Actual source code: ex57f.F90

  1: !
  2: !  Description: Modified from ex2f.F and ex52.c to illustrate how use external packages MUMPS
  3: !               Solves a linear system in parallel with KSP (Fortran code).
  4: !               Also shows how to set a user-defined monitoring routine.
  5: !
  6: ! -----------------------------------------------------------------------
  7: #include <petsc/finclude/petscksp.h>
  8: module ex57fmodule
  9:   use petscksp
 10:   implicit none

 12: contains
 13: ! --------------------------------------------------------------
 14: !
 15: !  MyKSPMonitor - This is a user-defined routine for monitoring
 16: !  the KSP iterative solvers.
 17: !
 18: !  Input Parameters:
 19: !    ksp   - iterative context
 20: !    n     - iteration number
 21: !    rnorm - 2-norm (preconditioned) residual value (may be estimated)
 22: !    dummy - optional user-defined monitor context (unused here)
 23: !
 24:   subroutine MyKSPMonitor(ksp, n, rnorm, dummy, ierr)

 26:     KSP ksp
 27:     Vec x
 28:     PetscErrorCode ierr
 29:     PetscInt n, dummy
 30:     PetscMPIInt rank
 31:     PetscReal rnorm

 33: !  Build the solution vector

 35:     PetscCallA(KSPBuildSolution(ksp, PETSC_NULL_VEC, x, ierr))

 37: !  Write the solution vector and residual norm to stdout
 38: !   - Note that the parallel viewer PETSC_VIEWER_STDOUT_WORLD
 39: !     handles data from multiple processors so that the
 40: !     output is not jumbled.

 42:     PetscCallMPIA(MPI_Comm_rank(PETSC_COMM_WORLD, rank, ierr))
 43:     if (rank == 0) write (6, 100) n
 44:     PetscCallA(VecView(x, PETSC_VIEWER_STDOUT_WORLD, ierr))
 45:     if (rank == 0) write (6, 200) n, rnorm

 47: 100 format('iteration ', i5, ' solution vector:')
 48: 200 format('iteration ', i5, ' residual norm ', e11.4)
 49:     ierr = 0
 50:   end

 52: ! --------------------------------------------------------------
 53: !
 54: !  MyKSPConverged - This is a user-defined routine for testing
 55: !  convergence of the KSP iterative solvers.
 56: !
 57: !  Input Parameters:
 58: !    ksp   - iterative context
 59: !    n     - iteration number
 60: !    rnorm - 2-norm (preconditioned) residual value (may be estimated)
 61: !    dummy - optional user-defined monitor context (unused here)
 62: !
 63:   subroutine MyKSPConverged(ksp, n, rnorm, flag, dummy, ierr)

 65:     KSP ksp
 66:     PetscErrorCode ierr
 67:     PetscInt n, dummy
 68:     KSPConvergedReason flag
 69:     PetscReal rnorm

 71:     if (rnorm <= .05) then
 72:       flag = KSP_CONVERGED_RTOL
 73:     else
 74:       flag = KSP_CONVERGED_ITERATING
 75:     end if
 76:     ierr = 0

 78:   end
 79: end module ex57fmodule

 81: program main
 82:   use petscksp
 83:   use ex57fmodule
 84:   implicit none

 86: !
 87: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 88: !                   Variable declarations
 89: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 90: !
 91: !  Variables:
 92: !     ksp     - linear solver context
 93: !     ksp      - Krylov subspace method context
 94: !     pc       - preconditioner context
 95: !     x, b, u  - approx solution, right-hand side, exact solution vectors
 96: !     A        - matrix that defines linear system
 97: !     its      - iterations for convergence
 98: !     norm     - norm of error in solution
 99: !     rctx     - random number generator context
100: !
101: !  Note that vectors are declared as PETSc "Vec" objects.  These vectors
102: !  are mathematical objects that contain more than just an array of
103: !  double precision numbers. I.e., vectors in PETSc are not just
104: !        double precision x(*).
105: !  However, local vector data can be easily accessed via VecGetArray().
106: !  See the Fortran section of the PETSc users manual for details.
107: !
108: #ifdef PETSC_HAVE_MUMPS
109:   PetscInt icntl, ival
110:   Mat F
111: #endif
112:   PC pc
113:   PetscReal norm, zero
114:   PetscInt i, j, II, JJ, m, n, its
115:   PetscInt Istart, Iend, ione
116:   PetscErrorCode ierr
117:   PetscMPIInt rank, size
118:   PetscBool flg
119:   PetscScalar v, one, neg_one
120:   Vec x, b, u
121:   Mat A
122:   KSP ksp
123:   PetscRandom rctx
124:   character*80 ksptype

126: !  These variables are not currently used.
127: !      PC          pc
128: !      PCType      ptype
129: !      double precision tol

131: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
132: !                 Beginning of program
133: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

