Actual source code: ex56.c
1: static char help[] = "3D, tri-linear quadrilateral (Q1), displacement finite element formulation\n\
2: of linear elasticity. E=1.0, nu=0.25.\n\
3: Unit square domain with Dirichelet boundary condition on the y=0 side only.\n\
4: Load of 1.0 in x + 2y direction on all nodes (not a true uniform load).\n\
5: -ne <size> : number of (square) quadrilateral elements in each dimension\n\
6: -alpha <v> : scaling of material coefficient in embedded circle\n\n";
8: #include <petscksp.h>
10: static PetscBool log_stages = PETSC_TRUE;
12: static PetscErrorCode MaybeLogStagePush(PetscLogStage stage)
13: {
14: return log_stages ? PetscLogStagePush(stage) : PETSC_SUCCESS;
15: }
17: static PetscErrorCode MaybeLogStagePop(void)
18: {
19: return log_stages ? PetscLogStagePop() : PETSC_SUCCESS;
20: }
22: PetscErrorCode elem_3d_elast_v_25(PetscScalar *);
24: int main(int argc, char **args)
25: {
26: Mat Amat;
27: PetscInt m, nn, M, Istart, Iend, i, j, k, ii, jj, kk, ic, ne = 4, id;
28: PetscReal x, y, z, h, *coords, soft_alpha = 1.e-3;
29: PetscBool two_solves = PETSC_FALSE, test_nonzero_cols = PETSC_FALSE, use_nearnullspace = PETSC_FALSE, test_late_bs = PETSC_FALSE, test_rap_bs = PETSC_FALSE;
30: Vec xx, bb;
31: KSP ksp;
32: MPI_Comm comm;
33: PetscMPIInt npe, mype;
34: PetscScalar DD[24][24], DD2[24][24];
35: PetscLogStage stage[6];
36: PetscScalar DD1[24][24];
38: PetscFunctionBeginUser;
39: PetscCall(PetscInitialize(&argc, &args, NULL, help));
40: comm = PETSC_COMM_WORLD;
41: PetscCallMPI(MPI_Comm_rank(comm, &mype));
42: PetscCallMPI(MPI_Comm_size(comm, &npe));
44: PetscOptionsBegin(comm, NULL, "3D bilinear Q1 elasticity options", "");
45: {
46: char nestring[256];
47: PetscCall(PetscSNPrintf(nestring, sizeof nestring, "number of elements in each direction, ne+1 must be a multiple of %" PetscInt_FMT " (sizes^{1/3})", (PetscInt)(PetscPowReal((PetscReal)npe, 1. / 3.) + .5)));
48: PetscCall(PetscOptionsInt("-ne", nestring, "", ne, &ne, NULL));
49: PetscCall(PetscOptionsBool("-log_stages", "Log stages of solve separately", "", log_stages, &log_stages, NULL));
50: PetscCall(PetscOptionsReal("-alpha", "material coefficient inside circle", "", soft_alpha, &soft_alpha, NULL));
51: PetscCall(PetscOptionsBool("-two_solves", "solve additional variant of the problem", "", two_solves, &two_solves, NULL));
52: PetscCall(PetscOptionsBool("-test_nonzero_cols", "nonzero test", "", test_nonzero_cols, &test_nonzero_cols, NULL));
53: PetscCall(PetscOptionsBool("-use_mat_nearnullspace", "MatNearNullSpace API test", "", use_nearnullspace, &use_nearnullspace, NULL));
54: PetscCall(PetscOptionsBool("-test_late_bs", "", "", test_late_bs, &test_late_bs, NULL));
55: PetscCall(PetscOptionsBool("-test_rap_bs", "", "", test_rap_bs, &test_rap_bs, NULL));
56: }
57: PetscOptionsEnd();
59: if (log_stages) {
60: PetscCall(PetscLogStageRegister("Setup", &stage[0]));
61: PetscCall(PetscLogStageRegister("Solve", &stage[1]));
62: PetscCall(PetscLogStageRegister("2nd Setup", &stage[2]));
63: PetscCall(PetscLogStageRegister("2nd Solve", &stage[3]));
64: PetscCall(PetscLogStageRegister("3rd Setup", &stage[4]));
65: PetscCall(PetscLogStageRegister("3rd Solve", &stage[5]));
66: } else {
67: for (i = 0; i < (PetscInt)PETSC_STATIC_ARRAY_LENGTH(stage); i++) stage[i] = -1;
68: }
70: h = 1. / ne;
71: nn = ne + 1;
72: /* ne*ne; number of global elements */
73: M = 3 * nn * nn * nn; /* global number of equations */
74: if (npe == 2) {
75: if (mype == 1) m = 0;
76: else m = nn * nn * nn;
77: npe = 1;
78: } else {
79: m = nn * nn * nn / npe;
80: if (mype == npe - 1) m = nn * nn * nn - (npe - 1) * m;
81: }
82: m *= 3; /* number of equations local*/
83: /* Setup solver */
84: PetscCall(KSPCreate(PETSC_COMM_WORLD, &ksp));
85: PetscCall(KSPSetComputeSingularValues(ksp, PETSC_TRUE));
86: PetscCall(KSPSetFromOptions(ksp));
87: {
88: /* configuration */
89: const PetscInt NP = (PetscInt)(PetscPowReal((PetscReal)npe, 1. / 3.) + .5);
90: const PetscInt ipx = mype % NP, ipy = (mype % (NP * NP)) / NP, ipz = mype / (NP * NP);
91: const PetscInt Ni0 = ipx * (nn / NP), Nj0 = ipy * (nn / NP), Nk0 = ipz * (nn / NP);
92: const PetscInt Ni1 = Ni0 + (m > 0 ? (nn / NP) : 0), Nj1 = Nj0 + (nn / NP), Nk1 = Nk0 + (nn / NP);
93: const PetscInt NN = nn / NP, id0 = ipz * nn * nn * NN + ipy * nn * NN * NN + ipx * NN * NN * NN;
94: PetscInt *d_nnz, *o_nnz, osz[4] = {0, 9, 15, 19}, nbc;
95: PetscScalar vv[24], v2[24];
96: PetscCheck(npe == NP * NP * NP, comm, PETSC_ERR_ARG_WRONG, "npe=%d: npe^{1/3} must be integer", npe);
97: PetscCheck(nn == NP * (nn / NP), comm, PETSC_ERR_ARG_WRONG, "-ne %" PetscInt_FMT ": (ne+1)%%(npe^{1/3}) must equal zero", ne);
