Actual source code: ex6f.F90

  1: !
  2: !  Description: This example demonstrates repeated linear solves as
  3: !  well as the use of different preconditioner and linear system
  4: !  matrices.  This example also illustrates how to save PETSc objects
  5: !  in common blocks.
  6: !
  7: !

  9: program main
 10: #include <petsc/finclude/petscksp.h>
 11:   use petscksp
 12:   implicit none

 14: !  Variables:
 15: !
 16: !  A       - matrix that defines linear system
 17: !  ksp    - KSP context
 18: !  ksp     - KSP context
 19: !  x, b, u - approx solution, RHS, exact solution vectors
 20: !
 21:   Vec x, u, b
 22:   Mat A, A2
 23:   KSP ksp
 24:   PetscInt i, j, II, JJ, m, n
 25:   PetscInt Istart, Iend
 26:   PetscInt nsteps, one
 27:   PetscErrorCode ierr
 28:   PetscBool flg
 29:   PetscScalar v

 31:   PetscCallA(PetscInitialize(ierr))
 32:   m = 3
 33:   n = 3
 34:   nsteps = 2
 35:   one = 1
 36:   PetscCallA(PetscOptionsGetInt(PETSC_NULL_OPTIONS, PETSC_NULL_CHARACTER, '-m', m, flg, ierr))
 37:   PetscCallA(PetscOptionsGetInt(PETSC_NULL_OPTIONS, PETSC_NULL_CHARACTER, '-n', n, flg, ierr))
 38:   PetscCallA(PetscOptionsGetInt(PETSC_NULL_OPTIONS, PETSC_NULL_CHARACTER, '-nsteps', nsteps, flg, ierr))

 40: !  Create parallel matrix, specifying only its global dimensions.
 41: !  When using MatCreate(), the matrix format can be specified at
 42: !  runtime. Also, the parallel partitioning of the matrix is
 43: !  determined by PETSc at runtime.

 45:   PetscCallA(MatCreate(PETSC_COMM_WORLD, A, ierr))
 46:   PetscCallA(MatSetSizes(A, PETSC_DECIDE, PETSC_DECIDE, m*n, m*n, ierr))
 47:   PetscCallA(MatSetFromOptions(A, ierr))
 48:   PetscCallA(MatSetUp(A, ierr))

 50: !  The matrix is partitioned by contiguous chunks of rows across the
 51: !  processors.  Determine which rows of the matrix are locally owned.

 53:   PetscCallA(MatGetOwnershipRange(A, Istart, Iend, ierr))

 55: !  Set matrix elements.
 56: !   - Each processor needs to insert only elements that it owns
 57: !     locally (but any non-local elements will be sent to the
 58: !     appropriate processor during matrix assembly).
 59: !   - Always specify global rows and columns of matrix entries.

 61:   do 10, II = Istart, Iend - 1
 62:     v = -1.0
 63:     i = II/n
 64:     j = II - i*n
 65:     if (i > 0) then
 66:       JJ = II - n
 67:       PetscCallA(MatSetValues(A, one, [II], one, [JJ], [v], ADD_VALUES, ierr))
 68:     end if
 69:     if (i < m - 1) then
 70:       JJ = II + n
 71:       PetscCallA(MatSetValues(A, one, [II], one, [JJ], [v], ADD_VALUES, ierr))
 72:     end if
 73:     if (j > 0) then
 74:       JJ = II - 1
 75:       PetscCallA(MatSetValues(A, one, [II], one, [JJ], [v], ADD_VALUES, ierr))
 76:     end if
 77:     if (j < n - 1) then
 78:       JJ = II + 1
 79:       PetscCallA(MatSetValues(A, one, [II], one, [JJ], [v], ADD_VALUES, ierr))
 80:     end if
 81:     v = 4.0
 82:     PetscCallA(MatSetValues(A, one, [II], one, [II], [v], ADD_VALUES, ierr))
 83: 10  continue

 85: !  Assemble matrix, using the 2-step process:
 86: !       MatAssemblyBegin(), MatAssemblyEnd()
 87: !  Computations can be done while messages are in transition
 88: !  by placing code between these two statements.

 90:     PetscCallA(MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY, ierr))
 91:     PetscCallA(MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY, ierr))

 93: !  Create parallel vectors.
 94: !   - When using VecCreate(), the parallel partitioning of the vector
 95: !     is determined by PETSc at runtime.
 96: !   - Note: We form 1 vector from scratch and then duplicate as needed.

