Actual source code: fcg.c

  1: /*
  2:     This file implements the FCG (Flexible Conjugate Gradient) method
  3: */

  5: #include <../src/ksp/ksp/impls/fcg/fcgimpl.h>
  6: extern PetscErrorCode KSPComputeExtremeSingularValues_CG(KSP, PetscReal *, PetscReal *);
  7: extern PetscErrorCode KSPComputeEigenvalues_CG(KSP, PetscInt, PetscReal *, PetscReal *, PetscInt *);

  9: #define KSPFCG_DEFAULT_MMAX       30 /* maximum number of search directions to keep */
 10: #define KSPFCG_DEFAULT_NPREALLOC  10 /* number of search directions to preallocate */
 11: #define KSPFCG_DEFAULT_VECB       5  /* number of search directions to allocate each time new direction vectors are needed */
 12: #define KSPFCG_DEFAULT_TRUNCSTRAT KSP_FCD_TRUNC_TYPE_NOTAY

 14: static PetscErrorCode KSPAllocateVectors_FCG(KSP ksp, PetscInt nvecsneeded, PetscInt chunksize)
 15: {
 16:   PetscInt i;
 17:   KSP_FCG *fcg = (KSP_FCG *)ksp->data;
 18:   PetscInt nnewvecs, nvecsprev;

 20:   PetscFunctionBegin;
 21:   /* Allocate enough new vectors to add chunksize new vectors, reach nvecsneedtotal, or to reach mmax+1, whichever is smallest */
 22:   if (fcg->nvecs < PetscMin(fcg->mmax + 1, nvecsneeded)) {
 23:     nvecsprev = fcg->nvecs;
 24:     nnewvecs  = PetscMin(PetscMax(nvecsneeded - fcg->nvecs, chunksize), fcg->mmax + 1 - fcg->nvecs);
 25:     PetscCall(KSPCreateVecs(ksp, nnewvecs, &fcg->pCvecs[fcg->nchunks], 0, NULL));
 26:     PetscCall(KSPCreateVecs(ksp, nnewvecs, &fcg->pPvecs[fcg->nchunks], 0, NULL));
 27:     fcg->nvecs += nnewvecs;
 28:     for (i = 0; i < nnewvecs; ++i) {
 29:       fcg->Cvecs[nvecsprev + i] = fcg->pCvecs[fcg->nchunks][i];
 30:       fcg->Pvecs[nvecsprev + i] = fcg->pPvecs[fcg->nchunks][i];
 31:     }
 32:     fcg->chunksizes[fcg->nchunks] = nnewvecs;
 33:     ++fcg->nchunks;
 34:   }
 35:   PetscFunctionReturn(PETSC_SUCCESS);
 36: }

 38: static PetscErrorCode KSPSetUp_FCG(KSP ksp)
 39: {
 40:   KSP_FCG       *fcg      = (KSP_FCG *)ksp->data;
 41:   PetscInt       maxit    = ksp->max_it;
 42:   const PetscInt nworkstd = 2;

 44:   PetscFunctionBegin;
 45:   /* Allocate "standard" work vectors (not including the basis and transformed basis vectors) */
 46:   PetscCall(KSPSetWorkVecs(ksp, nworkstd));

 48:   /* Allocated space for pointers to additional work vectors
 49:    note that mmax is the number of previous directions, so we add 1 for the current direction,
 50:    and an extra 1 for the prealloc (which might be empty) */
 51:   PetscCall(PetscMalloc5(fcg->mmax + 1, &fcg->Pvecs, fcg->mmax + 1, &fcg->Cvecs, fcg->mmax + 1, &fcg->pPvecs, fcg->mmax + 1, &fcg->pCvecs, fcg->mmax + 2, &fcg->chunksizes));