99: /* count nnz */
100: PetscCall(PetscMalloc1(m + 1, &d_nnz));
101: PetscCall(PetscMalloc1(m + 1, &o_nnz));
102: for (i = Ni0, ic = 0; i < Ni1; i++) {
103: for (j = Nj0; j < Nj1; j++) {
104: for (k = Nk0; k < Nk1; k++) {
105: nbc = 0;
106: if (i == Ni0 || i == Ni1 - 1) nbc++;
107: if (j == Nj0 || j == Nj1 - 1) nbc++;
108: if (k == Nk0 || k == Nk1 - 1) nbc++;
109: for (jj = 0; jj < 3; jj++, ic++) {
110: d_nnz[ic] = 3 * (27 - osz[nbc]);
111: o_nnz[ic] = 3 * osz[nbc];
112: }
113: }
114: }
115: }
116: PetscCheck(ic == m, PETSC_COMM_SELF, PETSC_ERR_PLIB, "ic %" PetscInt_FMT " does not equal m %" PetscInt_FMT, ic, m);
118: /* create stiffness matrix */
119: PetscCall(MatCreate(comm, &Amat));
120: PetscCall(MatSetSizes(Amat, m, m, M, M));
121: if (!test_late_bs) PetscCall(MatSetBlockSize(Amat, 3));
122: PetscCall(MatSetType(Amat, MATAIJ));
123: PetscCall(MatSetOption(Amat, MAT_SPD, PETSC_TRUE));
124: PetscCall(MatSetOption(Amat, MAT_SPD_ETERNAL, PETSC_TRUE)); // this keeps CG after switch to negative
125: PetscCall(MatSetFromOptions(Amat));
126: PetscCall(MatSeqAIJSetPreallocation(Amat, 0, d_nnz));
127: PetscCall(MatMPIAIJSetPreallocation(Amat, 0, d_nnz, 0, o_nnz));
129: PetscCall(PetscFree(d_nnz));
130: PetscCall(PetscFree(o_nnz));
131: PetscCall(MatCreateVecs(Amat, &bb, &xx));
133: PetscCall(MatGetOwnershipRange(Amat, &Istart, &Iend));
135: PetscCheck(m == Iend - Istart, PETSC_COMM_SELF, PETSC_ERR_PLIB, "m %" PetscInt_FMT " does not equal Iend %" PetscInt_FMT " - Istart %" PetscInt_FMT, m, Iend, Istart);
136: /* generate element matrices */
137: {
138: PetscBool hasData = PETSC_TRUE;
139: if (!hasData) {
140: PetscCall(PetscPrintf(PETSC_COMM_WORLD, "\t No data is provided\n"));
141: for (i = 0; i < 24; i++) {
142: for (j = 0; j < 24; j++) {
143: if (i == j) DD1[i][j] = 1.0;
144: else DD1[i][j] = -.25;
145: }
146: }
147: } else {
148: /* Get array data */
149: PetscCall(elem_3d_elast_v_25((PetscScalar *)DD1));
150: }
152: /* BC version of element */
153: for (i = 0; i < 24; i++) {
154: for (j = 0; j < 24; j++) {
155: if (i < 12 || (j < 12 && !test_nonzero_cols)) {
156: if (i == j) DD2[i][j] = 0.1 * DD1[i][j];
157: else DD2[i][j] = 0.0;
158: } else DD2[i][j] = DD1[i][j];
159: }
160: }
161: /* element residual/load vector */
162: for (i = 0; i < 24; i++) {
163: if (i % 3 == 0) vv[i] = h * h;
164: else if (i % 3 == 1) vv[i] = 2.0 * h * h;
165: else vv[i] = .0;
166: }
167: for (i = 0; i < 24; i++) {
168: if (i % 3 == 0 && i >= 12) v2[i] = h * h;
169: else if (i % 3 == 1 && i >= 12) v2[i] = 2.0 * h * h;
170: else v2[i] = .0;
171: }
172: }
174: PetscCall(PetscMalloc1(m + 1, &coords));
175: coords[m] = -99.0;
177: /* forms the element stiffness and coordinates */
178: for (i = Ni0, ic = 0, ii = 0; i < Ni1; i++, ii++) {
179: for (j = Nj0, jj = 0; j < Nj1; j++, jj++) {
180: for (k = Nk0, kk = 0; k < Nk1; k++, kk++, ic++) {
181: /* coords */
182: x = coords[3 * ic] = h * (PetscReal)i;
183: y = coords[3 * ic + 1] = h * (PetscReal)j;
184: z = coords[3 * ic + 2] = h * (PetscReal)k;
185: /* matrix */
186: id = id0 + ii + NN * jj + NN * NN * kk;
187: if (i < ne && j < ne && k < ne) {
188: /* radius */
189: PetscReal radius = PetscSqrtReal((x - .5 + h / 2) * (x - .5 + h / 2) + (y - .5 + h / 2) * (y - .5 + h / 2) + (z - .5 + h / 2) * (z - .5 + h / 2));
190: PetscReal alpha = 1.0;
191: PetscInt jx, ix, idx[8], idx3[24];
192: idx[0] = id;
193: idx[1] = id + 1;
194: idx[2] = id + NN + 1;
195: idx[3] = id + NN;
196: idx[4] = id + NN * NN;
197: idx[5] = id + 1 + NN * NN;
198: idx[6] = id + NN + 1 + NN * NN;
199: idx[7] = id + NN + NN * NN;
201: /* correct indices */
202: if (i == Ni1 - 1 && Ni1 != nn) {
203: idx[1] += NN * (NN * NN - 1);
204: idx[2] += NN * (NN * NN - 1);
205: idx[5] += NN * (NN * NN - 1);
206: idx[6] += NN * (NN * NN - 1);
207: }
208: if (j == Nj1 - 1 && Nj1 != nn) {
209: idx[2] += NN * NN * (nn - 1);
210: idx[3] += NN * NN * (nn - 1);
211: idx[6] += NN * NN * (nn - 1);
212: idx[7] += NN * NN * (nn - 1);
213: }
214: if (k == Nk1 - 1 && Nk1 != nn) {
215: idx[4] += NN * (nn * nn - NN * NN);
216: idx[5] += NN * (nn * nn - NN * NN);
217: idx[6] += NN * (nn * nn - NN * NN);
218: idx[7] += NN * (nn * nn - NN * NN);
219: }
221: if (radius < 0.25) alpha = soft_alpha;
223: for (ix = 0; ix < 24; ix++) {
224: for (jx = 0; jx < 24; jx++) DD[ix][jx] = alpha * DD1[ix][jx];
225: }
226: if (k > 0) {
227: if (!test_late_bs) {
228: PetscCall(MatSetValuesBlocked(Amat, 8, idx, 8, idx, (const PetscScalar *)DD, ADD_VALUES));
229: PetscCall(VecSetValuesBlocked(bb, 8, idx, (const PetscScalar *)vv, ADD_VALUES));
230: } else {
231: for (ix = 0; ix < 8; ix++) {
232: idx3[3 * ix] = 3 * idx[ix];
233: idx3[3 * ix + 1] = 3 * idx[ix] + 1;
