Actual source code: ex14f.F90

  1: !
  2: !
  3: !  Solves a nonlinear system in parallel with a user-defined
  4: !  Newton method that uses KSP to solve the linearized Newton systems.  This solver
  5: !  is a very simplistic inexact Newton method.  The intent of this code is to
  6: !  demonstrate the repeated solution of linear systems with the same nonzero pattern.
  7: !
  8: !  This is NOT the recommended approach for solving nonlinear problems with PETSc!
  9: !  We urge users to employ the SNES component for solving nonlinear problems whenever
 10: !  possible, as it offers many advantages over coding nonlinear solvers independently.
 11: !
 12: !  We solve the  Bratu (SFI - solid fuel ignition) problem in a 2D rectangular
 13: !  domain, using distributed arrays (DMDAs) to partition the parallel grid.
 14: !
 15: !  The command line options include:
 16: !  -par <parameter>, where <parameter> indicates the problem's nonlinearity
 17: !     problem SFI:  <parameter> = Bratu parameter (0 <= par <= 6.81)
 18: !  -mx <xg>, where <xg> = number of grid points in the x-direction
 19: !  -my <yg>, where <yg> = number of grid points in the y-direction
 20: !  -Nx <npx>, where <npx> = number of processors in the x-direction
 21: !  -Ny <npy>, where <npy> = number of processors in the y-direction
 22: !  -mf use matrix-free for matrix-vector product
 23: !

 25: !  ------------------------------------------------------------------------
 26: !
 27: !    Solid Fuel Ignition (SFI) problem.  This problem is modeled by
 28: !    the partial differential equation
 29: !
 30: !            -Laplacian u - lambda*exp(u) = 0,  0 < x,y < 1,
 31: !
 32: !    with boundary conditions
 33: !
 34: !             u = 0  for  x = 0, x = 1, y = 0, y = 1.
 35: !
 36: !    A finite difference approximation with the usual 5-point stencil
 37: !    is used to discretize the boundary value problem to obtain a nonlinear
 38: !    system of equations.
 39: !
 40: !    The SNES version of this problem is:  snes/tutorials/ex5f.F
 41: !
 42: !  -------------------------------------------------------------------------
 43:       module ex14fmodule
 44: #include <petsc/finclude/petscdmda.h>
 45: #include <petsc/finclude/petscksp.h>
 46:       use petscis
 47:       use petscvec
 48:       use petscdm
 49:       use petscdmda
 50:       use petscksp

 52:       Vec      localX
 53:       PetscInt mx,my
 54:       Mat B
 55:       DM da
 56:       end module

 58:       program main
 59:       use ex14fmodule
 60:       implicit none

 62:       MPI_Comm comm
 63:       Vec      X,Y,F
 64:       Mat      J
 65:       KSP      ksp

 67:       PetscInt  Nx,Ny,N,ifive,ithree
 68:       PetscBool  flg,nooutput,usemf
 69: !
 70: !      This is the routine to use for matrix-free approach
 71: !
 72:       external mymult

 74: !     --------------- Data to define nonlinear solver --------------
 75:       PetscReal   rtol,ttol
 76:       PetscReal   fnorm,ynorm,xnorm
 77:       PetscInt            max_nonlin_its,one
 78:       PetscInt            lin_its
 79:       PetscInt           i,m
 80:       PetscScalar        mone
 81:       PetscErrorCode ierr

 83:       mone           = -1.0
 84:       rtol           = 1.e-8
 85:       max_nonlin_its = 10
 86:       one            = 1
 87:       ifive          = 5
 88:       ithree         = 3

 90:       PetscCallA(PetscInitialize(ierr))
 91:       comm = PETSC_COMM_WORLD

 93: !  Initialize problem parameters

 95: !
 96:       mx = 4
 97:       my = 4
 98:       PetscCallA(PetscOptionsGetInt(PETSC_NULL_OPTIONS,PETSC_NULL_CHARACTER,'-mx',mx,flg,ierr))
 99:       PetscCallA(PetscOptionsGetInt(PETSC_NULL_OPTIONS,PETSC_NULL_CHARACTER,'-my',my,flg,ierr))
100:       N = mx*my

