Actual source code: da1.c
1: /*
2: Code for manipulating distributed regular 1d arrays in parallel.
3: This file was created by Peter Mell 6/30/95
4: */
6: #include <petsc/private/dmdaimpl.h>
8: #include <petscdraw.h>
9: static PetscErrorCode DMView_DA_1d(DM da, PetscViewer viewer)
10: {
11: PetscMPIInt rank;
12: PetscBool iascii, isdraw, isglvis, isbinary;
13: DM_DA *dd = (DM_DA *)da->data;
14: #if defined(PETSC_HAVE_MATLAB)
15: PetscBool ismatlab;
16: #endif
18: PetscFunctionBegin;
19: PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)da), &rank));
21: PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
22: PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERDRAW, &isdraw));
23: PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERGLVIS, &isglvis));
24: PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERBINARY, &isbinary));
25: #if defined(PETSC_HAVE_MATLAB)
26: PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERMATLAB, &ismatlab));
27: #endif
28: if (iascii) {
29: PetscViewerFormat format;
31: PetscCall(PetscViewerGetFormat(viewer, &format));
32: if (format == PETSC_VIEWER_LOAD_BALANCE) {
33: PetscInt i, nmax = 0, nmin = PETSC_INT_MAX, navg = 0, *nz, nzlocal;
34: DMDALocalInfo info;
35: PetscMPIInt size;
36: PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)da), &size));
37: PetscCall(DMDAGetLocalInfo(da, &info));
38: nzlocal = info.xm;
39: PetscCall(PetscMalloc1(size, &nz));
40: PetscCallMPI(MPI_Allgather(&nzlocal, 1, MPIU_INT, nz, 1, MPIU_INT, PetscObjectComm((PetscObject)da)));
41: for (i = 0; i < size; i++) {
42: nmax = PetscMax(nmax, nz[i]);
43: nmin = PetscMin(nmin, nz[i]);
44: navg += nz[i];
45: }
46: PetscCall(PetscFree(nz));
47: navg = navg / size;
48: PetscCall(PetscViewerASCIIPrintf(viewer, " Load Balance - Grid Points: Min %" PetscInt_FMT " avg %" PetscInt_FMT " max %" PetscInt_FMT "\n", nmin, navg, nmax));
49: PetscFunctionReturn(PETSC_SUCCESS);
50: }
51: if (format != PETSC_VIEWER_ASCII_GLVIS) {
52: DMDALocalInfo info;
53: PetscCall(DMDAGetLocalInfo(da, &info));
54: PetscCall(PetscViewerASCIIPushSynchronized(viewer));
55: PetscCall(PetscViewerASCIISynchronizedPrintf(viewer, "Processor [%d] M %" PetscInt_FMT " m %" PetscInt_FMT " w %" PetscInt_FMT " s %" PetscInt_FMT "\n", rank, dd->M, dd->m, dd->w, dd->s));
56: PetscCall(PetscViewerASCIISynchronizedPrintf(viewer, "X range of indices: %" PetscInt_FMT " %" PetscInt_FMT "\n", info.xs, info.xs + info.xm));
57: PetscCall(PetscViewerFlush(viewer));
58: PetscCall(PetscViewerASCIIPopSynchronized(viewer));
59: } else if (format == PETSC_VIEWER_ASCII_GLVIS) PetscCall(DMView_DA_GLVis(da, viewer));
60: } else if (isdraw) {
61: PetscDraw draw;
62: double ymin = -1, ymax = 1, xmin = -1, xmax = dd->M, x;
63: PetscInt base;
64: char node[10];
65: PetscBool isnull;
67: PetscCall(PetscViewerDrawGetDraw(viewer, 0, &draw));
68: PetscCall(PetscDrawIsNull(draw, &isnull));
69: if (isnull) PetscFunctionReturn(PETSC_SUCCESS);
71: PetscCall(PetscDrawCheckResizedWindow(draw));
72: PetscCall(PetscDrawClear(draw));
73: PetscCall(PetscDrawSetCoordinates(draw, xmin, ymin, xmax, ymax));
75: PetscDrawCollectiveBegin(draw);
76: /* first processor draws all node lines */
77: if (rank == 0) {
78: PetscInt xmin_tmp;
79: ymin = 0.0;
80: ymax = 0.3;
81: for (xmin_tmp = 0; xmin_tmp < dd->M; xmin_tmp++) PetscCall(PetscDrawLine(draw, (double)xmin_tmp, ymin, (double)xmin_tmp, ymax, PETSC_DRAW_BLACK));
82: xmin = 0.0;
83: xmax = dd->M - 1;
84: PetscCall(PetscDrawLine(draw, xmin, ymin, xmax, ymin, PETSC_DRAW_BLACK));
85: PetscCall(PetscDrawLine(draw, xmin, ymax, xmax, ymax, PETSC_DRAW_BLACK));
86: }
87: PetscDrawCollectiveEnd(draw);
88: PetscCall(PetscDrawFlush(draw));
89: PetscCall(PetscDrawPause(draw));
91: PetscDrawCollectiveBegin(draw);
92: /* draw my box */
93: ymin = 0;
94: ymax = 0.3;