234: idx3[3 * ix + 2] = 3 * idx[ix] + 2;
235: }
236: PetscCall(MatSetValues(Amat, 24, idx3, 24, idx3, (const PetscScalar *)DD, ADD_VALUES));
237: PetscCall(VecSetValues(bb, 24, idx3, (const PetscScalar *)vv, ADD_VALUES));
238: }
239: } else {
240: /* a BC */
241: for (ix = 0; ix < 24; ix++) {
242: for (jx = 0; jx < 24; jx++) DD[ix][jx] = alpha * DD2[ix][jx];
243: }
244: if (!test_late_bs) {
245: PetscCall(MatSetValuesBlocked(Amat, 8, idx, 8, idx, (const PetscScalar *)DD, ADD_VALUES));
246: PetscCall(VecSetValuesBlocked(bb, 8, idx, (const PetscScalar *)v2, ADD_VALUES));
247: } else {
248: for (ix = 0; ix < 8; ix++) {
249: idx3[3 * ix] = 3 * idx[ix];
250: idx3[3 * ix + 1] = 3 * idx[ix] + 1;
251: idx3[3 * ix + 2] = 3 * idx[ix] + 2;
252: }
253: PetscCall(MatSetValues(Amat, 24, idx3, 24, idx3, (const PetscScalar *)DD, ADD_VALUES));
254: PetscCall(VecSetValues(bb, 24, idx3, (const PetscScalar *)v2, ADD_VALUES));
255: }
256: }
257: }
258: }
259: }
260: }
261: PetscCall(MatAssemblyBegin(Amat, MAT_FINAL_ASSEMBLY));
262: PetscCall(MatAssemblyEnd(Amat, MAT_FINAL_ASSEMBLY));
263: PetscCall(VecAssemblyBegin(bb));
264: PetscCall(VecAssemblyEnd(bb));
265: }
266: PetscCall(MatAssemblyBegin(Amat, MAT_FINAL_ASSEMBLY));
267: PetscCall(MatAssemblyEnd(Amat, MAT_FINAL_ASSEMBLY));
268: PetscCall(VecAssemblyBegin(bb));
269: PetscCall(VecAssemblyEnd(bb));
270: if (test_late_bs) {
271: PetscCall(VecSetBlockSize(xx, 3));
272: PetscCall(VecSetBlockSize(bb, 3));
273: PetscCall(MatSetBlockSize(Amat, 3));
274: }
276: if (!PETSC_TRUE) {
277: PetscViewer viewer;
278: PetscCall(PetscViewerASCIIOpen(comm, "Amat.m", &viewer));
279: PetscCall(PetscViewerPushFormat(viewer, PETSC_VIEWER_ASCII_MATLAB));
280: PetscCall(MatView(Amat, viewer));
281: PetscCall(PetscViewerPopFormat(viewer));
282: PetscCall(PetscViewerDestroy(&viewer));
283: }
285: /* finish KSP/PC setup */
286: PetscCall(KSPSetOperators(ksp, Amat, Amat));
287: if (use_nearnullspace) {
288: MatNullSpace matnull;
289: Vec vec_coords;
290: PetscScalar *c;
291: PC pc;
292: PetscCall(VecCreate(MPI_COMM_WORLD, &vec_coords));
293: PetscCall(VecSetBlockSize(vec_coords, 3));
294: PetscCall(VecSetSizes(vec_coords, m, PETSC_DECIDE));
295: PetscCall(VecSetUp(vec_coords));
296: PetscCall(VecGetArray(vec_coords, &c));
297: for (i = 0; i < m; i++) c[i] = coords[i]; /* Copy since Scalar type might be Complex */
298: PetscCall(VecRestoreArray(vec_coords, &c));
299: PetscCall(MatNullSpaceCreateRigidBody(vec_coords, &matnull));
300: PetscCall(MatSetNearNullSpace(Amat, matnull));
301: PetscCall(MatNullSpaceDestroy(&matnull));
302: PetscCall(VecDestroy(&vec_coords));
303: PetscCall(KSPGetPC(ksp, &pc));
304: PetscCall(PCJacobiSetRowl1Scale(pc, 0.5));
305: } else {
306: PC pc;
307: PetscInt idx[] = {1, 2};
308: PetscCall(KSPGetPC(ksp, &pc));
309: PetscCall(PCSetCoordinates(pc, 3, m / 3, coords));
310: PetscCall(PCGAMGSetUseSAEstEig(pc, PETSC_FALSE));
311: PetscCall(PCGAMGSetLowMemoryFilter(pc, PETSC_TRUE));
312: PetscCall(PCGAMGMISkSetMinDegreeOrdering(pc, PETSC_TRUE));
313: PetscCall(PCGAMGSetAggressiveSquareGraph(pc, PETSC_FALSE));
314: PetscCall(PCGAMGSetInjectionIndex(pc, 2, idx)); // code coverage, same as command line
315: }
317: PetscCall(MaybeLogStagePush(stage[0]));
319: /* PC setup basically */
320: PetscCall(KSPSetUp(ksp));
322: PetscCall(MaybeLogStagePop());
324: if (test_rap_bs) {
325: PC pc;
326: Mat P, cmat;
327: KSP ksp2, cksp;
328: PetscCall(KSPGetPC(ksp, &pc));
329: PetscCall(PCMGGetLevels(pc, &i));
330: PetscCall(PCMGGetInterpolation(pc, i - 1, &P));
331: PetscCall(KSPCreate(PETSC_COMM_WORLD, &ksp2));
332: PetscCall(KSPSetOptionsPrefix(ksp2, "rap_"));
333: PetscCall(KSPSetFromOptions(ksp2));
334: PetscCall(KSPGetPC(ksp2, &pc));
335: PetscCall(PCSetType(pc, PCMG));
336: PetscCall(KSPSetOperators(ksp2, Amat, Amat));
337: PetscCall(PCMGSetLevels(pc, 2, NULL));
338: PetscCall(PCMGSetGalerkin(pc, PC_MG_GALERKIN_PMAT));
339: PetscCall(PCMGSetInterpolation(pc, 1, P));
340: PetscCall(VecSet(bb, 1.0));
341: PetscCall(KSPSolve(ksp2, bb, xx));
342: PetscCall(PCMGGetCoarseSolve(pc, &cksp));
343: PetscCall(KSPGetOperators(cksp, &cmat, &cmat));
344: PetscCall(MatViewFromOptions(cmat, NULL, "-rap_mat_view"));
345: /* Free work space and exit */
346: PetscCall(KSPDestroy(&ksp));
347: PetscCall(KSPDestroy(&ksp2));
348: PetscCall(VecDestroy(&xx));
349: PetscCall(VecDestroy(&bb));
350: PetscCall(MatDestroy(&Amat));
351: PetscCall(PetscFree(coords));
352: PetscCall(PetscFinalize());
353: return 0;
354: }
356: PetscCall(MaybeLogStagePush(stage[1]));
358: /* test BCs */
359: if (test_nonzero_cols) {
360: PetscCall(VecZeroEntries(xx));
361: if (mype == 0) PetscCall(VecSetValue(xx, 0, 1.0, INSERT_VALUES));