102:       nooutput = .false.
103:       PetscCallA(PetscOptionsHasName(PETSC_NULL_OPTIONS,PETSC_NULL_CHARACTER,'-no_output',nooutput,ierr))

105: !  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
106: !     Create linear solver context
107: !  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

109:       PetscCallA(KSPCreate(comm,ksp,ierr))

111: !  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
112: !     Create vector data structures
113: !  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

115: !
116: !  Create distributed array (DMDA) to manage parallel grid and vectors
117: !
118:       Nx = PETSC_DECIDE
119:       Ny = PETSC_DECIDE
120:       PetscCallA(PetscOptionsGetInt(PETSC_NULL_OPTIONS,PETSC_NULL_CHARACTER,'-Nx',Nx,flg,ierr))
121:       PetscCallA(PetscOptionsGetInt(PETSC_NULL_OPTIONS,PETSC_NULL_CHARACTER,'-Ny',Ny,flg,ierr))
122:       PetscCallA(DMDACreate2d(comm,DM_BOUNDARY_NONE,DM_BOUNDARY_NONE,DMDA_STENCIL_STAR,mx,my,Nx,Ny,one,one,PETSC_NULL_INTEGER_ARRAY,PETSC_NULL_INTEGER_ARRAY,da,ierr))
123:       PetscCallA(DMSetFromOptions(da,ierr))
124:       PetscCallA(DMSetUp(da,ierr))
125: !
126: !  Extract global and local vectors from DMDA then duplicate for remaining
127: !  vectors that are the same types
128: !
129:        PetscCallA(DMCreateGlobalVector(da,X,ierr))
130:        PetscCallA(DMCreateLocalVector(da,localX,ierr))
131:        PetscCallA(VecDuplicate(X,F,ierr))
132:        PetscCallA(VecDuplicate(X,Y,ierr))

134: !  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
135: !     Create matrix data structure for Jacobian
136: !  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
137: !
138: !     Note:  For the parallel case, vectors and matrices MUST be partitioned
139: !     accordingly.  When using distributed arrays (DMDAs) to create vectors,
140: !     the DMDAs determine the problem partitioning.  We must explicitly
141: !     specify the local matrix dimensions upon its creation for compatibility
142: !     with the vector distribution.
143: !
144: !     Note: Here we only approximately preallocate storage space for the
145: !     Jacobian.  See the users manual for a discussion of better techniques
146: !     for preallocating matrix memory.
147: !
148:       PetscCallA(VecGetLocalSize(X,m,ierr))
149:       PetscCallA(MatCreateFromOptions(comm,PETSC_NULL_CHARACTER,one,m,m,N,N,B,ierr))

151: !  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
152: !     if usemf is on then matrix-vector product is done via matrix-free
153: !     approach. Note this is just an example, and not realistic because
154: !     we still use the actual formed matrix, but in reality one would
155: !     provide their own subroutine that would directly do the matrix
156: !     vector product and call MatMult()
157: !     Note: we put B into a module so it will be visible to the
158: !     mymult() routine
159:       usemf = .false.
160:       PetscCallA(PetscOptionsHasName(PETSC_NULL_OPTIONS,PETSC_NULL_CHARACTER,'-mf',usemf,ierr))
161:       if (usemf) then
162:          PetscCallA(MatCreateShell(comm,m,m,N,N,PETSC_NULL_INTEGER,J,ierr))
163:          PetscCallA(MatShellSetOperation(J,MATOP_MULT,mymult,ierr))
164:       else
165: !        If not doing matrix-free then matrix operator, J,  and matrix used
166: !        to construct preconditioner, B, are the same
167:         J = B
168:       endif