95: xmin = dd->xs / dd->w;
96: xmax = (dd->xe / dd->w) - 1;
97: PetscCall(PetscDrawLine(draw, xmin, ymin, xmax, ymin, PETSC_DRAW_RED));
98: PetscCall(PetscDrawLine(draw, xmin, ymin, xmin, ymax, PETSC_DRAW_RED));
99: PetscCall(PetscDrawLine(draw, xmin, ymax, xmax, ymax, PETSC_DRAW_RED));
100: PetscCall(PetscDrawLine(draw, xmax, ymin, xmax, ymax, PETSC_DRAW_RED));
101: /* Put in index numbers */
102: base = dd->base / dd->w;
103: for (x = xmin; x <= xmax; x++) {
104: PetscCall(PetscSNPrintf(node, sizeof(node), "%" PetscInt_FMT, base++));
105: PetscCall(PetscDrawString(draw, x, ymin, PETSC_DRAW_RED, node));
106: }
107: PetscDrawCollectiveEnd(draw);
108: PetscCall(PetscDrawFlush(draw));
109: PetscCall(PetscDrawPause(draw));
110: PetscCall(PetscDrawSave(draw));
111: } else if (isglvis) {
112: PetscCall(DMView_DA_GLVis(da, viewer));
113: } else if (isbinary) {
114: PetscCall(DMView_DA_Binary(da, viewer));
115: #if defined(PETSC_HAVE_MATLAB)
116: } else if (ismatlab) {
117: PetscCall(DMView_DA_Matlab(da, viewer));
118: #endif
119: }
120: PetscFunctionReturn(PETSC_SUCCESS);
121: }
123: PetscErrorCode DMSetUp_DA_1D(DM da)
124: {
125: DM_DA *dd = (DM_DA *)da->data;
126: const PetscInt M = dd->M;
127: const PetscInt dof = dd->w;
128: const PetscInt s = dd->s;
129: const PetscInt sDist = s; /* stencil distance in points */
130: const PetscInt *lx = dd->lx;
131: DMBoundaryType bx = dd->bx;
132: MPI_Comm comm;
133: Vec local, global;
134: VecScatter gtol;
135: IS to, from;
136: PetscBool flg1 = PETSC_FALSE, flg2 = PETSC_FALSE;
137: PetscMPIInt rank, size;
138: PetscInt i, *idx, nn, left, xs, xe, x, Xs, Xe, start, m, IXs, IXe;
140: PetscFunctionBegin;
141: PetscCall(PetscObjectGetComm((PetscObject)da, &comm));
142: PetscCallMPI(MPI_Comm_size(comm, &size));
143: PetscCallMPI(MPI_Comm_rank(comm, &rank));
145: dd->p = 1;
146: dd->n = 1;
147: dd->m = size;
148: m = dd->m;
150: if (s > 0) {
151: /* if not communicating data then should be ok to have nothing on some processes */
152: PetscCheck(M >= m, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "More processes than data points! %" PetscInt_FMT " %" PetscInt_FMT, m, M);
153: PetscCheck((M - 1) >= s || size <= 1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Array is too small for stencil! %" PetscInt_FMT " %" PetscInt_FMT, M - 1, s);
154: }
156: /*
157: Determine locally owned region
158: xs is the first local node number, x is the number of local nodes
159: */
160: if (!lx) {
161: PetscCall(PetscMalloc1(m, &dd->lx));
162: PetscCall(PetscOptionsGetBool(((PetscObject)da)->options, ((PetscObject)da)->prefix, "-da_partition_blockcomm", &flg1, NULL));
163: PetscCall(PetscOptionsGetBool(((PetscObject)da)->options, ((PetscObject)da)->prefix, "-da_partition_nodes_at_end", &flg2, NULL));
164: if (flg1) { /* Block Comm type Distribution */
165: xs = rank * M / m;
166: x = (rank + 1) * M / m - xs;
167: } else if (flg2) { /* The odd nodes are evenly distributed across last nodes */
168: x = (M + rank) / m;
169: if (M / m == x) xs = rank * x;
170: else xs = rank * (x - 1) + (M + rank) % (x * m);
171: } else { /* The odd nodes are evenly distributed across the first k nodes */
172: /* Regular PETSc Distribution */
173: x = M / m + ((M % m) > rank);
174: if (rank >= (M % m)) xs = (rank * (M / m) + M % m);
175: else xs = rank * (M / m) + rank;
176: }
177: PetscCallMPI(MPI_Allgather(&xs, 1, MPIU_INT, dd->lx, 1, MPIU_INT, comm));
178: for (i = 0; i < m - 1; i++) dd->lx[i] = dd->lx[i + 1] - dd->lx[i];
179: dd->lx[m - 1] = M - dd->lx[m - 1];
180: } else {
181: x = lx[rank];
182: xs = 0;
183: for (i = 0; i < rank; i++) xs += lx[i];
184: /* verify that data user provided is consistent */
185: left = xs;
186: for (i = rank; i < size; i++) left += lx[i];