135:   PetscCallA(PetscInitialize(ierr))
136:   m = 3
137:   n = 3
138:   one = 1.0
139:   neg_one = -1.0
140:   ione = 1
141:   zero = 0.0
142:   PetscCallA(PetscOptionsGetInt(PETSC_NULL_OPTIONS, PETSC_NULL_CHARACTER, '-m', m, flg, ierr))
143:   PetscCallA(PetscOptionsGetInt(PETSC_NULL_OPTIONS, PETSC_NULL_CHARACTER, '-n', n, flg, ierr))
144:   PetscCallMPIA(MPI_Comm_rank(PETSC_COMM_WORLD, rank, ierr))
145:   PetscCallMPIA(MPI_Comm_size(PETSC_COMM_WORLD, size, ierr))

147: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
148: !      Compute the matrix and right-hand-side vector that define
149: !      the linear system, Ax = b.
150: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

152: !  Create parallel matrix, specifying only its global dimensions.
153: !  When using MatCreate(), the matrix format can be specified at
154: !  runtime. Also, the parallel partitioning of the matrix is
155: !  determined by PETSc at runtime.

157:   PetscCallA(MatCreate(PETSC_COMM_WORLD, A, ierr))
158:   PetscCallA(MatSetSizes(A, PETSC_DECIDE, PETSC_DECIDE, m*n, m*n, ierr))
159:   PetscCallA(MatSetFromOptions(A, ierr))
160:   PetscCallA(MatSetUp(A, ierr))

162: !  Currently, all PETSc parallel matrix formats are partitioned by
163: !  contiguous chunks of rows across the processors.  Determine which
164: !  rows of the matrix are locally owned.

166:   PetscCallA(MatGetOwnershipRange(A, Istart, Iend, ierr))

168: !  Set matrix elements for the 2-D, five-point stencil in parallel.
169: !   - Each processor needs to insert only elements that it owns
170: !     locally (but any non-local elements will be sent to the
171: !     appropriate processor during matrix assembly).
172: !   - Always specify global row and columns of matrix entries.
173: !   - Note that MatSetValues() uses 0-based row and column numbers
174: !     in Fortran as well as in C.

176: !     Note: this uses the less common natural ordering that orders first
177: !     all the unknowns for x = h then for x = 2h etc; Hence you see JH = II +- n
178: !     instead of JJ = II +- m as you might expect. The more standard ordering
179: !     would first do all variables for y = h, then y = 2h etc.

181:   do II = Istart, Iend - 1
182:     v = -1.0
183:     i = II/n
184:     j = II - i*n
185:     if (i > 0) then
186:       JJ = II - n
187:       PetscCallA(MatSetValues(A, ione, [II], ione, [JJ], [v], INSERT_VALUES, ierr))
188:     end if
189:     if (i < m - 1) then
190:       JJ = II + n
191:       PetscCallA(MatSetValues(A, ione, [II], ione, [JJ], [v], INSERT_VALUES, ierr))
192:     end if
193:     if (j > 0) then
194:       JJ = II - 1
195:       PetscCallA(MatSetValues(A, ione, [II], ione, [JJ], [v], INSERT_VALUES, ierr))
196:     end if
197:     if (j < n - 1) then
198:       JJ = II + 1
199:       PetscCallA(MatSetValues(A, ione, [II], ione, [JJ], [v], INSERT_VALUES, ierr))
200:     end if
201:     v = 4.0
202:     PetscCallA(MatSetValues(A, ione, [II], ione, [II], [v], INSERT_VALUES, ierr))
203:   end do
204:   PetscCallA(MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY, ierr))
205:   PetscCallA(MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY, ierr))

207: !   Check if A is symmetric
208:   if (size == 1) then
209:     PetscCallA(MatIsSymmetric(A, zero, flg, ierr))
210:     if (flg .eqv. PETSC_FALSE) then
211:       write (6, 120)
212:     end if
213:   end if

215: !  Create parallel vectors.
216: !   - Here, the parallel partitioning of the vector is determined by
217: !     PETSc at runtime.  We could also specify the local dimensions
218: !     if desired -- or use the more general routine VecCreate().
219: !   - When solving a linear system, the vectors and matrices MUST
220: !     be partitioned accordingly.  PETSc automatically generates
221: !     appropriately partitioned matrices and vectors when MatCreate()
222: !     and VecCreate() are used with the same communicator.
223: !   - Note: We form 1 vector from scratch and then duplicate as needed.

225:   PetscCallA(VecCreateFromOptions(PETSC_COMM_WORLD, PETSC_NULL_CHARACTER, ione, PETSC_DECIDE, m*n, u, ierr))
226:   PetscCallA(VecSetFromOptions(u, ierr))
227:   PetscCallA(VecDuplicate(u, b, ierr))
228:   PetscCallA(VecDuplicate(b, x, ierr))

230: !  Set exact solution; then compute right-hand-side vector.
231: !  By default we use an exact solution of a vector with all
232: !  elements of 1.0;  Alternatively, using the runtime option
233: !  -random_sol forms a solution vector with random components.