362: PetscCall(VecAssemblyBegin(xx));
363: PetscCall(VecAssemblyEnd(xx));
364: PetscCall(KSPSetInitialGuessNonzero(ksp, PETSC_TRUE));
365: }
367: /* 1st solve */
368: PetscCall(KSPSolve(ksp, bb, xx));
370: PetscCall(MaybeLogStagePop());
372: /* 2nd solve */
373: if (two_solves) {
374: PetscReal emax, emin;
375: PetscReal norm, norm2;
376: Vec res;
378: PetscCall(MaybeLogStagePush(stage[2]));
379: /* PC setup basically */
380: PetscCall(MatScale(Amat, -100000.0));
381: PetscCall(MatSetOption(Amat, MAT_SPD, PETSC_FALSE));
382: PetscCall(KSPSetOperators(ksp, Amat, Amat));
383: PetscCall(KSPSetUp(ksp));
385: PetscCall(MaybeLogStagePop());
386: PetscCall(MaybeLogStagePush(stage[3]));
387: PetscCall(KSPSolve(ksp, bb, xx));
388: PetscCall(KSPComputeExtremeSingularValues(ksp, &emax, &emin));
390: PetscCall(MaybeLogStagePop());
391: PetscCall(MaybeLogStagePush(stage[4]));
393: PetscCall(MaybeLogStagePop());
394: PetscCall(MaybeLogStagePush(stage[5]));
396: /* 3rd solve */
397: PetscCall(KSPSolve(ksp, bb, xx));
399: PetscCall(MaybeLogStagePop());
401: PetscCall(VecNorm(bb, NORM_2, &norm2));
403: PetscCall(VecDuplicate(xx, &res));
404: PetscCall(MatMult(Amat, xx, res));
405: PetscCall(VecAXPY(bb, -1.0, res));
406: PetscCall(VecDestroy(&res));
407: PetscCall(VecNorm(bb, NORM_2, &norm));
408: PetscCall(PetscPrintf(PETSC_COMM_WORLD, "[%d]%s |b-Ax|/|b|=%e, |b|=%e, emax=%e\n", 0, PETSC_FUNCTION_NAME, (double)(norm / norm2), (double)norm2, (double)emax));
409: }
411: /* Free work space */
412: PetscCall(KSPDestroy(&ksp));
413: PetscCall(VecDestroy(&xx));
414: PetscCall(VecDestroy(&bb));
415: PetscCall(MatDestroy(&Amat));
416: PetscCall(PetscFree(coords));
418: PetscCall(PetscFinalize());
419: return 0;
420: }
422: /* Data was previously provided in the file data/elem_3d_elast_v_25.tx */
423: PetscErrorCode elem_3d_elast_v_25(PetscScalar *dd)
424: {
425: PetscScalar DD[] = {
426: 0.18981481481481474, 5.27777777777777568E-002, 5.27777777777777568E-002, -5.64814814814814659E-002, -1.38888888888889072E-002, -1.38888888888889089E-002, -8.24074074074073876E-002, -5.27777777777777429E-002, 1.38888888888888725E-002,
427: 4.90740740740740339E-002, 1.38888888888889124E-002, 4.72222222222222071E-002, 4.90740740740740339E-002, 4.72222222222221932E-002, 1.38888888888888968E-002, -8.24074074074073876E-002, 1.38888888888888673E-002, -5.27777777777777429E-002,
428: -7.87037037037036785E-002, -4.72222222222221932E-002, -4.72222222222222071E-002, 1.20370370370370180E-002, -1.38888888888888742E-002, -1.38888888888888829E-002, 5.27777777777777568E-002, 0.18981481481481474, 5.27777777777777568E-002,
429: 1.38888888888889124E-002, 4.90740740740740269E-002, 4.72222222222221932E-002, -5.27777777777777637E-002, -8.24074074074073876E-002, 1.38888888888888725E-002, -1.38888888888889037E-002, -5.64814814814814728E-002, -1.38888888888888985E-002,
430: 4.72222222222221932E-002, 4.90740740740740478E-002, 1.38888888888888968E-002, -1.38888888888888673E-002, 1.20370370370370058E-002, -1.38888888888888742E-002, -4.72222222222221932E-002, -7.87037037037036785E-002, -4.72222222222222002E-002,
431: 1.38888888888888742E-002, -8.24074074074073598E-002, -5.27777777777777568E-002, 5.27777777777777568E-002, 5.27777777777777568E-002, 0.18981481481481474, 1.38888888888889055E-002, 4.72222222222222002E-002, 4.90740740740740269E-002,
432: -1.38888888888888829E-002, -1.38888888888888829E-002, 1.20370370370370180E-002, 4.72222222222222002E-002, 1.38888888888888985E-002, 4.90740740740740339E-002, -1.38888888888888985E-002, -1.38888888888888968E-002, -5.64814814814814520E-002,
433: -5.27777777777777568E-002, 1.38888888888888777E-002, -8.24074074074073876E-002, -4.72222222222222002E-002, -4.72222222222221932E-002, -7.87037037037036646E-002, 1.38888888888888794E-002, -5.27777777777777568E-002, -8.24074074074073598E-002,
434: -5.64814814814814659E-002, 1.38888888888889124E-002, 1.38888888888889055E-002, 0.18981481481481474, -5.27777777777777568E-002, -5.27777777777777499E-002, 4.90740740740740269E-002, -1.38888888888889072E-002, -4.72222222222221932E-002,
435: -8.24074074074073876E-002, 5.27777777777777568E-002, -1.38888888888888812E-002, -8.24074074074073876E-002, -1.38888888888888742E-002, 5.27777777777777499E-002, 4.90740740740740269E-002, -4.72222222222221863E-002, -1.38888888888889089E-002,
436: 1.20370370370370162E-002, 1.38888888888888673E-002, 1.38888888888888742E-002, -7.87037037037036785E-002, 4.72222222222222002E-002, 4.72222222222222071E-002, -1.38888888888889072E-002, 4.90740740740740269E-002, 4.72222222222222002E-002,