 98:     PetscCallA(VecCreate(PETSC_COMM_WORLD, u, ierr))
 99:     PetscCallA(VecSetSizes(u, PETSC_DECIDE, m*n, ierr))
100:     PetscCallA(VecSetFromOptions(u, ierr))
101:     PetscCallA(VecDuplicate(u, b, ierr))
102:     PetscCallA(VecDuplicate(b, x, ierr))

104: !  Create linear solver context

106:     PetscCallA(KSPCreate(PETSC_COMM_WORLD, ksp, ierr))

108: !  Set runtime options (e.g., -ksp_type <type> -pc_type <type>)

110:     PetscCallA(KSPSetFromOptions(ksp, ierr))

112: !  Solve several linear systems in succession

114:     do 100 i = 1, nsteps
115:       PetscCallA(solve1(ksp, A, x, b, u, i, nsteps, A2, ierr))
116: 100   continue

118: !  Free work space.  All PETSc objects should be destroyed when they
119: !  are no longer needed.

121:       PetscCallA(VecDestroy(u, ierr))
122:       PetscCallA(VecDestroy(x, ierr))
123:       PetscCallA(VecDestroy(b, ierr))
124:       PetscCallA(MatDestroy(A, ierr))
125:       PetscCallA(KSPDestroy(ksp, ierr))

127:       PetscCallA(PetscFinalize(ierr))
128:     end

130: ! -----------------------------------------------------------------------
131: !
132:     subroutine solve1(ksp, A, x, b, u, count, nsteps, A2, ierr)
133:       use petscksp
134:       implicit none

136: !
137: !   solve1 - This routine is used for repeated linear system solves.
138: !   We update the linear system matrix each time, but retain the same
139: !   matrix from which the preconditioner is constructed for all linear solves.
140: !
141: !      A - linear system matrix
142: !      A2 - matrix from which the preconditioner is constructed
143: !
144:       PetscScalar v, val
145:       PetscInt II, Istart, Iend
146:       PetscInt count, nsteps, one
147:       PetscErrorCode ierr
148:       Mat A
149:       KSP ksp
150:       Vec x, b, u

152: ! Use common block to retain matrix between successive subroutine calls
153:       Mat A2
154:       PetscMPIInt rank
155:       PetscBool pflag
156:       common/my_data/rank, pflag

158:       one = 1
159: ! First time thorough: Create new matrix to define the linear system
160:       if (count == 1) then
161:         PetscCallMPIA(MPI_Comm_rank(PETSC_COMM_WORLD, rank, ierr))
162:         pflag = .false.
163:         PetscCallA(PetscOptionsHasName(PETSC_NULL_OPTIONS, PETSC_NULL_CHARACTER, '-mat_view', pflag, ierr))
164:         if (pflag) then
165:           if (rank == 0) write (6, 100)
166:           call PetscFlush(6)
167:         end if
168:         PetscCallA(MatConvert(A, MATSAME, MAT_INITIAL_MATRIX, A2, ierr))
169: ! All other times: Set previous solution as initial guess for next solve.
170:       else
171:         PetscCallA(KSPSetInitialGuessNonzero(ksp, PETSC_TRUE, ierr))
172:       end if

174: ! Alter the matrix A a bit
175:       PetscCallA(MatGetOwnershipRange(A, Istart, Iend, ierr))
176:       do 20, II = Istart, Iend - 1
177:         v = 2.0
178:         PetscCallA(MatSetValues(A, one, [II], one, [II], [v], ADD_VALUES, ierr))
179: 20      continue
180:         PetscCallA(MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY, ierr))
181:         if (pflag) then
182:           if (rank == 0) write (6, 110)
183:           call PetscFlush(6)
184:         end if
185:         PetscCallA(MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY, ierr))

187: ! Set the exact solution; compute the right-hand-side vector
188:         val = 1.0*real(count)
189:         PetscCallA(VecSet(u, val, ierr))
190:         PetscCallA(MatMult(A, u, b, ierr))

192: ! Set operators, keeping the identical preconditioner for
193: ! all linear solves.  This approach is often effective when the
194: ! linear systems do not change very much between successive steps.
195:         PetscCallA(KSPSetReusePreconditioner(ksp, PETSC_TRUE, ierr))
196:         PetscCallA(KSPSetOperators(ksp, A, A2, ierr))

198: ! Solve linear system
199:         PetscCallA(KSPSolve(ksp, b, x, ierr))

201: ! Destroy the matrix used to construct the preconditioner on the last time through
202:         if (count == nsteps) PetscCallA(MatDestroy(A2, ierr))

204: 100     format('previous matrix: preconditioning')
205: 110     format('next matrix: defines linear system')

207:       end

209: !/*TEST
210: !
211: !   test:
212: !      args: -pc_type jacobi -mat_view -ksp_monitor_short -ksp_gmres_cgs_refinement_type refine_always
213: !
214: !TEST*/