 53:   /* If the requested number of preallocated vectors is greater than mmax reduce nprealloc */
 54:   if (fcg->nprealloc > fcg->mmax + 1) PetscCall(PetscInfo(NULL, "Requested nprealloc=%" PetscInt_FMT " is greater than m_max+1=%" PetscInt_FMT ". Resetting nprealloc = m_max+1.\n", fcg->nprealloc, fcg->mmax + 1));

 56:   /* Preallocate additional work vectors */
 57:   PetscCall(KSPAllocateVectors_FCG(ksp, fcg->nprealloc, fcg->nprealloc));
 58:   /*
 59:   If user requested computations of eigenvalues then allocate work
 60:   work space needed
 61:   */
 62:   if (ksp->calc_sings) {
 63:     /* get space to store tridiagonal matrix for Lanczos */
 64:     PetscCall(PetscMalloc4(maxit, &fcg->e, maxit, &fcg->d, maxit, &fcg->ee, maxit, &fcg->dd));

 66:     ksp->ops->computeextremesingularvalues = KSPComputeExtremeSingularValues_CG;
 67:     ksp->ops->computeeigenvalues           = KSPComputeEigenvalues_CG;
 68:   }
 69:   PetscFunctionReturn(PETSC_SUCCESS);
 70: }

 72: static PetscErrorCode KSPSolve_FCG(KSP ksp)
 73: {
 74:   PetscInt    i, k, idx, mi;
 75:   KSP_FCG    *fcg   = (KSP_FCG *)ksp->data;
 76:   PetscScalar alpha = 0.0, beta = 0.0, dpi = 0.0, dpiold, s;
 77:   PetscReal   dp = 0.0;
 78:   Vec         B, R, Z, X, Pcurr, Ccurr;
 79:   Mat         Amat, Pmat;
 80:   PetscInt    eigs          = ksp->calc_sings; /* Variables for eigen estimation - START*/
 81:   PetscInt    stored_max_it = ksp->max_it;
 82:   PetscScalar alphaold = 0, betaold = 1.0, *e = NULL, *d = NULL; /* Variables for eigen estimation  - FINISH */

 84:   PetscFunctionBegin;
 85: #define VecXDot(x, y, a)     (fcg->type == KSP_CG_HERMITIAN ? VecDot(x, y, a) : VecTDot(x, y, a))
 86: #define VecXMDot(a, b, c, d) (fcg->type == KSP_CG_HERMITIAN ? VecMDot(a, b, c, d) : VecMTDot(a, b, c, d))

 88:   X = ksp->vec_sol;
 89:   B = ksp->vec_rhs;
 90:   R = ksp->work[0];
 91:   Z = ksp->work[1];

 93:   PetscCall(PCGetOperators(ksp->pc, &Amat, &Pmat));
 94:   if (eigs) {
 95:     e    = fcg->e;
 96:     d    = fcg->d;
 97:     e[0] = 0.0;
 98:   }
 99:   /* Compute initial residual needed for convergence check*/
100:   ksp->its = 0;
101:   if (!ksp->guess_zero) {
102:     PetscCall(KSP_MatMult(ksp, Amat, X, R));
103:     PetscCall(VecAYPX(R, -1.0, B)); /*   r <- b - Ax     */
104:   } else {
105:     PetscCall(VecCopy(B, R)); /*   r <- b (x is 0) */
106:   }
107:   switch (ksp->normtype) {
108:   case KSP_NORM_PRECONDITIONED:
109:     PetscCall(KSP_PCApply(ksp, R, Z));  /*   z <- Br         */
110:     PetscCall(VecNorm(Z, NORM_2, &dp)); /*   dp <- dqrt(z'*z) = sqrt(e'*A'*B'*B*A*e)     */
111:     KSPCheckNorm(ksp, dp);
112:     break;
113:   case KSP_NORM_UNPRECONDITIONED:
114:     PetscCall(VecNorm(R, NORM_2, &dp)); /*   dp <- sqrt(r'*r) = sqrt(e'*A'*A*e)     */
115:     KSPCheckNorm(ksp, dp);
116:     break;
117:   case KSP_NORM_NATURAL:
118:     PetscCall(KSP_PCApply(ksp, R, Z)); /*   z <- Br         */
119:     PetscCall(VecXDot(R, Z, &s));
120:     KSPCheckDot(ksp, s);
121:     dp = PetscSqrtReal(PetscAbsScalar(s)); /*   dp <- sqrt(r'*z) = sqrt(e'*A'*B*A*e)  */
122:     break;
123:   case KSP_NORM_NONE:
124:     dp = 0.0;
125:     break;
126:   default:
127:     SETERRQ(PetscObjectComm((PetscObject)ksp), PETSC_ERR_SUP, "%s", KSPNormTypes[ksp->normtype]);
128:   }