437: -5.27777777777777568E-002, 0.18981481481481480, 5.27777777777777568E-002, 1.38888888888889020E-002, -5.64814814814814728E-002, -1.38888888888888951E-002, 5.27777777777777637E-002, -8.24074074074073876E-002, 1.38888888888888881E-002,
438: 1.38888888888888742E-002, 1.20370370370370232E-002, -1.38888888888888812E-002, -4.72222222222221863E-002, 4.90740740740740339E-002, 1.38888888888888933E-002, -1.38888888888888812E-002, -8.24074074074073876E-002, -5.27777777777777568E-002,
439: 4.72222222222222071E-002, -7.87037037037036924E-002, -4.72222222222222140E-002, -1.38888888888889089E-002, 4.72222222222221932E-002, 4.90740740740740269E-002, -5.27777777777777499E-002, 5.27777777777777568E-002, 0.18981481481481477,
440: -4.72222222222222071E-002, 1.38888888888888968E-002, 4.90740740740740131E-002, 1.38888888888888812E-002, -1.38888888888888708E-002, 1.20370370370370267E-002, 5.27777777777777568E-002, 1.38888888888888812E-002, -8.24074074074073876E-002,
441: 1.38888888888889124E-002, -1.38888888888889055E-002, -5.64814814814814589E-002, -1.38888888888888812E-002, -5.27777777777777568E-002, -8.24074074074073737E-002, 4.72222222222222002E-002, -4.72222222222222002E-002, -7.87037037037036924E-002,
442: -8.24074074074073876E-002, -5.27777777777777637E-002, -1.38888888888888829E-002, 4.90740740740740269E-002, 1.38888888888889020E-002, -4.72222222222222071E-002, 0.18981481481481480, 5.27777777777777637E-002, -5.27777777777777637E-002,
443: -5.64814814814814728E-002, -1.38888888888889037E-002, 1.38888888888888951E-002, -7.87037037037036785E-002, -4.72222222222222002E-002, 4.72222222222221932E-002, 1.20370370370370128E-002, -1.38888888888888725E-002, 1.38888888888888812E-002,
444: 4.90740740740740408E-002, 4.72222222222222002E-002, -1.38888888888888951E-002, -8.24074074074073876E-002, 1.38888888888888812E-002, 5.27777777777777637E-002, -5.27777777777777429E-002, -8.24074074074073876E-002, -1.38888888888888829E-002,
445: -1.38888888888889072E-002, -5.64814814814814728E-002, 1.38888888888888968E-002, 5.27777777777777637E-002, 0.18981481481481480, -5.27777777777777568E-002, 1.38888888888888916E-002, 4.90740740740740339E-002, -4.72222222222222210E-002,
446: -4.72222222222221932E-002, -7.87037037037036924E-002, 4.72222222222222002E-002, 1.38888888888888742E-002, -8.24074074074073876E-002, 5.27777777777777429E-002, 4.72222222222222002E-002, 4.90740740740740269E-002, -1.38888888888888951E-002,
447: -1.38888888888888846E-002, 1.20370370370370267E-002, 1.38888888888888916E-002, 1.38888888888888725E-002, 1.38888888888888725E-002, 1.20370370370370180E-002, -4.72222222222221932E-002, -1.38888888888888951E-002, 4.90740740740740131E-002,
448: -5.27777777777777637E-002, -5.27777777777777568E-002, 0.18981481481481480, -1.38888888888888968E-002, -4.72222222222221932E-002, 4.90740740740740339E-002, 4.72222222222221932E-002, 4.72222222222222071E-002, -7.87037037037036646E-002,
449: -1.38888888888888742E-002, 5.27777777777777499E-002, -8.24074074074073737E-002, 1.38888888888888933E-002, 1.38888888888889020E-002, -5.64814814814814589E-002, 5.27777777777777568E-002, -1.38888888888888794E-002, -8.24074074074073876E-002,
450: 4.90740740740740339E-002, -1.38888888888889037E-002, 4.72222222222222002E-002, -8.24074074074073876E-002, 5.27777777777777637E-002, 1.38888888888888812E-002, -5.64814814814814728E-002, 1.38888888888888916E-002, -1.38888888888888968E-002,
451: 0.18981481481481480, -5.27777777777777499E-002, 5.27777777777777707E-002, 1.20370370370370180E-002, 1.38888888888888812E-002, -1.38888888888888812E-002, -7.87037037037036785E-002, 4.72222222222222002E-002, -4.72222222222222071E-002,
452: -8.24074074074073876E-002, -1.38888888888888742E-002, -5.27777777777777568E-002, 4.90740740740740616E-002, -4.72222222222222002E-002, 1.38888888888888846E-002, 1.38888888888889124E-002, -5.64814814814814728E-002, 1.38888888888888985E-002,
453: 5.27777777777777568E-002, -8.24074074074073876E-002, -1.38888888888888708E-002, -1.38888888888889037E-002, 4.90740740740740339E-002, -4.72222222222221932E-002, -5.27777777777777499E-002, 0.18981481481481480, -5.27777777777777568E-002,
454: -1.38888888888888673E-002, -8.24074074074073598E-002, 5.27777777777777429E-002, 4.72222222222222002E-002, -7.87037037037036785E-002, 4.72222222222222002E-002, 1.38888888888888708E-002, 1.20370370370370128E-002, 1.38888888888888760E-002,
455: -4.72222222222222002E-002, 4.90740740740740478E-002, -1.38888888888888951E-002, 4.72222222222222071E-002, -1.38888888888888985E-002, 4.90740740740740339E-002, -1.38888888888888812E-002, 1.38888888888888881E-002, 1.20370370370370267E-002,
456: 1.38888888888888951E-002, -4.72222222222222210E-002, 4.90740740740740339E-002, 5.27777777777777707E-002, -5.27777777777777568E-002, 0.18981481481481477, 1.38888888888888829E-002, 5.27777777777777707E-002, -8.24074074074073598E-002,