187: PetscCheck(left == M, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Sum of lx across processors not equal to M %" PetscInt_FMT " %" PetscInt_FMT, left, M);
188: }
190: /*
191: check if the scatter requires more than one process neighbor or wraps around
192: the domain more than once
193: */
194: PetscCheck((x >= s) || ((M <= 1) && (bx != DM_BOUNDARY_PERIODIC)), PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Local x-width of domain x %" PetscInt_FMT " is smaller than stencil width s %" PetscInt_FMT, x, s);
196: xe = xs + x;
198: /* determine ghost region (Xs) and region scattered into (IXs) */
199: if (xs - sDist > 0) {
200: Xs = xs - sDist;
201: IXs = xs - sDist;
202: } else {
203: if (bx) Xs = xs - sDist;
204: else Xs = 0;
205: IXs = 0;
206: }
207: if (xe + sDist <= M) {
208: Xe = xe + sDist;
209: IXe = xe + sDist;
210: } else {
211: if (bx) Xe = xe + sDist;
212: else Xe = M;
213: IXe = M;
214: }
216: if (bx == DM_BOUNDARY_PERIODIC || bx == DM_BOUNDARY_MIRROR) {
217: Xs = xs - sDist;
218: Xe = xe + sDist;
219: IXs = xs - sDist;
220: IXe = xe + sDist;
221: }
223: /* allocate the base parallel and sequential vectors */
224: dd->Nlocal = dof * x;
225: PetscCall(VecCreateMPIWithArray(comm, dof, dd->Nlocal, PETSC_DECIDE, NULL, &global));
226: dd->nlocal = dof * (Xe - Xs);
227: PetscCall(VecCreateSeqWithArray(PETSC_COMM_SELF, dof, dd->nlocal, NULL, &local));
229: PetscCall(VecGetOwnershipRange(global, &start, NULL));
231: /* Create Global to Local Vector Scatter Context */
232: /* global to local must retrieve ghost points */
233: PetscCall(ISCreateStride(comm, dof * (IXe - IXs), dof * (IXs - Xs), 1, &to));
235: PetscCall(PetscMalloc1(x + 2 * sDist, &idx));
237: for (i = 0; i < IXs - Xs; i++) idx[i] = -1; /* prepend with -1s if needed for ghosted case*/
239: nn = IXs - Xs;
240: if (bx == DM_BOUNDARY_PERIODIC) { /* Handle all cases with periodic first */
241: for (i = 0; i < sDist; i++) { /* Left ghost points */
242: if ((xs - sDist + i) >= 0) idx[nn++] = xs - sDist + i;
243: else idx[nn++] = M + (xs - sDist + i);
244: }
246: for (i = 0; i < x; i++) idx[nn++] = xs + i; /* Non-ghost points */
248: for (i = 0; i < sDist; i++) { /* Right ghost points */
249: if ((xe + i) < M) idx[nn++] = xe + i;
250: else idx[nn++] = (xe + i) - M;
251: }
252: } else if (bx == DM_BOUNDARY_MIRROR) { /* Handle all cases with periodic first */
253: for (i = 0; i < (sDist); i++) { /* Left ghost points */
254: if ((xs - sDist + i) >= 0) idx[nn++] = xs - sDist + i;
255: else idx[nn++] = sDist - i;
256: }
258: for (i = 0; i < x; i++) idx[nn++] = xs + i; /* Non-ghost points */
260: for (i = 0; i < (sDist); i++) { /* Right ghost points */
261: if ((xe + i) < M) idx[nn++] = xe + i;
262: else idx[nn++] = M - (i + 2);
263: }
264: } else { /* Now do all cases with no periodicity */
265: if (0 <= xs - sDist) {
266: for (i = 0; i < sDist; i++) idx[nn++] = xs - sDist + i;
267: } else {
268: for (i = 0; i < xs; i++) idx[nn++] = i;
269: }
271: for (i = 0; i < x; i++) idx[nn++] = xs + i;
273: if ((xe + sDist) <= M) {
274: for (i = 0; i < sDist; i++) idx[nn++] = xe + i;
275: } else {
276: for (i = xe; i < M; i++) idx[nn++] = i;
277: }
278: }
280: PetscCall(ISCreateBlock(comm, dof, nn - IXs + Xs, &idx[IXs - Xs], PETSC_USE_POINTER, &from));
281: PetscCall(VecScatterCreate(global, from, local, to, >ol));
282: PetscCall(ISDestroy(&to));
283: PetscCall(ISDestroy(&from));
284: PetscCall(VecDestroy(&local));
285: PetscCall(VecDestroy(&global));
287: dd->xs = dof * xs;
288: dd->xe = dof * xe;
289: dd->ys = 0;
290: dd->ye = 1;
291: dd->zs = 0;
292: dd->ze = 1;
293: dd->Xs = dof * Xs;
294: dd->Xe = dof * Xe;
295: dd->Ys = 0;
296: dd->Ye = 1;
297: dd->Zs = 0;
298: dd->Ze = 1;
300: dd->gtol = gtol;
301: dd->base = dof * xs;
302: da->ops->view = DMView_DA_1d;
304: /*
305: Set the local to global ordering in the global vector, this allows use
306: of VecSetValuesLocal().