235:   PetscCallA(PetscOptionsHasName(PETSC_NULL_OPTIONS, PETSC_NULL_CHARACTER, '-random_exact_sol', flg, ierr))
236:   if (flg) then
237:     PetscCallA(PetscRandomCreate(PETSC_COMM_WORLD, rctx, ierr))
238:     PetscCallA(PetscRandomSetFromOptions(rctx, ierr))
239:     PetscCallA(VecSetRandom(u, rctx, ierr))
240:     PetscCallA(PetscRandomDestroy(rctx, ierr))
241:   else
242:     PetscCallA(VecSet(u, one, ierr))
243:   end if
244:   PetscCallA(MatMult(A, u, b, ierr))

246: !  View the exact solution vector if desired

248:   PetscCallA(PetscOptionsHasName(PETSC_NULL_OPTIONS, PETSC_NULL_CHARACTER, '-view_exact_sol', flg, ierr))
249:   if (flg) then
250:     PetscCallA(VecView(u, PETSC_VIEWER_STDOUT_WORLD, ierr))
251:   end if

253: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
254: !         Create the linear solver and set various options
255: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

257: !  Create linear solver context

259:   PetscCallA(KSPCreate(PETSC_COMM_WORLD, ksp, ierr))

261: !  Set operators. Here the matrix that defines the linear system
262: !  also serves as the matrix from which the preconditioner is constructed.

264:   PetscCallA(KSPSetOperators(ksp, A, A, ierr))

266:   PetscCallA(KSPSetType(ksp, KSPPREONLY, ierr))
267:   PetscCallA(KSPGetType(ksp, ksptype, ierr))
268:   PetscCheckA(ksptype == KSPPREONLY, PETSC_COMM_WORLD, PETSC_ERR_PLIB, 'Error')
269:   PetscCallA(KSPGetPC(ksp, pc, ierr))
270:   PetscCallA(PCSetType(pc, PCCHOLESKY, ierr))
271: #ifdef PETSC_HAVE_MUMPS
272:   PetscCallA(PCFactorSetMatSolverType(pc, MATSOLVERMUMPS, ierr))
273:   PetscCallA(PCFactorSetUpMatSolverType(pc, ierr))
274:   PetscCallA(PCFactorGetMatrix(pc, F, ierr))
275:   PetscCallA(KSPSetFromOptions(ksp, ierr))
276:   icntl = 7; ival = 2
277:   PetscCallA(MatMumpsSetIcntl(F, icntl, ival, ierr))
278: #endif

280: !  Set runtime options, e.g.,
281: !      -ksp_type <type> -pc_type <type> -ksp_monitor -ksp_rtol <rtol>
282: !  These options will override those specified above as long as
283: !  KSPSetFromOptions() is called _after_ any other customization
284: !  routines.

286:   PetscCallA(KSPSetFromOptions(ksp, ierr))

288: !  Set convergence test routine if desired

290:   PetscCallA(PetscOptionsHasName(PETSC_NULL_OPTIONS, PETSC_NULL_CHARACTER, '-my_ksp_convergence', flg, ierr))
291:   if (flg) then
292:     PetscCallA(KSPSetConvergenceTest(ksp, MyKSPConverged, 0, PETSC_NULL_FUNCTION, ierr))
293:   end if
294: !
295: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
296: !                      Solve the linear system
297: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

299:   PetscCallA(KSPSolve(ksp, b, x, ierr))

301: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
302: !                     Check solution and clean up
303: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

305: !  Check the error
306:   PetscCallA(VecAXPY(x, neg_one, u, ierr))
307:   PetscCallA(VecNorm(x, NORM_2, norm, ierr))
308:   PetscCallA(KSPGetIterationNumber(ksp, its, ierr))
309:   if (rank == 0) then
310:     write (6, 100) norm, its
311:   end if
312: 100 format('Norm of error ', e11.4, ' iterations ', i5)
313: 120 format('Matrix A is non-symmetric ')

315: !  Free work space.  All PETSc objects should be destroyed when they
316: !  are no longer needed.

318:   PetscCallA(KSPDestroy(ksp, ierr))
319:   PetscCallA(VecDestroy(u, ierr))
320:   PetscCallA(VecDestroy(x, ierr))
321:   PetscCallA(VecDestroy(b, ierr))
322:   PetscCallA(MatDestroy(A, ierr))

324: !  Always call PetscFinalize() before exiting a program.  This routine
325: !    - finalizes the PETSc libraries as well as MPI
326: !    - provides summary and diagnostic information if certain runtime
327: !      options are chosen (e.g., -log_view).  See PetscFinalize()
328: !      manpage for more information.

330:   PetscCallA(PetscFinalize(ierr))
331: end

333: !/*TEST
334: !
335: !     test:
336: !
337: !TEST*/