Actual source code: spaceptrimmed.c

  1: #include <petsc/private/petscfeimpl.h>

  3: static PetscErrorCode PetscSpaceSetFromOptions_Ptrimmed(PetscSpace sp, PetscOptionItems PetscOptionsObject)
  4: {
  5:   PetscSpace_Ptrimmed *pt = (PetscSpace_Ptrimmed *)sp->data;

  7:   PetscFunctionBegin;
  8:   PetscOptionsHeadBegin(PetscOptionsObject, "PetscSpace polynomial options");
  9:   PetscCall(PetscOptionsInt("-petscspace_ptrimmed_form_degree", "form degree of trimmed space", "PetscSpacePTrimmedSetFormDegree", pt->formDegree, &pt->formDegree, NULL));
 10:   PetscOptionsHeadEnd();
 11:   PetscFunctionReturn(PETSC_SUCCESS);
 12: }

 14: static PetscErrorCode PetscSpacePTrimmedView_Ascii(PetscSpace sp, PetscViewer v)
 15: {
 16:   PetscSpace_Ptrimmed *pt = (PetscSpace_Ptrimmed *)sp->data;
 17:   PetscInt             f, tdegree;

 19:   PetscFunctionBegin;
 20:   f       = pt->formDegree;
 21:   tdegree = f == 0 ? sp->degree : sp->degree + 1;
 22:   PetscCall(PetscViewerASCIIPrintf(v, "Trimmed polynomials %" PetscInt_FMT "%s-forms of degree %" PetscInt_FMT " (P-%" PetscInt_FMT "/\\%" PetscInt_FMT ")\n", PetscAbsInt(f), f < 0 ? "*" : "", sp->degree, tdegree, PetscAbsInt(f)));
 23:   PetscFunctionReturn(PETSC_SUCCESS);
 24: }

 26: static PetscErrorCode PetscSpaceView_Ptrimmed(PetscSpace sp, PetscViewer viewer)
 27: {
 28:   PetscBool isascii;

 30:   PetscFunctionBegin;
 33:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &isascii));
 34:   if (isascii) PetscCall(PetscSpacePTrimmedView_Ascii(sp, viewer));
 35:   PetscFunctionReturn(PETSC_SUCCESS);
 36: }

 38: static PetscErrorCode PetscSpaceDestroy_Ptrimmed(PetscSpace sp)
 39: {
 40:   PetscSpace_Ptrimmed *pt = (PetscSpace_Ptrimmed *)sp->data;

 42:   PetscFunctionBegin;
 43:   PetscCall(PetscObjectComposeFunction((PetscObject)sp, "PetscSpacePTrimmedGetFormDegree_C", NULL));
 44:   PetscCall(PetscObjectComposeFunction((PetscObject)sp, "PetscSpacePTrimmedSetFormDegree_C", NULL));
 45:   if (pt->subspaces) {
 46:     PetscInt d;

 48:     for (d = 0; d < sp->Nv; ++d) PetscCall(PetscSpaceDestroy(&pt->subspaces[d]));
 49:   }
 50:   PetscCall(PetscFree(pt->subspaces));
 51:   PetscCall(PetscFree(pt));
 52:   PetscFunctionReturn(PETSC_SUCCESS);
 53: }

 55: static PetscErrorCode PetscSpaceSetUp_Ptrimmed(PetscSpace sp)
 56: {
 57:   PetscSpace_Ptrimmed *pt = (PetscSpace_Ptrimmed *)sp->data;
 58:   PetscInt             Nf;