170: !  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
171: !     Customize linear solver set runtime options
172: !  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
173: !
174: !     Set runtime options (e.g., -ksp_monitor -ksp_rtol <rtol> -ksp_type <type>)
175: !
176:        PetscCallA(KSPSetFromOptions(ksp,ierr))

178: !  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
179: !     Evaluate initial guess
180: !  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

182:        PetscCallA(FormInitialGuess(X,ierr))
183:        PetscCallA(ComputeFunction(X,F,ierr))
184:        PetscCallA(VecNorm(F,NORM_2,fnorm,ierr))
185:        ttol = fnorm*rtol
186:        if (.not. nooutput) then
187:          print*, 'Initial function norm ',fnorm
188:        endif

190: !  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
191: !     Solve nonlinear system with a user-defined method
192: !  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

194: !  This solver is a very simplistic inexact Newton method, with no
195: !  no damping strategies or bells and whistles. The intent of this code
196: !  is merely to demonstrate the repeated solution with KSP of linear
197: !  systems with the same nonzero structure.
198: !
199: !  This is NOT the recommended approach for solving nonlinear problems
200: !  with PETSc!  We urge users to employ the SNES component for solving
201: !  nonlinear problems whenever possible with application codes, as it
202: !  offers many advantages over coding nonlinear solvers independently.

204:        do 10 i=0,max_nonlin_its

206: !  Compute the Jacobian matrix.  See the comments in this routine for
207: !  important information about setting the flag mat_flag.

209:          PetscCallA(ComputeJacobian(X,B,ierr))

211: !  Solve J Y = F, where J is the Jacobian matrix.
212: !    - First, set the KSP linear operators.  Here the matrix that
213: !      defines the linear system also serves as the preconditioning
214: !      matrix.
215: !    - Then solve the Newton system.

217:          PetscCallA(KSPSetOperators(ksp,J,B,ierr))
218:          PetscCallA(KSPSolve(ksp,F,Y,ierr))

220: !  Compute updated iterate

222:          PetscCallA(VecNorm(Y,NORM_2,ynorm,ierr))
223:          PetscCallA(VecAYPX(Y,mone,X,ierr))
224:          PetscCallA(VecCopy(Y,X,ierr))
225:          PetscCallA(VecNorm(X,NORM_2,xnorm,ierr))
226:          PetscCallA(KSPGetIterationNumber(ksp,lin_its,ierr))
227:          if (.not. nooutput) then
228:            print*,'linear solve iterations = ',lin_its,' xnorm = ',xnorm,' ynorm = ',ynorm
229:          endif

231: !  Evaluate nonlinear function at new location

233:          PetscCallA(ComputeFunction(X,F,ierr))
234:          PetscCallA(VecNorm(F,NORM_2,fnorm,ierr))
235:          if (.not. nooutput) then
236:            print*, 'Iteration ',i+1,' function norm',fnorm
237:          endif

239: !  Test for convergence

241:        if (fnorm .le. ttol) then
242:          if (.not. nooutput) then
243:            print*,'Converged: function norm ',fnorm,' tolerance ',ttol
244:          endif
245:          goto 20
246:        endif
247:  10   continue
248:  20   continue

250:       write(6,100) i+1
251:  100  format('Number of SNES iterations =',I2)

253: !     Check if mymult() produces a linear operator
254:       if (usemf) then
255:          N = 5
256:          PetscCallA(MatIsLinear(J,N,flg,ierr))
257:          if (.not. flg) then
258:             print *, 'IsLinear',flg
259:          endif
260:       endif

262: !  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
263: !     Free work space.  All PETSc objects should be destroyed when they
264: !     are no longer needed.
265: !  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

