpBasisDerI[fidx * dE + df] * g3[((fc * NcJ + gc) * dE + df) * dE + dg] * tmpBasisDerJ[gidx * dE + dg];
2786: }
2787: }
2788: }
2789: }
2790: }
2791: #endif
2792: }
2793: return PETSC_SUCCESS;
2794: }
2796: #undef petsc_elemmat_kernel_g1
2797: #undef petsc_elemmat_kernel_g2
2798: #undef petsc_elemmat_kernel_g3
2800: PetscErrorCode PetscFEUpdateElementMat_Hybrid_Internal(PetscFE feI, PetscBool isHybridI, PetscFE feJ, PetscBool isHybridJ, PetscInt r, PetscInt s, PetscInt t, PetscInt q, PetscTabulation TI, PetscScalar tmpBasisI[], PetscScalar tmpBasisDerI[], PetscTabulation TJ, PetscScalar tmpBasisJ[], PetscScalar tmpBasisDerJ[], PetscFEGeom *fegeom, const PetscScalar g0[], const PetscScalar g1[], const PetscScalar g2[], const PetscScalar g3[], PetscInt eOffset, PetscInt totDim, PetscInt offsetI, PetscInt offsetJ, PetscScalar elemMat[])
2801: {
2802: const PetscInt dE = TI->cdim;
2803: const PetscInt NqI = TI->Np;
2804: const PetscInt NbI = TI->Nb;
2805: const PetscInt NcI = TI->Nc;
2806: const PetscReal *basisI = &TI->T[0][(r * NqI + q) * NbI * NcI];
2807: const PetscReal *basisDerI = &TI->T[1][(r * NqI + q) * NbI * NcI * dE];
2808: const PetscInt NqJ = TJ->Np;
2809: const PetscInt NbJ = TJ->Nb;
2810: const PetscInt NcJ = TJ->Nc;
2811: const PetscReal *basisJ = &TJ->T[0][(r * NqJ + q) * NbJ * NcJ];
2812: const PetscReal *basisDerJ = &TJ->T[1][(r * NqJ + q) * NbJ * NcJ * dE];
2813: const PetscInt so = isHybridI ? 0 : s;
2814: const PetscInt to = isHybridJ ? 0 : t;
2815: PetscInt f, fc, g, gc, df, dg;
2817: for (f = 0; f < NbI; ++f) {
2818: for (fc = 0; fc < NcI; ++fc) {
2819: const PetscInt fidx = f * NcI + fc; /* Test function basis index */
2821: tmpBasisI[fidx] = basisI[fidx];
2822: for (df = 0; df < dE; ++df) tmpBasisDerI[fidx * dE + df] = basisDerI[fidx * dE + df];
2823: }
2824: }
2825: PetscCall(PetscFEPushforward(feI, fegeom, NbI, tmpBasisI));
2826: PetscCall(PetscFEPushforwardGradient(feI, fegeom, NbI, tmpBasisDerI));
2827: for (g = 0; g < NbJ; ++g) {
2828: for (gc = 0; gc < NcJ; ++gc) {
2829: const PetscInt gidx = g * NcJ + gc; /* Trial function basis index */
2831: tmpBasisJ[gidx] = basisJ[gidx];
2832: for (dg = 0; dg < dE; ++dg) tmpBasisDerJ[gidx * dE + dg] = basisDerJ[gidx * dE + dg];
2833: }
2834: }
2835: PetscCall(PetscFEPushforward(feJ, fegeom, NbJ, tmpBasisJ));
2836: // TODO This is currently broken since we do not pull the geometry down to the lower dimension
2837: // PetscCall(PetscFEPushforwardGradient(feJ, fegeom, NbJ, tmpBasisDerJ));
2838: for (f = 0; f < NbI; ++f) {
2839: for (fc = 0; fc < NcI; ++fc) {
2840: const PetscInt fidx = f * NcI + fc; /* Test function basis index */
2841: const PetscInt i = offsetI + NbI * so + f; /* Element matrix row */
2842: for (g = 0; g < NbJ; ++g) {
2843: for (gc = 0; gc < NcJ; ++gc) {
2844: const PetscInt gidx = g * NcJ + gc; /* Trial function basis index */
2845: const PetscInt j = offsetJ + NbJ * to + g; /* Element matrix column */
2846: const PetscInt fOff = eOffset + i * totDim + j;
2848: elemMat[fOff] += tmpBasisI[fidx] * g0[fc * NcJ + gc] * tmpBasisJ[gidx];
2849: for (df = 0; df < dE; ++df) {