 60:   PetscFunctionBegin;
 61:   if (pt->setupcalled) PetscFunctionReturn(PETSC_SUCCESS);
 62:   PetscCheck(pt->formDegree >= -sp->Nv && pt->formDegree <= sp->Nv, PetscObjectComm((PetscObject)sp), PETSC_ERR_ARG_OUTOFRANGE, "Form degree %" PetscInt_FMT " not in valid range [%" PetscInt_FMT ",%" PetscInt_FMT "]", pt->formDegree, sp->Nv, sp->Nv);
 63:   PetscCall(PetscDTBinomialInt(sp->Nv, PetscAbsInt(pt->formDegree), &Nf));
 64:   if (sp->Nc == PETSC_DETERMINE) sp->Nc = Nf;
 65:   PetscCheck(sp->Nc % Nf == 0, PetscObjectComm((PetscObject)sp), PETSC_ERR_ARG_INCOMP, "Number of components %" PetscInt_FMT " is not a multiple of form dimension %" PetscInt_FMT, sp->Nc, Nf);
 66:   if (sp->Nc != Nf) {
 67:     PetscSpace  subsp;
 68:     PetscInt    nCopies = sp->Nc / Nf;
 69:     PetscInt    Nv, deg, maxDeg;
 70:     PetscInt    formDegree = pt->formDegree;
 71:     const char *prefix;
 72:     const char *name;
 73:     char        subname[PETSC_MAX_PATH_LEN];

 75:     PetscCall(PetscSpaceSetType(sp, PETSCSPACESUM));
 76:     PetscCall(PetscSpaceSumSetConcatenate(sp, PETSC_TRUE));
 77:     PetscCall(PetscSpaceSumSetNumSubspaces(sp, nCopies));
 78:     PetscCall(PetscSpaceCreate(PetscObjectComm((PetscObject)sp), &subsp));
 79:     PetscCall(PetscObjectGetOptionsPrefix((PetscObject)sp, &prefix));
 80:     PetscCall(PetscObjectSetOptionsPrefix((PetscObject)subsp, prefix));
 81:     PetscCall(PetscObjectAppendOptionsPrefix((PetscObject)subsp, "sumcomp_"));
 82:     if (((PetscObject)sp)->name) {
 83:       PetscCall(PetscObjectGetName((PetscObject)sp, &name));
 84:       PetscCall(PetscSNPrintf(subname, PETSC_MAX_PATH_LEN - 1, "%s sum component", name));
 85:       PetscCall(PetscObjectSetName((PetscObject)subsp, subname));
 86:     } else PetscCall(PetscObjectSetName((PetscObject)subsp, "sum component"));
 87:     PetscCall(PetscSpaceSetType(subsp, PETSCSPACEPTRIMMED));
 88:     PetscCall(PetscSpaceGetNumVariables(sp, &Nv));
 89:     PetscCall(PetscSpaceSetNumVariables(subsp, Nv));
 90:     PetscCall(PetscSpaceSetNumComponents(subsp, Nf));
 91:     PetscCall(PetscSpaceGetDegree(sp, &deg, &maxDeg));
 92:     PetscCall(PetscSpaceSetDegree(subsp, deg, maxDeg));
 93:     PetscCall(PetscSpacePTrimmedSetFormDegree(subsp, formDegree));
 94:     PetscCall(PetscSpaceSetUp(subsp));
 95:     for (PetscInt i = 0; i < nCopies; i++) PetscCall(PetscSpaceSumSetSubspace(sp, i, subsp));
 96:     PetscCall(PetscSpaceDestroy(&subsp));
 97:     PetscCall(PetscSpaceSetUp(sp));
 98:     PetscFunctionReturn(PETSC_SUCCESS);
 99:   }
100:   if (sp->degree == PETSC_DEFAULT) sp->degree = 0;
101:   else PetscCheck(sp->degree >= 0, PetscObjectComm((PetscObject)sp), PETSC_ERR_ARG_OUTOFRANGE, "Invalid negative degree %" PetscInt_FMT, sp->degree);
102:   sp->maxDegree = (pt->formDegree == 0 || PetscAbsInt(pt->formDegree) == sp->Nv) ? sp->degree : sp->degree + 1;
103:   if (pt->formDegree == 0 || PetscAbsInt(pt->formDegree) == sp->Nv) {
104:     // Convert to regular polynomial space
105:     PetscCall(PetscSpaceSetType(sp, PETSCSPACEPOLYNOMIAL));
106:     PetscCall(PetscSpaceSetUp(sp));
107:     PetscFunctionReturn(PETSC_SUCCESS);
108:   }
109:   pt->setupcalled = PETSC_TRUE;
110:   PetscFunctionReturn(PETSC_SUCCESS);
111: }