267:        PetscCallA(MatDestroy(B,ierr))
268:        if (usemf) then
269:          PetscCallA(MatDestroy(J,ierr))
270:        endif
271:        PetscCallA(VecDestroy(localX,ierr))
272:        PetscCallA(VecDestroy(X,ierr))
273:        PetscCallA(VecDestroy(Y,ierr))
274:        PetscCallA(VecDestroy(F,ierr))
275:        PetscCallA(KSPDestroy(ksp,ierr))
276:        PetscCallA(DMDestroy(da,ierr))
277:        PetscCallA(PetscFinalize(ierr))
278:        end

280: ! -------------------------------------------------------------------
281: !
282: !   FormInitialGuess - Forms initial approximation.
283: !
284: !   Input Parameters:
285: !   X - vector
286: !
287: !   Output Parameter:
288: !   X - vector
289: !
290:       subroutine FormInitialGuess(X,ierr)
291:       use ex14fmodule
292:       implicit none

294:       PetscErrorCode    ierr
295:       Vec       X
296:       PetscInt  i,j,row
297:       PetscInt  xs,ys,xm
298:       PetscInt  ym
299:       PetscReal one,lambda,temp1,temp,hx,hy
300:       PetscScalar,pointer ::xx(:)

302:       one    = 1.0
303:       lambda = 6.0
304:       hx     = one/(mx-1)
305:       hy     = one/(my-1)
306:       temp1  = lambda/(lambda + one)

308: !  Get a pointer to vector data.
309: !    - VecGetArray() returns a pointer to the data array.
310: !    - You MUST call VecRestoreArray() when you no longer need access to
311: !      the array.
312:        PetscCall(VecGetArray(X,xx,ierr))

314: !  Get local grid boundaries (for 2-dimensional DMDA):
315: !    xs, ys   - starting grid indices (no ghost points)
316: !    xm, ym   - widths of local grid (no ghost points)

318:        PetscCall(DMDAGetCorners(da,xs,ys,PETSC_NULL_INTEGER,xm,ym,PETSC_NULL_INTEGER,ierr))

320: !  Compute initial guess over the locally owned part of the grid

322:       do 30 j=ys,ys+ym-1
323:         temp = (min(j,my-j-1))*hy
324:         do 40 i=xs,xs+xm-1
325:           row = i - xs + (j - ys)*xm + 1
326:           if (i .eq. 0 .or. j .eq. 0 .or. i .eq. mx-1 .or. j .eq. my-1) then
327:             xx(row) = 0.0
328:             continue
329:           endif
330:           xx(row) = temp1*sqrt(min((min(i,mx-i-1))*hx,temp))
331:  40     continue
332:  30   continue

334: !     Restore vector

336:        PetscCall(VecRestoreArray(X,xx,ierr))
337:        end

339: ! -------------------------------------------------------------------
340: !
341: !   ComputeFunction - Evaluates nonlinear function, F(x).
342: !
343: !   Input Parameters:
344: !.  X - input vector
345: !
346: !   Output Parameter:
347: !.  F - function vector
348: !
349:       subroutine  ComputeFunction(X,F,ierr)
350:       use ex14fmodule
351:       implicit none

353:       Vec              X,F
354:       PetscInt         gys,gxm,gym
355:       PetscErrorCode ierr
356:       PetscInt i,j,row,xs,ys,xm,ym,gxs
357:       PetscInt rowf
358:       PetscReal two,one,lambda,hx
359:       PetscReal hy,hxdhy,hydhx,sc
360:       PetscScalar      u,uxx,uyy
361:       PetscScalar,pointer ::xx(:),ff(:)

363:       two    = 2.0
364:       one    = 1.0
365:       lambda = 6.0

367:       hx     = one/(mx-1)
368:       hy     = one/(my-1)
369:       sc     = hx*hy*lambda
370:       hxdhy  = hx/hy
371:       hydhx  = hy/hx

373: !  Scatter ghost points to local vector, using the 2-step process
374: !     DMGlobalToLocalBegin(), DMGlobalToLocalEnd().
375: !  By placing code between these two statements, computations can be
376: !  done while messages are in transition.
377: !
378:       PetscCall(DMGlobalToLocalBegin(da,X,INSERT_VALUES,localX,ierr))
379:       PetscCall(DMGlobalToLocalEnd(da,X,INSERT_VALUES,localX,ierr))