130:   /* Initial Convergence Check */
131:   PetscCall(KSPLogResidualHistory(ksp, dp));
132:   PetscCall(KSPMonitor(ksp, 0, dp));
133:   ksp->rnorm = dp;
134:   if (ksp->normtype == KSP_NORM_NONE) {
135:     PetscCall(KSPConvergedSkip(ksp, 0, dp, &ksp->reason, ksp->cnvP));
136:   } else {
137:     PetscCall((*ksp->converged)(ksp, 0, dp, &ksp->reason, ksp->cnvP));
138:   }
139:   if (ksp->reason) PetscFunctionReturn(PETSC_SUCCESS);

141:   /* Apply PC if not already done for convergence check */
142:   if (ksp->normtype == KSP_NORM_UNPRECONDITIONED || ksp->normtype == KSP_NORM_NONE) { PetscCall(KSP_PCApply(ksp, R, Z)); /*   z <- Br         */ }

144:   i = 0;
145:   do {
146:     ksp->its = i + 1;

148:     /*  If needbe, allocate a new chunk of vectors in P and C */
149:     PetscCall(KSPAllocateVectors_FCG(ksp, i + 1, fcg->vecb));

151:     /* Note that we wrap around and start clobbering old vectors */
152:     idx   = i % (fcg->mmax + 1);
153:     Pcurr = fcg->Pvecs[idx];
154:     Ccurr = fcg->Cvecs[idx];

156:     /* number of old directions to orthogonalize against */
157:     switch (fcg->truncstrat) {
158:     case KSP_FCD_TRUNC_TYPE_STANDARD:
159:       mi = fcg->mmax;
160:       break;
161:     case KSP_FCD_TRUNC_TYPE_NOTAY:
162:       mi = ((i - 1) % fcg->mmax) + 1;
163:       break;
164:     default:
165:       SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Unrecognized Truncation Strategy");
166:     }

168:     /* Compute a new column of P (Currently does not support modified G-S or iterative refinement)*/
169:     PetscCall(VecCopy(Z, Pcurr));

171:     {
172:       PetscInt l, ndots;

174:       l     = PetscMax(0, i - mi);
175:       ndots = i - l;
176:       if (ndots) {
177:         PetscInt     j;
178:         Vec         *Pold, *Cold;
179:         PetscScalar *dots;

181:         PetscCall(PetscMalloc3(ndots, &dots, ndots, &Cold, ndots, &Pold));
182:         for (k = l, j = 0; j < ndots; ++k, ++j) {
183:           idx     = k % (fcg->mmax + 1);
184:           Cold[j] = fcg->Cvecs[idx];
185:           Pold[j] = fcg->Pvecs[idx];
186:         }
187:         PetscCall(VecXMDot(Z, ndots, Cold, dots));
188:         for (k = 0; k < ndots; ++k) dots[k] = -dots[k];
189:         PetscCall(VecMAXPY(Pcurr, ndots, dots, Pold));
190:         PetscCall(PetscFree3(dots, Cold, Pold));
191:       }
192:     }