113: static PetscErrorCode PetscSpaceGetDimension_Ptrimmed(PetscSpace sp, PetscInt *dim)
114: {
115:   PetscSpace_Ptrimmed *pt = (PetscSpace_Ptrimmed *)sp->data;
116:   PetscInt             f;
117:   PetscInt             Nf;

119:   PetscFunctionBegin;
120:   f = pt->formDegree;
121:   // For PetscSpace, degree refers to the largest complete polynomial degree contained in the space which
122:   // is equal to the index of a P trimmed space only for 0-forms: otherwise, the index is degree + 1
123:   PetscCall(PetscDTPTrimmedSize(sp->Nv, f == 0 ? sp->degree : sp->degree + 1, pt->formDegree, dim));
124:   PetscCall(PetscDTBinomialInt(sp->Nv, PetscAbsInt(pt->formDegree), &Nf));
125:   *dim *= (sp->Nc / Nf);
126:   PetscFunctionReturn(PETSC_SUCCESS);
127: }

129: /*
130:   p in [0, npoints), i in [0, pdim), c in [0, Nc)

132:   B[p][i][c] = B[p][i_scalar][c][c]
133: */
134: static PetscErrorCode PetscSpaceEvaluate_Ptrimmed(PetscSpace sp, PetscInt npoints, const PetscReal points[], PetscReal B[], PetscReal D[], PetscReal H[])
135: {
136:   PetscSpace_Ptrimmed *pt = (PetscSpace_Ptrimmed *)sp->data;
137:   DM                   dm = sp->dm;
138:   PetscInt             jet, degree, Nf, Ncopies, Njet;
139:   PetscInt             Nc = sp->Nc;
140:   PetscInt             f;
141:   PetscInt             dim = sp->Nv;
142:   PetscReal           *eval;
143:   PetscInt             Nb;

145:   PetscFunctionBegin;
146:   if (!pt->setupcalled) {
147:     PetscCall(PetscSpaceSetUp(sp));
148:     PetscCall(PetscSpaceEvaluate(sp, npoints, points, B, D, H));
149:     PetscFunctionReturn(PETSC_SUCCESS);
150:   }
151:   if (H) {
152:     jet = 2;
153:   } else if (D) {
154:     jet = 1;
155:   } else {
156:     jet = 0;
157:   }
158:   f      = pt->formDegree;
159:   degree = f == 0 ? sp->degree : sp->degree + 1;
160:   PetscCall(PetscDTBinomialInt(dim, PetscAbsInt(f), &Nf));
161:   Ncopies = Nc / Nf;
162:   PetscCheck(Ncopies == 1, PetscObjectComm((PetscObject)sp), PETSC_ERR_PLIB, "Multicopy spaces should have been converted to PETSCSPACESUM");
163:   PetscCall(PetscDTBinomialInt(dim + jet, dim, &Njet));
164:   PetscCall(PetscDTPTrimmedSize(dim, degree, f, &Nb));
165:   PetscCall(DMGetWorkArray(dm, Nb * Nf * Njet * npoints, MPIU_REAL, &eval));
166:   PetscCall(PetscDTPTrimmedEvalJet(dim, npoints, points, degree, f, jet, eval));
167:   if (B) {
168:     PetscInt p_strl = Nf * Nb;
169:     PetscInt b_strl = Nf;
170:     PetscInt v_strl = 1;

172:     PetscInt b_strr = Nf * Njet * npoints;
173:     PetscInt v_strr = Njet * npoints;
174:     PetscInt p_strr = 1;

176:     for (PetscInt v = 0; v < Nf; v++) {
177:       for (PetscInt b = 0; b < Nb; b++) {
178:         for (PetscInt p = 0; p < npoints; p++) B[p * p_strl + b * b_strl + v * v_strl] = eval[b * b_strr + v * v_strr + p * p_strr];
179:       }
180:     }
181:   }
182:   if (D) {
183:     PetscInt p_strl = dim * Nf * Nb;
184:     PetscInt b_strl = dim * Nf;
185:     PetscInt v_strl = dim;
186:     PetscInt d_strl = 1;