307: */
308: for (i = 0; i < Xe - IXe; i++) idx[nn++] = -1; /* pad with -1s if needed for ghosted case*/
310: PetscCall(ISLocalToGlobalMappingCreate(comm, dof, nn, idx, PETSC_OWN_POINTER, &da->ltogmap));
311: PetscFunctionReturn(PETSC_SUCCESS);
312: }
314: /*@
315: DMDACreate1d - Creates an object that will manage the communication of one-dimensional
316: regular array data that is distributed across one or mpre MPI processes.
318: Collective
320: Input Parameters:
321: + comm - MPI communicator
322: . bx - type of ghost cells at the boundary the array should have, if any. Use
323: `DM_BOUNDARY_NONE`, `DM_BOUNDARY_GHOSTED`, or `DM_BOUNDARY_PERIODIC`.
324: . M - global dimension of the array (that is the number of grid points)
325: . dof - number of degrees of freedom per node
326: . s - stencil width
327: - lx - array containing number of nodes in the X direction on each processor,
328: or `NULL`. If non-null, must be of length as the number of processes in the MPI_Comm.
329: The sum of these entries must equal `M`
331: Output Parameter:
332: . da - the resulting distributed array object
334: Options Database Keys:
335: + -dm_view - Calls `DMView()` at the conclusion of `DMDACreate1d()`
336: . -da_grid_x <nx> - number of grid points in x direction
337: . -da_refine_x <rx> - refinement factor
338: - -da_refine <n> - refine the `DMDA` n times before creating it
340: Level: beginner
342: Notes:
343: The array data itself is NOT stored in the `DMDA`, it is stored in `Vec` objects;
344: The appropriate vector objects can be obtained with calls to `DMCreateGlobalVector()`
345: and `DMCreateLocalVector()` and calls to `VecDuplicate()` if more are needed.
347: You must call `DMSetUp()` after this call before using this `DM`.
349: If you wish to use the options database to change values in the `DMDA` call `DMSetFromOptions()` after this call
350: but before `DMSetUp()`.
352: .seealso: [](sec_struct), `DMDA`, `DM`, `DMDestroy()`, `DMView()`, `DMDACreate2d()`, `DMDACreate3d()`, `DMGlobalToLocalBegin()`, `DMDASetRefinementFactor()`,
353: `DMGlobalToLocalEnd()`, `DMLocalToGlobalBegin()`, `DMLocalToLocalBegin()`, `DMLocalToLocalEnd()`, `DMDAGetRefinementFactor()`,
354: `DMDAGetInfo()`, `DMCreateGlobalVector()`, `DMCreateLocalVector()`, `DMDACreateNaturalVector()`, `DMLoad()`, `DMDAGetOwnershipRanges()`,
355: `DMStagCreate1d()`, `DMBoundaryType`
356: @*/
357: PetscErrorCode DMDACreate1d(MPI_Comm comm, DMBoundaryType bx, PetscInt M, PetscInt dof, PetscInt s, const PetscInt lx[], DM *da)
358: {
359: PetscMPIInt size;
361: PetscFunctionBegin;
362: PetscCall(DMDACreate(comm, da));
363: PetscCall(DMSetDimension(*da, 1));
364: PetscCall(DMDASetSizes(*da, M, 1, 1));
365: PetscCallMPI(MPI_Comm_size(comm, &size));
366: PetscCall(DMDASetNumProcs(*da, size, PETSC_DECIDE, PETSC_DECIDE));
367: PetscCall(DMDASetBoundaryType(*da, bx, DM_BOUNDARY_NONE, DM_BOUNDARY_NONE));
368: PetscCall(DMDASetDof(*da, dof));
369: PetscCall(DMDASetStencilWidth(*da, s));
370: PetscCall(DMDASetOwnershipRanges(*da, lx, NULL, NULL));
371: PetscFunctionReturn(PETSC_SUCCESS);
372: }