457: -4.72222222222222140E-002, 4.72222222222222140E-002, -7.87037037037036646E-002, -5.27777777777777707E-002, -1.38888888888888829E-002, -8.24074074074073876E-002, -1.38888888888888881E-002, 1.38888888888888881E-002, -5.64814814814814589E-002,
458: 4.90740740740740339E-002, 4.72222222222221932E-002, -1.38888888888888985E-002, -8.24074074074073876E-002, 1.38888888888888742E-002, 5.27777777777777568E-002, -7.87037037037036785E-002, -4.72222222222221932E-002, 4.72222222222221932E-002,
459: 1.20370370370370180E-002, -1.38888888888888673E-002, 1.38888888888888829E-002, 0.18981481481481469, 5.27777777777777429E-002, -5.27777777777777429E-002, -5.64814814814814659E-002, -1.38888888888889055E-002, 1.38888888888889055E-002,
460: -8.24074074074074153E-002, -5.27777777777777429E-002, -1.38888888888888760E-002, 4.90740740740740408E-002, 1.38888888888888968E-002, -4.72222222222222071E-002, 4.72222222222221932E-002, 4.90740740740740478E-002, -1.38888888888888968E-002,
461: -1.38888888888888742E-002, 1.20370370370370232E-002, 1.38888888888888812E-002, -4.72222222222222002E-002, -7.87037037037036924E-002, 4.72222222222222071E-002, 1.38888888888888812E-002, -8.24074074074073598E-002, 5.27777777777777707E-002,
462: 5.27777777777777429E-002, 0.18981481481481477, -5.27777777777777499E-002, 1.38888888888889107E-002, 4.90740740740740478E-002, -4.72222222222221932E-002, -5.27777777777777568E-002, -8.24074074074074153E-002, -1.38888888888888812E-002,
463: -1.38888888888888846E-002, -5.64814814814814659E-002, 1.38888888888888812E-002, 1.38888888888888968E-002, 1.38888888888888968E-002, -5.64814814814814520E-002, 5.27777777777777499E-002, -1.38888888888888812E-002, -8.24074074074073876E-002,
464: 4.72222222222221932E-002, 4.72222222222222002E-002, -7.87037037037036646E-002, -1.38888888888888812E-002, 5.27777777777777429E-002, -8.24074074074073598E-002, -5.27777777777777429E-002, -5.27777777777777499E-002, 0.18981481481481474,
465: -1.38888888888888985E-002, -4.72222222222221863E-002, 4.90740740740740339E-002, 1.38888888888888829E-002, 1.38888888888888777E-002, 1.20370370370370249E-002, -4.72222222222222002E-002, -1.38888888888888933E-002, 4.90740740740740339E-002,
466: -8.24074074074073876E-002, -1.38888888888888673E-002, -5.27777777777777568E-002, 4.90740740740740269E-002, -4.72222222222221863E-002, 1.38888888888889124E-002, 1.20370370370370128E-002, 1.38888888888888742E-002, -1.38888888888888742E-002,
467: -7.87037037037036785E-002, 4.72222222222222002E-002, -4.72222222222222140E-002, -5.64814814814814659E-002, 1.38888888888889107E-002, -1.38888888888888985E-002, 0.18981481481481474, -5.27777777777777499E-002, 5.27777777777777499E-002,
468: 4.90740740740740339E-002, -1.38888888888889055E-002, 4.72222222222221932E-002, -8.24074074074074153E-002, 5.27777777777777499E-002, 1.38888888888888829E-002, 1.38888888888888673E-002, 1.20370370370370058E-002, 1.38888888888888777E-002,
469: -4.72222222222221863E-002, 4.90740740740740339E-002, -1.38888888888889055E-002, -1.38888888888888725E-002, -8.24074074074073876E-002, 5.27777777777777499E-002, 4.72222222222222002E-002, -7.87037037037036785E-002, 4.72222222222222140E-002,
470: -1.38888888888889055E-002, 4.90740740740740478E-002, -4.72222222222221863E-002, -5.27777777777777499E-002, 0.18981481481481469, -5.27777777777777499E-002, 1.38888888888889072E-002, -5.64814814814814659E-002, 1.38888888888889003E-002,
471: 5.27777777777777429E-002, -8.24074074074074153E-002, -1.38888888888888812E-002, -5.27777777777777429E-002, -1.38888888888888742E-002, -8.24074074074073876E-002, -1.38888888888889089E-002, 1.38888888888888933E-002, -5.64814814814814589E-002,
472: 1.38888888888888812E-002, 5.27777777777777429E-002, -8.24074074074073737E-002, -4.72222222222222071E-002, 4.72222222222222002E-002, -7.87037037037036646E-002, 1.38888888888889055E-002, -4.72222222222221932E-002, 4.90740740740740339E-002,
473: 5.27777777777777499E-002, -5.27777777777777499E-002, 0.18981481481481474, 4.72222222222222002E-002, -1.38888888888888985E-002, 4.90740740740740339E-002, -1.38888888888888846E-002, 1.38888888888888812E-002, 1.20370370370370284E-002,
474: -7.87037037037036785E-002, -4.72222222222221932E-002, -4.72222222222222002E-002, 1.20370370370370162E-002, -1.38888888888888812E-002, -1.38888888888888812E-002, 4.90740740740740408E-002, 4.72222222222222002E-002, 1.38888888888888933E-002,
475: -8.24074074074073876E-002, 1.38888888888888708E-002, -5.27777777777777707E-002, -8.24074074074074153E-002, -5.27777777777777568E-002, 1.38888888888888829E-002, 4.90740740740740339E-002, 1.38888888888889072E-002, 4.72222222222222002E-002,