188:     PetscInt b_strr = Nf * Njet * npoints;
189:     PetscInt v_strr = Njet * npoints;
190:     PetscInt d_strr = npoints;
191:     PetscInt p_strr = 1;

193:     for (PetscInt v = 0; v < Nf; v++) {
194:       for (PetscInt d = 0; d < dim; d++) {
195:         for (PetscInt b = 0; b < Nb; b++) {
196:           for (PetscInt p = 0; p < npoints; p++) D[p * p_strl + b * b_strl + v * v_strl + d * d_strl] = eval[b * b_strr + v * v_strr + (1 + d) * d_strr + p * p_strr];
197:         }
198:       }
199:     }
200:   }
201:   if (H) {
202:     PetscInt p_strl  = dim * dim * Nf * Nb;
203:     PetscInt b_strl  = dim * dim * Nf;
204:     PetscInt v_strl  = dim * dim;
205:     PetscInt d1_strl = dim;
206:     PetscInt d2_strl = 1;

208:     PetscInt b_strr = Nf * Njet * npoints;
209:     PetscInt v_strr = Njet * npoints;
210:     PetscInt j_strr = npoints;
211:     PetscInt p_strr = 1;

213:     PetscInt *derivs;
214:     PetscCall(PetscCalloc1(dim, &derivs));
215:     for (PetscInt d1 = 0; d1 < dim; d1++) {
216:       for (PetscInt d2 = 0; d2 < dim; d2++) {
217:         PetscInt j;
218:         derivs[d1]++;
219:         derivs[d2]++;
220:         PetscCall(PetscDTGradedOrderToIndex(dim, derivs, &j));
221:         derivs[d1]--;
222:         derivs[d2]--;
223:         for (PetscInt v = 0; v < Nf; v++) {
224:           for (PetscInt b = 0; b < Nb; b++) {
225:             for (PetscInt p = 0; p < npoints; p++) H[p * p_strl + b * b_strl + v * v_strl + d1 * d1_strl + d2 * d2_strl] = eval[b * b_strr + v * v_strr + j * j_strr + p * p_strr];
226:           }
227:         }
228:       }
229:     }
230:     PetscCall(PetscFree(derivs));
231:   }
232:   PetscCall(DMRestoreWorkArray(dm, Nb * Nf * Njet * npoints, MPIU_REAL, &eval));
233:   PetscFunctionReturn(PETSC_SUCCESS);
234: }

236: /*@
237:   PetscSpacePTrimmedSetFormDegree - Set the form degree of the trimmed polynomials.

239:   Input Parameters:
240: + sp         - the function space object
241: - formDegree - the form degree

243:   Options Database Key:
244: . -petscspace_ptrimmed_form_degree <int> - The trimmed polynomial form degree

246:   Level: intermediate

248: .seealso: `PetscSpace`, `PetscDTAltV`, `PetscDTPTrimmedEvalJet()`, `PetscSpacePTrimmedGetFormDegree()`
249: @*/
250: PetscErrorCode PetscSpacePTrimmedSetFormDegree(PetscSpace sp, PetscInt formDegree)
251: {
252:   PetscFunctionBegin;
254:   PetscTryMethod(sp, "PetscSpacePTrimmedSetFormDegree_C", (PetscSpace, PetscInt), (sp, formDegree));
255:   PetscFunctionReturn(PETSC_SUCCESS);
256: }

258: /*@
259:   PetscSpacePTrimmedGetFormDegree - Get the form degree of the trimmed polynomials.