194:     /* Update X and R */
195:     betaold = beta;
196:     PetscCall(VecXDot(Pcurr, R, &beta)); /*  beta <- pi'*r       */
197:     KSPCheckDot(ksp, beta);
198:     if ((i > 0) && (PetscAbsScalar(beta * betaold) < 0.0)) {
199:       PetscCheck(!ksp->errorifnotconverged, PetscObjectComm((PetscObject)ksp), PETSC_ERR_NOT_CONVERGED, "Diverged due to indefinite preconditioner, beta %g, betaold %g", (double)PetscRealPart(beta), (double)PetscRealPart(betaold));
200:       ksp->reason = KSP_DIVERGED_INDEFINITE_PC;
201:       PetscCall(PetscInfo(ksp, "diverging due to indefinite preconditioner\n"));
202:       break;
203:     }
204:     PetscCall(KSP_MatMult(ksp, Amat, Pcurr, Ccurr)); /*  w <- A*pi (stored in ci)   */
205:     dpiold = dpi;
206:     PetscCall(VecXDot(Pcurr, Ccurr, &dpi)); /*  dpi <- pi'*w        */
207:     if ((dpi == 0.0) || ((i > 0) && ((PetscSign(PetscRealPart(dpi)) * PetscSign(PetscRealPart(dpiold))) < 0.0))) {
208:       PetscCheck(!ksp->errorifnotconverged, PetscObjectComm((PetscObject)ksp), PETSC_ERR_NOT_CONVERGED, "Diverged due to indefinite matrix, dpi %g, dpiold %g", (double)PetscRealPart(dpi), (double)PetscRealPart(dpiold));
209:       ksp->reason = KSP_DIVERGED_INDEFINITE_MAT;
210:       PetscCall(PetscInfo(ksp, "diverging due to indefinite matrix\n"));
211:       break;
212:     }
213:     alphaold = alpha;
214:     alpha    = beta / dpi;                /*  alpha <- beta/dpi    */
215:     PetscCall(VecAXPY(X, alpha, Pcurr));  /*  x <- x + alpha * pi  */
216:     PetscCall(VecAXPY(R, -alpha, Ccurr)); /*  r <- r - alpha * wi  */

218:     /* Compute norm for convergence check */
219:     switch (ksp->normtype) {
220:     case KSP_NORM_PRECONDITIONED:
221:       PetscCall(KSP_PCApply(ksp, R, Z));  /*   z <- Br             */
222:       PetscCall(VecNorm(Z, NORM_2, &dp)); /*   dp <- sqrt(z'*z) = sqrt(e'*A'*B'*B*A*e)  */
223:       KSPCheckNorm(ksp, dp);
224:       break;
225:     case KSP_NORM_UNPRECONDITIONED:
226:       PetscCall(VecNorm(R, NORM_2, &dp)); /*   dp <- sqrt(r'*r) = sqrt(e'*A'*A*e)   */
227:       KSPCheckNorm(ksp, dp);
228:       break;
229:     case KSP_NORM_NATURAL:
230:       PetscCall(KSP_PCApply(ksp, R, Z)); /*   z <- Br             */
231:       PetscCall(VecXDot(R, Z, &s));
232:       KSPCheckDot(ksp, s);
233:       dp = PetscSqrtReal(PetscAbsScalar(s)); /*   dp <- sqrt(r'*z) = sqrt(e'*A'*B*A*e)  */
234:       break;
235:     case KSP_NORM_NONE:
236:       dp = 0.0;
237:       break;
238:     default:
239:       SETERRQ(PetscObjectComm((PetscObject)ksp), PETSC_ERR_SUP, "%s", KSPNormTypes[ksp->normtype]);
240:     }

242:     if (eigs) {
243:       if (i > 0) {
244:         PetscCheck(ksp->max_it == stored_max_it, PetscObjectComm((PetscObject)ksp), PETSC_ERR_SUP, "Can not change maxit AND calculate eigenvalues");
245:         e[i] = PetscSqrtReal(PetscAbsScalar(beta / betaold)) / alphaold;
246:         d[i] = PetscSqrtReal(PetscAbsScalar(beta / betaold)) * e[i] + 1.0 / alpha;
247:       } else {
248:         d[i] = PetscSqrtReal(PetscAbsScalar(beta)) * e[i] + 1.0 / alpha;
249:       }
250:     }