2850: elemMat[fOff] += tmpBasisI[fidx] * g1[(fc * NcJ + gc) * dE + df] * tmpBasisDerJ[gidx * dE + df];
2851: elemMat[fOff] += tmpBasisDerI[fidx * dE + df] * g2[(fc * NcJ + gc) * dE + df] * tmpBasisJ[gidx];
2852: for (dg = 0; dg < dE; ++dg) elemMat[fOff] += tmpBasisDerI[fidx * dE + df] * g3[((fc * NcJ + gc) * dE + df) * dE + dg] * tmpBasisDerJ[gidx * dE + dg];
2853: }
2854: }
2855: }
2856: }
2857: }
2858: return PETSC_SUCCESS;
2859: }
2861: PetscErrorCode PetscFECreateCellGeometry(PetscFE fe, PetscQuadrature quad, PetscFEGeom *cgeom)
2862: {
2863: PetscDualSpace dsp;
2864: DM dm;
2865: PetscQuadrature quadDef;
2866: PetscInt dim, cdim, Nq;
2868: PetscFunctionBegin;
2869: PetscCall(PetscFEGetDualSpace(fe, &dsp));
2870: PetscCall(PetscDualSpaceGetDM(dsp, &dm));
2871: PetscCall(DMGetDimension(dm, &dim));
2872: PetscCall(DMGetCoordinateDim(dm, &cdim));
2873: PetscCall(PetscFEGetQuadrature(fe, &quadDef));
2874: quad = quad ? quad : quadDef;
2875: PetscCall(PetscQuadratureGetData(quad, NULL, NULL, &Nq, NULL, NULL));
2876: PetscCall(PetscMalloc1(Nq * cdim, &cgeom->v));
2877: PetscCall(PetscMalloc1(Nq * cdim * cdim, &cgeom->J));
2878: PetscCall(PetscMalloc1(Nq * cdim * cdim, &cgeom->invJ));
2879: PetscCall(PetscMalloc1(Nq, &cgeom->detJ));
2880: cgeom->dim = dim;
2881: cgeom->dimEmbed = cdim;
2882: cgeom->numCells = 1;
2883: cgeom->numPoints = Nq;
2884: PetscCall(DMPlexComputeCellGeometryFEM(dm, 0, quad, cgeom->v, cgeom->J, cgeom->invJ, cgeom->detJ));
2885: PetscFunctionReturn(PETSC_SUCCESS);
2886: }
2888: PetscErrorCode PetscFEDestroyCellGeometry(PetscFE fe, PetscFEGeom *cgeom)
2889: {
2890: PetscFunctionBegin;
2891: PetscCall(PetscFree(cgeom->v));
2892: PetscCall(PetscFree(cgeom->J));
2893: PetscCall(PetscFree(cgeom->invJ));
2894: PetscCall(PetscFree(cgeom->detJ));
2895: PetscFunctionReturn(PETSC_SUCCESS);
2896: }
2898: #if 0
2899: PetscErrorCode PetscFEUpdateElementMat_Internal_SparseIndices(PetscTabulation TI, PetscTabulation TJ, PetscInt dimEmbed, const PetscInt g0[], const PetscInt g1[], const PetscInt g2[], const PetscInt g3[], PetscInt totDim, PetscInt offsetI, PetscInt offsetJ, PetscInt *n_g0, PetscInt **g0_idxs_out, PetscInt *n_g1, PetscInt **g1_idxs_out, PetscInt *n_g2, PetscInt **g2_idxs_out, PetscInt *n_g3, PetscInt **g3_idxs_out)
2900: {
2901: const PetscInt dE = dimEmbed;
2902: const PetscInt NbI = TI->Nb;
2903: const PetscInt NcI = TI->Nc;
2904: const PetscInt NbJ = TJ->Nb;
2905: const PetscInt NcJ = TJ->Nc;
2906: PetscBool has_g0 = g0 ? PETSC_TRUE : PETSC_FALSE;
2907: PetscBool has_g1 = g1 ? PETSC_TRUE : PETSC_FALSE;
2908: PetscBool has_g2 = g2 ? PETSC_TRUE : PETSC_FALSE;
2909: PetscBool has_g3 = g3 ? PETSC_TRUE : PETSC_FALSE;
2910: PetscInt *g0_idxs = NULL, *g1_idxs = NULL, *g2_idxs = NULL, *g3_idxs = NULL;
2911: PetscInt g0_i, g1_i, g2_i, g3_i;
2913: PetscFunctionBegin;
2914: g0_i = g1_i = g2_i = g3_i = 0;
2915: if (has_g0)
2916: for (PetscInt i = 0; i < NcI * NcJ; i++)
2917: if (g0[i]) g0_i += NbI * NbJ;
2918: if (has_g1)
2919: for (PetscInt i = 0; i < NcI * NcJ * dE; i++)
2920: if (g1[i]) g1_i += NbI * NbJ;
2921: if (has_g2)
2922: for (PetscInt i = 0; i < NcI * NcJ * dE; i++)
2923: if (g2[i]) g2_i += NbI * NbJ;