261:   Input Parameter:
262: . sp - the function space object

264:   Output Parameter:
265: . formDegree - the form degree

267:   Level: intermediate

269: .seealso: `PetscSpace`, `PetscDTAltV`, `PetscDTPTrimmedEvalJet()`, `PetscSpacePTrimmedSetFormDegree()`
270: @*/
271: PetscErrorCode PetscSpacePTrimmedGetFormDegree(PetscSpace sp, PetscInt *formDegree)
272: {
273:   PetscFunctionBegin;
275:   PetscAssertPointer(formDegree, 2);
276:   PetscTryMethod(sp, "PetscSpacePTrimmedGetFormDegree_C", (PetscSpace, PetscInt *), (sp, formDegree));
277:   PetscFunctionReturn(PETSC_SUCCESS);
278: }

280: static PetscErrorCode PetscSpacePTrimmedSetFormDegree_Ptrimmed(PetscSpace sp, PetscInt formDegree)
281: {
282:   PetscSpace_Ptrimmed *pt = (PetscSpace_Ptrimmed *)sp->data;

284:   PetscFunctionBegin;
285:   pt->formDegree = formDegree;
286:   PetscFunctionReturn(PETSC_SUCCESS);
287: }

289: static PetscErrorCode PetscSpacePTrimmedGetFormDegree_Ptrimmed(PetscSpace sp, PetscInt *formDegree)
290: {
291:   PetscSpace_Ptrimmed *pt = (PetscSpace_Ptrimmed *)sp->data;

293:   PetscFunctionBegin;
295:   PetscAssertPointer(formDegree, 2);
296:   *formDegree = pt->formDegree;
297:   PetscFunctionReturn(PETSC_SUCCESS);
298: }

300: static PetscErrorCode PetscSpaceGetHeightSubspace_Ptrimmed(PetscSpace sp, PetscInt height, PetscSpace *subsp)
301: {
302:   PetscSpace_Ptrimmed *pt = (PetscSpace_Ptrimmed *)sp->data;
303:   PetscInt             dim;

305:   PetscFunctionBegin;
306:   PetscCall(PetscSpaceGetNumVariables(sp, &dim));
307:   PetscCheck(height <= dim && height >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Asked for space at height %" PetscInt_FMT " for dimension %" PetscInt_FMT " space", height, dim);
308:   if (!pt->subspaces) PetscCall(PetscCalloc1(dim, &pt->subspaces));
309:   if ((dim - height) <= PetscAbsInt(pt->formDegree)) {
310:     if (!pt->subspaces[height - 1]) {
311:       PetscInt    Nc, degree, Nf, Ncopies, Nfsub;
312:       PetscSpace  sub;
313:       const char *name;

315:       PetscCall(PetscSpaceGetNumComponents(sp, &Nc));
316:       PetscCall(PetscDTBinomialInt(dim, PetscAbsInt(pt->formDegree), &Nf));
317:       PetscCall(PetscDTBinomialInt(dim - height, PetscAbsInt(pt->formDegree), &Nfsub));
318:       Ncopies = Nf / Nc;
319:       PetscCall(PetscSpaceGetDegree(sp, &degree, NULL));

321:       PetscCall(PetscSpaceCreate(PetscObjectComm((PetscObject)sp), &sub));
322:       PetscCall(PetscObjectGetName((PetscObject)sp, &name));
323:       PetscCall(PetscObjectSetName((PetscObject)sub, name));
324:       PetscCall(PetscSpaceSetType(sub, PETSCSPACEPTRIMMED));
325:       PetscCall(PetscSpaceSetNumComponents(sub, Nfsub * Ncopies));
326:       PetscCall(PetscSpaceSetDegree(sub, degree, PETSC_DETERMINE));
327:       PetscCall(PetscSpaceSetNumVariables(sub, dim - height));
328:       PetscCall(PetscSpacePTrimmedSetFormDegree(sub, pt->formDegree));
329:       PetscCall(PetscSpaceSetUp(sub));
330:       pt->subspaces[height - 1] = sub;
331:     }
332:     *subsp = pt->subspaces[height - 1];
333:   } else {
334:     *subsp = NULL;
335:   }
336:   PetscFunctionReturn(PETSC_SUCCESS);
337: }

