Actual source code: ex13f90aux.F90

  1: #include <petsc/finclude/petscdmda.h>
  2: module ex13f90auxmodule
  3:   use petscdm
  4:   implicit none
  5: contains
  6:   !
  7:   ! A subroutine which returns the boundary conditions.
  8:   !
  9:   subroutine get_boundary_cond(b_x, b_y, b_z)
 10:     DMBoundaryType, intent(inout) :: b_x, b_y, b_z

 12:     ! Here you may set the BC types you want
 13:     b_x = DM_BOUNDARY_GHOSTED
 14:     b_y = DM_BOUNDARY_GHOSTED
 15:     b_z = DM_BOUNDARY_GHOSTED

 17:   end subroutine get_boundary_cond
 18:   !
 19:   ! A function which returns the RHS of the equation we are solving
 20:   !
 21:   function dfdt_vdp(t, dt, ib1, ibn, jb1, jbn, kb1, kbn, imax, jmax, kmax, n, f)
 22:     !
 23:     ! Right-hand side for the van der Pol oscillator.  Very simple system of two
 24:     ! ODEs.  See Iserles, eq (5.2).
 25:     !
 26:     PetscReal, intent(in) :: t, dt
 27:     PetscInt, intent(in) :: ib1, ibn, jb1, jbn, kb1, kbn, imax, jmax, kmax, n
 28:     PetscReal, dimension(n, ib1:ibn, jb1:jbn, kb1:kbn), intent(inout) :: f
 29:     PetscReal, dimension(n, imax, jmax, kmax) :: dfdt_vdp
 30:     PetscReal, parameter :: mu = 1.4, one = 1.0
 31:     !
 32:     dfdt_vdp(1, :, :, :) = f(2, 1, 1, 1)
 33:     dfdt_vdp(2, :, :, :) = mu*(one - f(1, 1, 1, 1)**2)*f(2, 1, 1, 1) - f(1, 1, 1, 1)
 34:   end function dfdt_vdp
 35:   !
 36:   ! The standard Forward Euler time-stepping method.
 37:   !
 38:   recursive subroutine forw_euler(t, dt, ib1, ibn, jb1, jbn, kb1, kbn, imax, jmax, kmax, neq, y, dfdt)
 39:     PetscReal, intent(in) :: t, dt
 40:     PetscInt, intent(in) :: ib1, ibn, jb1, jbn, kb1, kbn, imax, jmax, kmax, neq
 41:     PetscReal, dimension(neq, ib1:ibn, jb1:jbn, kb1:kbn), intent(inout) :: y
 42:     !
 43:     ! Define the right-hand side function
 44:     !
 45:     interface
 46:       function dfdt(t, dt, ib1, ibn, jb1, jbn, kb1, kbn, imax, jmax, kmax, n, f)
 47:         use petscsys
 48:         PetscReal, intent(in) :: t, dt
 49:         PetscInt, intent(in) :: ib1, ibn, jb1, jbn, kb1, kbn, imax, jmax, kmax, n
 50:         PetscReal, dimension(n, ib1:ibn, jb1:jbn, kb1:kbn), intent(inout) :: f
 51:         PetscReal, dimension(n, imax, jmax, kmax) :: dfdt
 52:       end function dfdt
 53:     end interface
 54:     !--------------------------------------------------------------------------
 55:     !
 56:     y(:, 1:imax, 1:jmax, 1:kmax) = y(:, 1:imax, 1:jmax, 1:kmax) + dt*dfdt(t, dt, ib1, ibn, jb1, jbn, kb1, kbn, imax, jmax, kmax, neq, y)
 57:   end subroutine forw_euler
 58:   !
 59:   ! The following 4 subroutines handle the mapping of coordinates. I'll explain
 60:   ! this in detail:
 61:   !    PETSc gives you local arrays which are indexed using the global indices.
 62:   ! This is probably handy in some cases, but when you are re-writing an
 63:   ! existing serial code and want to use DMDAs, you have tons of loops going
 64:   ! from 1 to imax etc. that you don't want to change.
 65:   !    These subroutines re-map the arrays so that all the local arrays go from
 66:   ! 1 to the (local) imax.
 67:   !
 68:   subroutine petsc_to_local(da, vec, array, f, dof, stw)
 69:     use petscdmda
 70:     DM                                                            :: da
 71:     Vec, intent(in)                                                :: vec
 72:     PetscReal, pointer                                            :: array(:, :, :, :)
 73:     PetscInt, intent(in)                                           :: dof, stw
 74:     PetscReal, intent(inout), dimension(:, 1 - stw:, 1 - stw:, 1 - stw:) :: f
 75:     PetscErrorCode                                                :: ierr
 76:     !
 77:     PetscCall(DMDAVecGetArray(da, vec, array, ierr))
 78:     call transform_petsc_us(array, f, stw)
 79:   end subroutine petsc_to_local
 80:   subroutine transform_petsc_us(array, f, stw)
 81:     !Note: this assumed shape-array is what does the "coordinate transformation"
 82:     PetscInt, intent(in)                                   :: stw
 83:     PetscReal, intent(in), dimension(:, 1 - stw:, 1 - stw:, 1 - stw:)  :: array
 84:     PetscReal, intent(inout), dimension(:, 1 - stw:, 1 - stw:, 1 - stw:) :: f
 85:     f(:, :, :, :) = array(:, :, :, :)
 86:   end subroutine transform_petsc_us
 87:   subroutine local_to_petsc(da, vec, array, f, dof, stw)
 88:     use petscdmda
 89:     DM                                                    :: da
 90:     Vec, intent(inout)                                     :: vec
 91:     PetscReal, pointer                                    :: array(:, :, :, :)
 92:     PetscInt, intent(in)                                    :: dof, stw
 93:     PetscReal, intent(inout), dimension(:, 1 - stw:, 1 - stw:, 1 - stw:)  :: f
 94:     PetscErrorCode                                        :: ierr
 95:     call transform_us_petsc(array, f, stw)
 96:     PetscCall(DMDAVecRestoreArray(da, vec, array, ierr))
 97:   end subroutine local_to_petsc
 98:   subroutine transform_us_petsc(array, f, stw)
 99:     !Note: this assumed shape-array is what does the "coordinate transformation"
100:     PetscInt, intent(in)                                     :: stw
101:     PetscReal, intent(inout), dimension(:, 1 - stw:, 1 - stw:, 1 - stw:) :: array
102:     PetscReal, intent(in), dimension(:, 1 - stw:, 1 - stw:, 1 - stw:)      :: f
103:     array(:, :, :, :) = f(:, :, :, :)
104:   end subroutine transform_us_petsc
105: end module ex13f90auxmodule