252:     /* Check for convergence */
253:     ksp->rnorm = dp;
254:     PetscCall(KSPLogResidualHistory(ksp, dp));
255:     PetscCall(KSPMonitor(ksp, i + 1, dp));
256:     PetscCall((*ksp->converged)(ksp, i + 1, dp, &ksp->reason, ksp->cnvP));
257:     if (ksp->reason) break;

259:     /* Apply PC if not already done for convergence check */
260:     if (ksp->normtype == KSP_NORM_UNPRECONDITIONED || ksp->normtype == KSP_NORM_NONE) { PetscCall(KSP_PCApply(ksp, R, Z)); /*   z <- Br         */ }

262:     /* Compute current C (which is W/dpi) */
263:     PetscCall(VecScale(Ccurr, 1.0 / dpi)); /*   w <- ci/dpi   */
264:     ++i;
265:   } while (i < ksp->max_it);
266:   if (i >= ksp->max_it) ksp->reason = KSP_DIVERGED_ITS;
267:   PetscFunctionReturn(PETSC_SUCCESS);
268: }

270: static PetscErrorCode KSPDestroy_FCG(KSP ksp)
271: {
272:   PetscInt i;
273:   KSP_FCG *fcg = (KSP_FCG *)ksp->data;

275:   PetscFunctionBegin;
276:   /* Destroy "standard" work vecs */
277:   PetscCall(VecDestroyVecs(ksp->nwork, &ksp->work));

279:   /* Destroy P and C vectors and the arrays that manage pointers to them */
280:   if (fcg->nvecs) {
281:     for (i = 0; i < fcg->nchunks; ++i) {
282:       PetscCall(VecDestroyVecs(fcg->chunksizes[i], &fcg->pPvecs[i]));
283:       PetscCall(VecDestroyVecs(fcg->chunksizes[i], &fcg->pCvecs[i]));
284:     }
285:   }
286:   PetscCall(PetscFree5(fcg->Pvecs, fcg->Cvecs, fcg->pPvecs, fcg->pCvecs, fcg->chunksizes));
287:   /* free space used for singular value calculations */
288:   if (ksp->calc_sings) PetscCall(PetscFree4(fcg->e, fcg->d, fcg->ee, fcg->dd));
289:   PetscCall(KSPDestroyDefault(ksp));
290:   PetscFunctionReturn(PETSC_SUCCESS);
291: }

293: static PetscErrorCode KSPView_FCG(KSP ksp, PetscViewer viewer)
294: {
295:   KSP_FCG    *fcg = (KSP_FCG *)ksp->data;
296:   PetscBool   iascii, isstring;
297:   const char *truncstr;

299:   PetscFunctionBegin;
300:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
301:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERSTRING, &isstring));

303:   if (fcg->truncstrat == KSP_FCD_TRUNC_TYPE_STANDARD) truncstr = "Using standard truncation strategy";
304:   else if (fcg->truncstrat == KSP_FCD_TRUNC_TYPE_NOTAY) truncstr = "Using Notay's truncation strategy";
305:   else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Undefined FCG truncation strategy");

307:   if (iascii) {
308:     PetscCall(PetscViewerASCIIPrintf(viewer, "  m_max=%" PetscInt_FMT "\n", fcg->mmax));
309:     PetscCall(PetscViewerASCIIPrintf(viewer, "  preallocated %" PetscInt_FMT " directions\n", PetscMin(fcg->nprealloc, fcg->mmax + 1)));
310:     PetscCall(PetscViewerASCIIPrintf(viewer, "  %s\n", truncstr));
311:   } else if (isstring) {
312:     PetscCall(PetscViewerStringSPrintf(viewer, "m_max %" PetscInt_FMT " nprealloc %" PetscInt_FMT " %s", fcg->mmax, fcg->nprealloc, truncstr));
313:   }
314:   PetscFunctionReturn(PETSC_SUCCESS);
315: }