339: static PetscErrorCode PetscSpaceInitialize_Ptrimmed(PetscSpace sp)
340: {
341:   PetscFunctionBegin;
342:   PetscCall(PetscObjectComposeFunction((PetscObject)sp, "PetscSpacePTrimmedGetFormDegree_C", PetscSpacePTrimmedGetFormDegree_Ptrimmed));
343:   PetscCall(PetscObjectComposeFunction((PetscObject)sp, "PetscSpacePTrimmedSetFormDegree_C", PetscSpacePTrimmedSetFormDegree_Ptrimmed));
344:   sp->ops->setfromoptions    = PetscSpaceSetFromOptions_Ptrimmed;
345:   sp->ops->setup             = PetscSpaceSetUp_Ptrimmed;
346:   sp->ops->view              = PetscSpaceView_Ptrimmed;
347:   sp->ops->destroy           = PetscSpaceDestroy_Ptrimmed;
348:   sp->ops->getdimension      = PetscSpaceGetDimension_Ptrimmed;
349:   sp->ops->evaluate          = PetscSpaceEvaluate_Ptrimmed;
350:   sp->ops->getheightsubspace = PetscSpaceGetHeightSubspace_Ptrimmed;
351:   PetscFunctionReturn(PETSC_SUCCESS);
352: }

354: /*MC
355:   PETSCSPACEPTRIMMED = "ptrimmed" - A `PetscSpace` object that encapsulates a trimmed polynomial space.

357:   Trimmed polynomial spaces are defined for $k$-forms, and are defined by
358:   $
359:   \mathcal{P}^-_r \Lambda^k(\mathbb{R}^n) = mathcal{P}_{r-1} \Lambda^k(\mathbb{R}^n) \oplus \kappa [\mathcal{H}_{r-1} \Lambda^{k+1}(\mathbb{R}^n)],
360:   $
361:   where $\mathcal{H}_{r-1}$ are homogeneous polynomials and $\kappa$ is the Koszul differential.  This decomposition is detailed in ``Finite element exterior calculus'', Arnold, 2018.

363:   Level: intermediate

365:   Notes:
366:   Trimmed polynomial spaces correspond to several common conformal approximation spaces in the de Rham complex:

368:   In $H^1$ ($\sim k=0$), trimmed polynomial spaces are identical to the standard polynomial spaces, $\mathcal{P}_r^- \sim P_r$.

370:   In $H(\text{curl})$, ($\sim k=1$), trimmed polynomial spaces are equivalent to $H(\text{curl})$-Nedelec spaces of the first kind and can be written as
371:   $
372:     \begin{cases}
373:       [P_{r-1}(\mathbb{R}^2)]^2 \oplus \mathrm{rot}(\bf{x}) H_{r-1}(\mathbb{R}^2), & n = 2, \\
374:       [P_{r-1}(\mathbb{R}^3)]^3 \oplus \bf{x} \times [H_{r-1}(\mathbb{R}^3)]^3, & n = 3.
375:     \end{cases}
376:   $

378:   In $H(\text{div})$ ($\sim k=n-1$), trimmed polynomial spaces are equivalent to Raviart-Thomas spaces ($n=2$) and $H(\text{div})$-Nedelec spaces of the first kind ($n=3$), and can be written as
379:   $
380:     [P_{r-1}(\mathbb{R}^n)]^n \oplus \bf{x} H_{r-1}(\mathbb{R}^n).
381:   $

383:   In $L_2$, ($\sim k=n$), trimmed polynomial spaces are identical to the standard polynomial spaces of one degree less, $\mathcal{P}_r^- \sim P_{r-1}$.

385: .seealso: `PetscSpace`, `PetscSpaceType`, `PetscSpaceCreate()`, `PetscSpaceSetType()`, `PetscDTPTrimmedEvalJet()`
386: M*/

388: PETSC_EXTERN PetscErrorCode PetscSpaceCreate_Ptrimmed(PetscSpace sp)
389: {
390:   PetscSpace_Ptrimmed *pt;

392:   PetscFunctionBegin;
394:   PetscCall(PetscNew(&pt));
395:   sp->data = pt;

397:   pt->subspaces = NULL;
398:   sp->Nc        = PETSC_DETERMINE;

400:   PetscCall(PetscSpaceInitialize_Ptrimmed(sp));
401:   PetscFunctionReturn(PETSC_SUCCESS);
402: }