381: !  Get pointers to vector data

383:       PetscCall(VecGetArrayRead(localX,xx,ierr))
384:       PetscCall(VecGetArray(F,ff,ierr))

386: !  Get local grid boundaries

388:       PetscCall(DMDAGetCorners(da,xs,ys,PETSC_NULL_INTEGER,xm,ym,PETSC_NULL_INTEGER,ierr))
389:       PetscCall(DMDAGetGhostCorners(da,gxs,gys,PETSC_NULL_INTEGER,gxm,gym,PETSC_NULL_INTEGER,ierr))

391: !  Compute function over the locally owned part of the grid
392:       rowf = 0
393:       do 50 j=ys,ys+ym-1

395:         row  = (j - gys)*gxm + xs - gxs
396:         do 60 i=xs,xs+xm-1
397:           row  = row + 1
398:           rowf = rowf + 1

400:           if (i .eq. 0 .or. j .eq. 0 .or. i .eq. mx-1 .or. j .eq. my-1) then
401:             ff(rowf) = xx(row)
402:             goto 60
403:           endif
404:           u   = xx(row)
405:           uxx = (two*u - xx(row-1) - xx(row+1))*hydhx
406:           uyy = (two*u - xx(row-gxm) - xx(row+gxm))*hxdhy
407:           ff(rowf) = uxx + uyy - sc*exp(u)
408:  60     continue
409:  50   continue

411: !  Restore vectors

413:        PetscCall(VecRestoreArrayRead(localX,xx,ierr))
414:        PetscCall(VecRestoreArray(F,ff,ierr))
415:        end

417: ! -------------------------------------------------------------------
418: !
419: !   ComputeJacobian - Evaluates Jacobian matrix.
420: !
421: !   Input Parameters:
422: !   x - input vector
423: !
424: !   Output Parameters:
425: !   jac - Jacobian matrix
426: !
427: !   Notes:
428: !   Due to grid point reordering with DMDAs, we must always work
429: !   with the local grid points, and then transform them to the new
430: !   global numbering with the 'ltog' mapping
431: !   We cannot work directly with the global numbers for the original
432: !   uniprocessor grid!
433: !
434:       subroutine ComputeJacobian(X,jac,ierr)
435:       use ex14fmodule
436:       implicit none

438:       Vec         X
439:       Mat         jac
440:       PetscErrorCode ierr
441:       PetscInt xs,ys,xm,ym
442:       PetscInt gxs,gys,gxm,gym
443:       PetscInt grow(1),i,j
444:       PetscInt row,ione
445:       PetscInt col(5),ifive
446:       PetscScalar two,one,lambda
447:       PetscScalar v(5),hx,hy,hxdhy
448:       PetscScalar hydhx,sc
449:       ISLocalToGlobalMapping ltogm
450:       PetscScalar,pointer ::xx(:)
451:       PetscInt,pointer ::ltog(:)

453:       ione   = 1
454:       ifive  = 5
455:       one    = 1.0
456:       two    = 2.0
457:       hx     = one/(mx-1)
458:       hy     = one/(my-1)
459:       sc     = hx*hy
460:       hxdhy  = hx/hy
461:       hydhx  = hy/hx
462:       lambda = 6.0

464: !  Scatter ghost points to local vector, using the 2-step process
465: !     DMGlobalToLocalBegin(), DMGlobalToLocalEnd().
466: !  By placing code between these two statements, computations can be
467: !  done while messages are in transition.