2924: if (has_g3)
2925: for (PetscInt i = 0; i < NcI * NcJ * dE * dE; i++)
2926: if (g3[i]) g3_i += NbI * NbJ;
2927: if (g0_i == NbI * NbJ * NcI * NcJ) g0_i = 0;
2928: if (g1_i == NbI * NbJ * NcI * NcJ * dE) g1_i = 0;
2929: if (g2_i == NbI * NbJ * NcI * NcJ * dE) g2_i = 0;
2930: if (g3_i == NbI * NbJ * NcI * NcJ * dE * dE) g3_i = 0;
2931: has_g0 = g0_i ? PETSC_TRUE : PETSC_FALSE;
2932: has_g1 = g1_i ? PETSC_TRUE : PETSC_FALSE;
2933: has_g2 = g2_i ? PETSC_TRUE : PETSC_FALSE;
2934: has_g3 = g3_i ? PETSC_TRUE : PETSC_FALSE;
2935: if (has_g0) PetscCall(PetscMalloc1(4 * g0_i, &g0_idxs));
2936: if (has_g1) PetscCall(PetscMalloc1(4 * g1_i, &g1_idxs));
2937: if (has_g2) PetscCall(PetscMalloc1(4 * g2_i, &g2_idxs));
2938: if (has_g3) PetscCall(PetscMalloc1(4 * g3_i, &g3_idxs));
2939: g0_i = g1_i = g2_i = g3_i = 0;
2941: for (PetscInt f = 0; f < NbI; ++f) {
2942: const PetscInt i = offsetI + f; /* Element matrix row */
2943: for (PetscInt fc = 0; fc < NcI; ++fc) {
2944: const PetscInt fidx = f * NcI + fc; /* Test function basis index */
2946: for (PetscInt g = 0; g < NbJ; ++g) {
2947: const PetscInt j = offsetJ + g; /* Element matrix column */
2948: const PetscInt fOff = i * totDim + j;
2949: for (PetscInt gc = 0; gc < NcJ; ++gc) {
2950: const PetscInt gidx = g * NcJ + gc; /* Trial function basis index */
2952: if (has_g0) {
2953: if (g0[fc * NcJ + gc]) {
2954: g0_idxs[4 * g0_i + 0] = fidx;
2955: g0_idxs[4 * g0_i + 1] = fc * NcJ + gc;
2956: g0_idxs[4 * g0_i + 2] = gidx;
2957: g0_idxs[4 * g0_i + 3] = fOff;
2958: g0_i++;
2959: }
2960: }
2962: for (PetscInt df = 0; df < dE; ++df) {
2963: if (has_g1) {
2964: if (g1[(fc * NcJ + gc) * dE + df]) {
2965: g1_idxs[4 * g1_i + 0] = fidx;
2966: g1_idxs[4 * g1_i + 1] = (fc * NcJ + gc) * dE + df;
2967: g1_idxs[4 * g1_i + 2] = gidx * dE + df;
2968: g1_idxs[4 * g1_i + 3] = fOff;
2969: g1_i++;
2970: }
2971: }
2972: if (has_g2) {
2973: if (g2[(fc * NcJ + gc) * dE + df]) {
2974: g2_idxs[4 * g2_i + 0] = fidx * dE + df;
2975: g2_idxs[4 * g2_i + 1] = (fc * NcJ + gc) * dE + df;
2976: g2_idxs[4 * g2_i + 2] = gidx;
2977: g2_idxs[4 * g2_i + 3] = fOff;
2978: g2_i++;
2979: }
2980: }
2981: if (has_g3) {
2982: for (PetscInt dg = 0; dg < dE; ++dg) {
2983: if (g3[((fc * NcJ + gc) * dE + df) * dE + dg]) {
2984: g3_idxs[4 * g3_i + 0] = fidx * dE + df;
2985: g3_idxs[4 * g3_i + 1] = ((fc * NcJ + gc) * dE + df) * dE + dg;
2986: g3_idxs[4 * g3_i + 2] = gidx * dE + dg;
2987: g3_idxs[4 * g3_i + 3] = fOff;
2988: g3_i++;
2989: }
2990: }
2991: }
2992: }
2993: }
2994: }
2995: }
2996: }
2997: *n_g0 = g0_i;
2998: *n_g1 = g1_i;
2999: *n_g2 = g2_i;
3000: *n_g3 = g3_i;
3002: *g0_idxs_out = g0_idxs;
3003: *g1_idxs_out = g1_idxs;
3004: *g2_idxs_out = g2_idxs;
3005: *g3_idxs_out = g3_idxs;
3006: PetscFunctionReturn(PETSC_SUCCESS);
3007: }
3009: //example HOW TO USE
3010: for (PetscInt i = 0; i < g0_sparse_n; i++) {
3011: PetscInt bM = g0_sparse_idxs[4 * i + 0];
3012: PetscInt bN = g0_sparse_idxs[4 * i + 1];
3013: PetscInt bK = g0_sparse_idxs[4 * i + 2];
3014: PetscInt bO = g0_sparse_idxs[4 * i + 3];
3015: elemMat[bO] += tmpBasisI[bM] * g0[bN] * tmpBasisJ[bK];
3016: }
3017: #endif