317: /*@
318:   KSPFCGSetMmax - set the maximum number of previous directions `KSPFCG` will store for orthogonalization

320:   Logically Collective

322:   Input Parameters:
323: + ksp  - the Krylov space context
324: - mmax - the maximum number of previous directions to orthogonalize against

326:   Options Database Key:
327: . -ksp_fcg_mmax <N> - maximum number of search directions

329:   Level: intermediate

331:   Note:
332:   `mmax` + 1 directions are stored (`mmax` previous ones along with a current one)
333:   and whether all are used in each iteration also depends on the truncation strategy, see `KSPFCGSetTruncationType()`

335: .seealso: [](ch_ksp), `KSPFCG`, `KSPFCGGetTruncationType()`, `KSPFCGGetNprealloc()`, `KSPFCGetMmax()`
336: @*/
337: PetscErrorCode KSPFCGSetMmax(KSP ksp, PetscInt mmax)
338: {
339:   KSP_FCG *fcg = (KSP_FCG *)ksp->data;

341:   PetscFunctionBegin;
344:   fcg->mmax = mmax;
345:   PetscFunctionReturn(PETSC_SUCCESS);
346: }

348: /*@
349:   KSPFCGGetMmax - get the maximum number of previous directions `KSPFCG` will store

351:   Not Collective

353:   Input Parameter:
354: . ksp - the Krylov space context

356:   Output Parameter:
357: . mmax - the maximum number of previous directions allowed for orthogonalization

359:   Level: intermediate

361:   Note:
362:   `KSPFCG` stores `mmax`+1 directions at most (`mmax` previous ones, and one current one)

364: .seealso: [](ch_ksp), `KSPFCG`, `KSPFCGGetTruncationType()`, `KSPFCGGetNprealloc()`, `KSPFCGSetMmax()`
365: @*/
366: PetscErrorCode KSPFCGGetMmax(KSP ksp, PetscInt *mmax)
367: {
368:   KSP_FCG *fcg = (KSP_FCG *)ksp->data;

370:   PetscFunctionBegin;
372:   *mmax = fcg->mmax;
373:   PetscFunctionReturn(PETSC_SUCCESS);
374: }

376: /*@
377:   KSPFCGSetNprealloc - set the number of directions to preallocate with `KSPFCG`

379:   Logically Collective

381:   Input Parameters:
382: + ksp       - the Krylov space context
383: - nprealloc - the number of vectors to preallocate

385:   Options Database Key:
386: . -ksp_fcg_nprealloc <N> - number of directions to preallocate

388:   Level: advanced

390: .seealso: [](ch_ksp), `KSPFCG`, `KSPFCGGetTruncationType()`, `KSPFCGGetNprealloc()`, `KSPFCGSetMmax()`, `KSPFCGGetMmax()`
391: @*/
392: PetscErrorCode KSPFCGSetNprealloc(KSP ksp, PetscInt nprealloc)
393: {
394:   KSP_FCG *fcg = (KSP_FCG *)ksp->data;

396:   PetscFunctionBegin;
399:   PetscCheck(nprealloc <= fcg->mmax + 1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Cannot preallocate more than m_max+1 vectors");
400:   fcg->nprealloc = nprealloc;
401:   PetscFunctionReturn(PETSC_SUCCESS);
402: }

404: /*@
405:   KSPFCGGetNprealloc - get the number of directions preallocate by `KSPFCG`

407:   Not Collective

409:   Input Parameter:
410: . ksp - the Krylov space context

412:   Output Parameter:
413: . nprealloc - the number of directions preallocated