476: 0.18981481481481477, 5.27777777777777429E-002, 5.27777777777777568E-002, -5.64814814814814659E-002, -1.38888888888888846E-002, -1.38888888888888881E-002, -4.72222222222221932E-002, -7.87037037037036785E-002, -4.72222222222221932E-002,
477: 1.38888888888888673E-002, -8.24074074074073876E-002, -5.27777777777777568E-002, 4.72222222222222002E-002, 4.90740740740740269E-002, 1.38888888888889020E-002, -1.38888888888888742E-002, 1.20370370370370128E-002, -1.38888888888888829E-002,
478: -5.27777777777777429E-002, -8.24074074074074153E-002, 1.38888888888888777E-002, -1.38888888888889055E-002, -5.64814814814814659E-002, -1.38888888888888985E-002, 5.27777777777777429E-002, 0.18981481481481469, 5.27777777777777429E-002,
479: 1.38888888888888933E-002, 4.90740740740740339E-002, 4.72222222222222071E-002, -4.72222222222222071E-002, -4.72222222222222002E-002, -7.87037037037036646E-002, 1.38888888888888742E-002, -5.27777777777777568E-002, -8.24074074074073737E-002,
480: -1.38888888888888951E-002, -1.38888888888888951E-002, -5.64814814814814589E-002, -5.27777777777777568E-002, 1.38888888888888760E-002, -8.24074074074073876E-002, -1.38888888888888760E-002, -1.38888888888888812E-002, 1.20370370370370249E-002,
481: 4.72222222222221932E-002, 1.38888888888889003E-002, 4.90740740740740339E-002, 5.27777777777777568E-002, 5.27777777777777429E-002, 0.18981481481481474, 1.38888888888888933E-002, 4.72222222222222071E-002, 4.90740740740740339E-002,
482: 1.20370370370370180E-002, 1.38888888888888742E-002, 1.38888888888888794E-002, -7.87037037037036785E-002, 4.72222222222222071E-002, 4.72222222222222002E-002, -8.24074074074073876E-002, -1.38888888888888846E-002, 5.27777777777777568E-002,
483: 4.90740740740740616E-002, -4.72222222222222002E-002, -1.38888888888888881E-002, 4.90740740740740408E-002, -1.38888888888888846E-002, -4.72222222222222002E-002, -8.24074074074074153E-002, 5.27777777777777429E-002, -1.38888888888888846E-002,
484: -5.64814814814814659E-002, 1.38888888888888933E-002, 1.38888888888888933E-002, 0.18981481481481477, -5.27777777777777568E-002, -5.27777777777777637E-002, -1.38888888888888742E-002, -8.24074074074073598E-002, -5.27777777777777568E-002,
485: 4.72222222222222002E-002, -7.87037037037036924E-002, -4.72222222222222002E-002, 1.38888888888888812E-002, 1.20370370370370267E-002, -1.38888888888888794E-002, -4.72222222222222002E-002, 4.90740740740740478E-002, 1.38888888888888881E-002,
486: 1.38888888888888968E-002, -5.64814814814814659E-002, -1.38888888888888933E-002, 5.27777777777777499E-002, -8.24074074074074153E-002, 1.38888888888888812E-002, -1.38888888888888846E-002, 4.90740740740740339E-002, 4.72222222222222071E-002,
487: -5.27777777777777568E-002, 0.18981481481481477, 5.27777777777777637E-002, -1.38888888888888829E-002, -5.27777777777777568E-002, -8.24074074074073598E-002, 4.72222222222222071E-002, -4.72222222222222140E-002, -7.87037037037036924E-002,
488: 5.27777777777777637E-002, 1.38888888888888916E-002, -8.24074074074073876E-002, 1.38888888888888846E-002, -1.38888888888888951E-002, -5.64814814814814589E-002, -4.72222222222222071E-002, 1.38888888888888812E-002, 4.90740740740740339E-002,
489: 1.38888888888888829E-002, -1.38888888888888812E-002, 1.20370370370370284E-002, -1.38888888888888881E-002, 4.72222222222222071E-002, 4.90740740740740339E-002, -5.27777777777777637E-002, 5.27777777777777637E-002, 0.18981481481481477,
490: };
492: PetscFunctionBeginUser;
493: PetscCall(PetscArraycpy(dd, DD, 576));
494: PetscFunctionReturn(PETSC_SUCCESS);
495: }
497: /*TEST
499: testset:
500: requires: !complex
501: args: -ne 11 -alpha 1.e-3 -ksp_type cg -pc_type gamg -pc_gamg_agg_nsmooths 1 -two_solves -ksp_converged_reason -use_mat_nearnullspace -mg_levels_ksp_max_it 1 -mg_levels_ksp_type chebyshev -mg_levels_ksp_chebyshev_esteig 0,0.2,0,1.05 -mg_levels_sub_pc_type lu -pc_gamg_asm_use_agg -mg_levels_pc_asm_overlap 0 -pc_gamg_parallel_coarse_grid_solver -mg_coarse_pc_type jacobi -mg_coarse_ksp_type cg -pc_gamg_mat_coarsen_type hem -pc_gamg_mat_coarsen_max_it 5 -ksp_rtol 1e-4 -ksp_norm_type unpreconditioned -pc_gamg_threshold .001 -pc_gamg_mat_coarsen_strength_index 1,2
502: test:
503: suffix: 1
504: nsize: 1
505: filter: sed -e "s/Linear solve converged due to CONVERGED_RTOL iterations 15/Linear solve converged due to CONVERGED_RTOL iterations 14/g"
506: test:
507: suffix: 2
508: nsize: 8
509: filter: sed -e "s/Linear solve converged due to CONVERGED_RTOL iterations 1[3|4]/Linear solve converged due to CONVERGED_RTOL iterations 15/g"
511: testset:
512: nsize: 8
513: args: -ne 15 -alpha 1.e-3 -ksp_type cg -ksp_converged_reason -use_mat_nearnullspace -ksp_rtol 1e-4 -ksp_norm_type unpreconditioned -two_solves
514: test:
515: requires: hypre !complex !defined(PETSC_HAVE_HYPRE_DEVICE)
516: suffix: hypre
517: args: -pc_type hypre -pc_hypre_boomeramg_relax_type_all l1scaled-Jacobi
518: test:
519: suffix: gamg
520: args: -pc_type gamg -mg_levels_ksp_type richardson -mg_levels_pc_type jacobi -mg_levels_pc_jacobi_type rowl1 -mg_levels_pc_jacobi_rowl1_scale .5 -mg_levels_pc_jacobi_fixdiagonal
521: test:
522: suffix: baij
523: filter: grep -v variant
524: args: -pc_type jacobi -pc_jacobi_type rowl1 -ksp_type cg -mat_type baij -ksp_view -ksp_rtol 1e-1 -two_solves false
526: test:
527: suffix: latebs
528: filter: grep -v variant
529: nsize: 8
530: args: -test_late_bs 0 -ne 9 -alpha 1.e-3 -ksp_type cg -pc_type gamg -pc_gamg_agg_nsmooths 1 -pc_gamg_reuse_interpolation true -two_solves -ksp_converged_reason -use_mat_nearnullspace false -mg_levels_ksp_max_it 2 -mg_levels_ksp_type chebyshev -mg_levels_ksp_chebyshev_esteig 0,0.2,0,1.05 -pc_gamg_esteig_ksp_max_it 10 -pc_gamg_threshold -0.01 -pc_gamg_coarse_eq_limit 200 -pc_gamg_process_eq_limit 30 -pc_gamg_repartition false -pc_mg_cycle_type v -pc_gamg_parallel_coarse_grid_solver -mg_coarse_pc_type jacobi -mg_coarse_ksp_type cg -ksp_monitor_short -ksp_view -pc_gamg_injection_index 1,2 -mg_fine_ksp_type richardson -mg_fine_pc_type jacobi -mg_fine_pc_jacobi_type rowl1 -mg_fine_pc_jacobi_rowl1_scale .25
532: test:
533: suffix: latebs-2
534: filter: grep -v variant
535: nsize: 8
536: args: -test_late_bs -ne 9 -alpha 1.e-3 -ksp_type cg -pc_type gamg -pc_gamg_agg_nsmooths 1 -pc_gamg_reuse_interpolation true -two_solves -ksp_converged_reason -use_mat_nearnullspace -mg_levels_ksp_max_it 2 -mg_levels_ksp_type chebyshev -mg_levels_ksp_chebyshev_esteig 0,0.2,0,1.05 -pc_gamg_esteig_ksp_max_it 10 -pc_gamg_threshold -0.01 -pc_gamg_coarse_eq_limit 200 -pc_gamg_process_eq_limit 30 -pc_gamg_repartition false -pc_mg_cycle_type v -pc_gamg_parallel_coarse_grid_solver -mg_coarse_pc_type jacobi -mg_coarse_ksp_type cg -ksp_monitor_short -ksp_view
538: test:
539: suffix: ml
540: nsize: 8
541: args: -ne 9 -alpha 1.e-3 -ksp_type cg -pc_type ml -mg_levels_ksp_type chebyshev -mg_levels_ksp_chebyshev_esteig 0,0.05,0,1.05 -mg_levels_pc_type sor -ksp_monitor_short
542: requires: ml
544: test:
545: suffix: nns
546: args: -ne 9 -alpha 1.e-3 -ksp_converged_reason -ksp_type cg -ksp_max_it 50 -pc_type gamg -pc_gamg_esteig_ksp_type cg -pc_gamg_esteig_ksp_max_it 10 -pc_gamg_type agg -pc_gamg_agg_nsmooths 1 -pc_gamg_coarse_eq_limit 1000 -mg_levels_ksp_type chebyshev -mg_levels_pc_type sor -pc_gamg_reuse_interpolation true -two_solves -use_mat_nearnullspace -pc_gamg_use_sa_esteig 0 -mg_levels_esteig_ksp_max_it 10
548: test:
549: suffix: nns_telescope
550: nsize: 2
551: args: -use_mat_nearnullspace -pc_type telescope -pc_telescope_reduction_factor 2 -telescope_pc_type gamg -telescope_pc_gamg_esteig_ksp_type cg -telescope_pc_gamg_esteig_ksp_max_it 10
553: test:
554: suffix: nns_gdsw
555: filter: grep -v "variant HERMITIAN"
556: nsize: 8
557: args: -use_mat_nearnullspace -ksp_monitor_short -pc_type mg -pc_mg_levels 2 -pc_mg_adapt_interp_coarse_space gdsw -pc_mg_galerkin -mg_levels_pc_type bjacobi -ne 3 -ksp_view
559: test:
560: suffix: seqaijmkl
561: nsize: 8
562: requires: mkl_sparse
563: args: -ne 9 -alpha 1.e-3 -ksp_type cg -pc_type gamg -pc_gamg_agg_nsmooths 1 -pc_gamg_reuse_interpolation true -two_solves -ksp_converged_reason -use_mat_nearnullspace -mg_levels_ksp_max_it 2 -mg_levels_ksp_type chebyshev -mg_levels_pc_type jacobi -mg_levels_ksp_chebyshev_esteig 0,0.2,0,1.05 -pc_gamg_esteig_ksp_max_it 10 -pc_gamg_threshold 0.01 -pc_gamg_coarse_eq_limit 2000 -pc_gamg_process_eq_limit 200 -pc_gamg_repartition false -pc_mg_cycle_type v -mat_seqaij_type seqaijmkl
565: testset:
566: nsize: {{1 8}separate output}
567: args: -ne 7 -pc_type gamg -rap_mg_levels_pc_type pbjacobi -rap_ksp_monitor -rap_mg_coarse_ksp_type cg -rap_mg_coarse_pc_type pbjacobi -use_mat_nearnullspace -test_rap_bs -rap_ksp_view -rap_mat_view ::ascii_info -rap_ksp_converged_reason
568: filter: grep -v "variant HERMITIAN"
569: test:
570: suffix: rap_bs
572: test:
573: requires: kokkos_kernels
574: suffix: rap_bs_kokkos
575: args: -mat_type aijkokkos
577: test:
578: requires: cuda
579: suffix: rap_bs_cuda
580: args: -mat_type aijcusparse -rap_mg_coarse_pc_type jacobi -rap_mg_levels_pc_type jacobi -rap_mg_levels_ksp_type richardson -rap_mg_levels_pc_jacobi_type rowl1 -rap_mg_levels_pc_jacobi_rowl1_scale .5
582: test:
583: requires: hip
584: suffix: rap_bs_hip
585: args: -mat_type aijhipsparse -rap_mg_coarse_pc_type jacobi -rap_mg_levels_pc_type jacobi -rap_mg_levels_ksp_type richardson -rap_mg_levels_pc_jacobi_type rowl1 -rap_mg_levels_pc_jacobi_rowl1_scale .5
587: TEST*/