469:       PetscCall(DMGlobalToLocalBegin(da,X,INSERT_VALUES,localX,ierr))
470:       PetscCall(DMGlobalToLocalEnd(da,X,INSERT_VALUES,localX,ierr))

472: !  Get pointer to vector data

474:       PetscCall(VecGetArrayRead(localX,xx,ierr))

476: !  Get local grid boundaries

478:       PetscCall(DMDAGetCorners(da,xs,ys,PETSC_NULL_INTEGER,xm,ym,PETSC_NULL_INTEGER,ierr))
479:       PetscCall(DMDAGetGhostCorners(da,gxs,gys,PETSC_NULL_INTEGER,gxm,gym,PETSC_NULL_INTEGER,ierr))

481: !  Get the global node numbers for all local nodes, including ghost points

483:       PetscCall(DMGetLocalToGlobalMapping(da,ltogm,ierr))
484:       PetscCall(ISLocalToGlobalMappingGetIndices(ltogm,ltog,ierr))

486: !  Compute entries for the locally owned part of the Jacobian.
487: !   - Currently, all PETSc parallel matrix formats are partitioned by
488: !     contiguous chunks of rows across the processors. The 'grow'
489: !     parameter computed below specifies the global row number
490: !     corresponding to each local grid point.
491: !   - Each processor needs to insert only elements that it owns
492: !     locally (but any non-local elements will be sent to the
493: !     appropriate processor during matrix assembly).
494: !   - Always specify global row and columns of matrix entries.
495: !   - Here, we set all entries for a particular row at once.

497:       do 10 j=ys,ys+ym-1
498:         row = (j - gys)*gxm + xs - gxs
499:         do 20 i=xs,xs+xm-1
500:           row = row + 1
501:           grow(1) = ltog(row)
502:           if (i .eq. 0 .or. j .eq. 0 .or. i .eq. (mx-1) .or. j .eq. (my-1)) then
503:              PetscCall(MatSetValues(jac,ione,grow,ione,grow,[one],INSERT_VALUES,ierr))
504:              go to 20
505:           endif
506:           v(1)   = -hxdhy
507:           col(1) = ltog(row - gxm)
508:           v(2)   = -hydhx
509:           col(2) = ltog(row - 1)
510:           v(3)   = two*(hydhx + hxdhy) - sc*lambda*exp(xx(row))
511:           col(3) = grow(1)
512:           v(4)   = -hydhx
513:           col(4) = ltog(row + 1)
514:           v(5)   = -hxdhy
515:           col(5) = ltog(row + gxm)
516:           PetscCall(MatSetValues(jac,ione,grow,ifive,col,v,INSERT_VALUES,ierr))
517:  20     continue
518:  10   continue

520:       PetscCall(ISLocalToGlobalMappingRestoreIndices(ltogm,ltog,ierr))

522: !  Assemble matrix, using the 2-step process:
523: !    MatAssemblyBegin(), MatAssemblyEnd().
524: !  By placing code between these two statements, computations can be
525: !  done while messages are in transition.

527:       PetscCall(MatAssemblyBegin(jac,MAT_FINAL_ASSEMBLY,ierr))
528:       PetscCall(VecRestoreArrayRead(localX,xx,ierr))
529:       PetscCall(MatAssemblyEnd(jac,MAT_FINAL_ASSEMBLY,ierr))
530:       end

532: ! -------------------------------------------------------------------
533: !
534: !   MyMult - user provided matrix multiply
535: !
536: !   Input Parameters:
537: !.  X - input vector
538: !
539: !   Output Parameter:
540: !.  F - function vector
541: !
542:       subroutine  MyMult(J,X,F,ierr)
543:       use ex14fmodule
544:       implicit none

546:       Mat     J
547:       Vec     X,F
548:       PetscErrorCode ierr
549: !
550: !       Here we use the actual formed matrix B; users would
551: !     instead write their own matrix-vector product routine
552: !
553:       PetscCall(MatMult(B,X,F,ierr))
554:       end

556: !/*TEST
557: !
558: !   test:
559: !      args: -no_output -ksp_gmres_cgs_refinement_type refine_always
560: !      output_file: output/ex14_1.out
561: !      requires: !single
562: !
563: !TEST*/