415:   Level: advanced

417: .seealso: [](ch_ksp), `KSPFCG`, `KSPFCGGetTruncationType()`, `KSPFCGSetNprealloc()`, `KSPFCGSetMmax()`, `KSPFCGGetMmax()`
418: @*/
419: PetscErrorCode KSPFCGGetNprealloc(KSP ksp, PetscInt *nprealloc)
420: {
421:   KSP_FCG *fcg = (KSP_FCG *)ksp->data;

423:   PetscFunctionBegin;
425:   *nprealloc = fcg->nprealloc;
426:   PetscFunctionReturn(PETSC_SUCCESS);
427: }

429: /*@
430:   KSPFCGSetTruncationType - specify how many of its stored previous directions `KSPFCG` uses during orthoganalization

432:   Logically Collective

434:   Input Parameters:
435: + ksp        - the Krylov space context
436: - truncstrat - the choice of strategy
437: .vb
438:   KSP_FCD_TRUNC_TYPE_STANDARD uses all (up to mmax) stored directions
439:   KSP_FCD_TRUNC_TYPE_NOTAY uses the last max(1,mod(i,mmax)) stored directions at iteration i=0,1,..
440: .ve

442:   Options Database Key:
443: . -ksp_fcg_truncation_type <standard, notay> - specify how many of its stored previous directions `KSPFCG` uses during orthoganalization

445:   Level: intermediate

447: .seealso: [](ch_ksp), `KSPFCDTruncationType`, `KSPFCGGetTruncationType()`, `KSPFCGSetNprealloc()`, `KSPFCGSetMmax()`, `KSPFCGGetMmax()`,
448:           `KSP_FCD_TRUNC_TYPE_STANDARD`, `KSP_FCD_TRUNC_TYPE_NOTAY`
449: @*/
450: PetscErrorCode KSPFCGSetTruncationType(KSP ksp, KSPFCDTruncationType truncstrat)
451: {
452:   KSP_FCG *fcg = (KSP_FCG *)ksp->data;

454:   PetscFunctionBegin;
457:   fcg->truncstrat = truncstrat;
458:   PetscFunctionReturn(PETSC_SUCCESS);
459: }

461: /*@
462:   KSPFCGGetTruncationType - get the truncation strategy employed by `KSPFCG`

464:   Not Collective

466:   Input Parameter:
467: . ksp - the Krylov space context

469:   Output Parameter:
470: . truncstrat - the strategy type

472:   Level: intermediate

474: .seealso: [](ch_ksp), `KSPFCG`, `KSPFCGSetTruncationType()`, `KSPFCDTruncationType`, `KSP_FCD_TRUNC_TYPE_STANDARD`, `KSP_FCD_TRUNC_TYPE_NOTAY`
475: @*/
476: PetscErrorCode KSPFCGGetTruncationType(KSP ksp, KSPFCDTruncationType *truncstrat)
477: {
478:   KSP_FCG *fcg = (KSP_FCG *)ksp->data;

480:   PetscFunctionBegin;
482:   *truncstrat = fcg->truncstrat;
483:   PetscFunctionReturn(PETSC_SUCCESS);
484: }

486: static PetscErrorCode KSPSetFromOptions_FCG(KSP ksp, PetscOptionItems *PetscOptionsObject)
487: {
488:   KSP_FCG  *fcg = (KSP_FCG *)ksp->data;
489:   PetscInt  mmax, nprealloc;
490:   PetscBool flg;

492:   PetscFunctionBegin;
493:   PetscOptionsHeadBegin(PetscOptionsObject, "KSP FCG Options");
494:   PetscCall(PetscOptionsInt("-ksp_fcg_mmax", "Maximum number of search directions to store", "KSPFCGSetMmax", fcg->mmax, &mmax, &flg));
495:   if (flg) PetscCall(KSPFCGSetMmax(ksp, mmax));
496:   PetscCall(PetscOptionsInt("-ksp_fcg_nprealloc", "Number of directions to preallocate", "KSPFCGSetNprealloc", fcg->nprealloc, &nprealloc, &flg));
497:   if (flg) PetscCall(KSPFCGSetNprealloc(ksp, nprealloc));
498:   PetscCall(PetscOptionsEnum("-ksp_fcg_truncation_type", "Truncation approach for directions", "KSPFCGSetTruncationType", KSPFCDTruncationTypes, (PetscEnum)fcg->truncstrat, (PetscEnum *)&fcg->truncstrat, NULL));
499:   PetscOptionsHeadEnd();
500:   PetscFunctionReturn(PETSC_SUCCESS);
501: }

503: /*MC
504:   KSPFCG - Implements the Flexible Conjugate Gradient method (FCG) {cite}`flexiblecg`, {cite}`generalizedcg`.
505:   Unlike most `KSP` methods this allows the preconditioner to be nonlinear. [](sec_flexibleksp)

507:   Options Database Keys:
508: +   -ksp_fcg_mmax <N>  - maximum number of search directions
509: .   -ksp_fcg_nprealloc <N> - number of directions to preallocate
510: -   -ksp_fcg_truncation_type <standard,notay> - truncation approach for directions

512:   Level: beginner

514:   Notes:
515:   Compare to `KSPFCG`

517:   Supports left preconditioning only.

519:   Contributed by:
520:   Patrick Sanan

522: .seealso: [](ch_ksp), [](sec_flexibleksp), `KSPGCR`, `KSPFGMRES`, `KSPCG`, `KSPFCGSetMmax()`, `KSPFCGGetMmax()`, `KSPFCGSetNprealloc()`, `KSPFCGGetNprealloc()`, `KSPFCGSetTruncationType()`, `KSPFCGGetTruncationType()`,
523:            `KSPFCGGetTruncationType`
524: M*/
525: PETSC_EXTERN PetscErrorCode KSPCreate_FCG(KSP ksp)
526: {
527:   KSP_FCG *fcg;

529:   PetscFunctionBegin;
530:   PetscCall(PetscNew(&fcg));
531: #if !defined(PETSC_USE_COMPLEX)
532:   fcg->type = KSP_CG_SYMMETRIC;
533: #else
534:   fcg->type = KSP_CG_HERMITIAN;
535: #endif
536:   fcg->mmax       = KSPFCG_DEFAULT_MMAX;
537:   fcg->nprealloc  = KSPFCG_DEFAULT_NPREALLOC;
538:   fcg->nvecs      = 0;
539:   fcg->vecb       = KSPFCG_DEFAULT_VECB;
540:   fcg->nchunks    = 0;
541:   fcg->truncstrat = KSPFCG_DEFAULT_TRUNCSTRAT;

543:   ksp->data = (void *)fcg;

545:   PetscCall(KSPSetSupportedNorm(ksp, KSP_NORM_PRECONDITIONED, PC_LEFT, 2));
546:   PetscCall(KSPSetSupportedNorm(ksp, KSP_NORM_UNPRECONDITIONED, PC_LEFT, 1));
547:   PetscCall(KSPSetSupportedNorm(ksp, KSP_NORM_NATURAL, PC_LEFT, 1));
548:   PetscCall(KSPSetSupportedNorm(ksp, KSP_NORM_NONE, PC_LEFT, 1));

550:   ksp->ops->setup          = KSPSetUp_FCG;
551:   ksp->ops->solve          = KSPSolve_FCG;
552:   ksp->ops->destroy        = KSPDestroy_FCG;
553:   ksp->ops->view           = KSPView_FCG;
554:   ksp->ops->setfromoptions = KSPSetFromOptions_FCG;
555:   ksp->ops->buildsolution  = KSPBuildSolutionDefault;
556:   ksp->ops->buildresidual  = KSPBuildResidualDefault;
557:   PetscFunctionReturn(PETSC_SUCCESS);
558: }