Actual source code: bjkokkoskernels.kokkos.cxx

  1: #include <petsc/private/pcbjkokkosimpl.h>

  3: #if defined(PETSC_HAVE_KOKKOS_KERNELS_BATCH)
  4:   #include <fstream>

  6:   #include "Kokkos_Timer.hpp"
  7:   #include "Kokkos_Random.hpp"
  8:   #include "Kokkos_UnorderedMap.hpp"
  9:   #include "Kokkos_Sort.hpp"

 11:   /// KokkosKernels headers
 12:   #include "KokkosBatched_Util.hpp"
 13:   #include "KokkosBatched_Vector.hpp"

 15:   #include <Kokkos_ArithTraits.hpp>
 16:   #include <KokkosBatched_Util.hpp>
 17:   #include <KokkosBatched_Vector.hpp>
 18:   #include <KokkosBatched_Copy_Decl.hpp>
 19:   #include <KokkosBatched_Copy_Impl.hpp>
 20:   #include <KokkosBatched_AddRadial_Decl.hpp>
 21:   #include <KokkosBatched_AddRadial_Impl.hpp>
 22:   #include <KokkosBatched_Gemm_Decl.hpp>
 23:   #include <KokkosBatched_Gemm_Serial_Impl.hpp>
 24:   #include <KokkosBatched_Gemm_Team_Impl.hpp>
 25:   #include <KokkosBatched_Gemv_Decl.hpp>
 26:   // #include 
 27:   #include <KokkosBatched_Gemv_Team_Impl.hpp>
 28:   #include <KokkosBatched_Trsm_Decl.hpp>
 29:   #include <KokkosBatched_Trsm_Serial_Impl.hpp>
 30:   #include <KokkosBatched_Trsm_Team_Impl.hpp>
 31:   #include <KokkosBatched_Trsv_Decl.hpp>
 32:   #include <KokkosBatched_Trsv_Serial_Impl.hpp>
 33:   #include <KokkosBatched_Trsv_Team_Impl.hpp>
 34:   #include <KokkosBatched_LU_Decl.hpp>
 35:   #include <KokkosBatched_LU_Serial_Impl.hpp>
 36:   #include <KokkosBatched_LU_Team_Impl.hpp>
 37:   #include <KokkosSparse_CrsMatrix.hpp>
 38:   #include "KokkosBatched_Spmv.hpp"
 39:   #include "KokkosBatched_CrsMatrix.hpp"
 40:   #include "KokkosBatched_Krylov_Handle.hpp"

 42:   #include "KokkosBatched_GMRES.hpp"
 43:   #include "KokkosBatched_JacobiPrec.hpp"

 45: template <typename DeviceType, typename ValuesViewType, typename IntView, typename VectorViewType, typename KrylovHandleType>
 46: struct Functor_TestBatchedTeamVectorGMRES {
 47:   const ValuesViewType _D;
 48:   const ValuesViewType _diag;
 49:   const IntView        _r;
 50:   const IntView        _c;
 51:   const VectorViewType _X;
 52:   const VectorViewType _B;
 53:   const int            _N_team, _team_size, _vector_length;
 54:   const int            _N_iteration;
 55:   const double         _tol;
 56:   const int            _ortho_strategy;
 57:   const int            _scratch_pad_level;
 58:   KrylovHandleType     _handle;

 60:   KOKKOS_INLINE_FUNCTION
 61:   Functor_TestBatchedTeamVectorGMRES(const ValuesViewType &D, const IntView &r, const IntView &c, const VectorViewType &X, const VectorViewType &B, const int N_team, const int team_size, const int vector_length, const int N_iteration, const double tol, const int ortho_strategy, const int scratch_pad_level, KrylovHandleType &handle) :
 62:     _D(D), _r(r), _c(c), _X(X), _B(B), _N_team(N_team), _team_size(team_size), _vector_length(vector_length), _N_iteration(N_iteration), _tol(tol), _ortho_strategy(ortho_strategy), _scratch_pad_level(scratch_pad_level), _handle(handle)
 63:   {
 64:   }

 66:   KOKKOS_INLINE_FUNCTION
 67:   Functor_TestBatchedTeamVectorGMRES(const ValuesViewType &D, const ValuesViewType &diag, const IntView &r, const IntView &c, const VectorViewType &X, const VectorViewType &B, const int N_team, const int team_size, const int vector_length, const int N_iteration, const double tol, int ortho_strategy, const int scratch_pad_level, KrylovHandleType &handle) :
 68:     _D(D), _diag(diag), _r(r), _c(c), _X(X), _B(B), _N_team(N_team), _team_size(team_size), _vector_length(vector_length), _N_iteration(N_iteration), _tol(tol), _ortho_strategy(ortho_strategy), _scratch_pad_level(scratch_pad_level), _handle(handle)
 69:   {
 70:   }

 72:   template <typename MemberType>
 73:   KOKKOS_INLINE_FUNCTION void operator()(const MemberType &member) const
 74:   {
 75:     const int first_matrix = static_cast<int>(member.league_rank()) * _N_team;
 76:     const int N            = _D.extent(0);
 77:     const int last_matrix  = (static_cast<int>(member.league_rank() + 1) * _N_team < N ? static_cast<int>(member.league_rank() + 1) * _N_team : N);
 78:     const int graphID      = static_cast<int>(member.league_rank());
 79:     using TeamVectorCopy1D = KokkosBatched::TeamVectorCopy<MemberType, KokkosBatched::Trans::NoTranspose, 1>;

 81:     auto d                         = Kokkos::subview(_D, Kokkos::make_pair(first_matrix, last_matrix), Kokkos::ALL);
 82:     auto x                         = Kokkos::subview(_X, Kokkos::make_pair(first_matrix, last_matrix), Kokkos::ALL);
 83:     auto b                         = Kokkos::subview(_B, Kokkos::make_pair(first_matrix, last_matrix), Kokkos::ALL);
 84:     using ScratchPadIntViewType    = Kokkos::View<typename IntView::non_const_value_type *, typename IntView::array_layout, typename IntView::execution_space::scratch_memory_space>;
 85:     using ScratchPadValuesViewType = Kokkos::View<typename ValuesViewType::non_const_value_type **, typename ValuesViewType::array_layout, typename ValuesViewType::execution_space::scratch_memory_space>;

 87:     using Operator = KokkosBatched::CrsMatrix<ValuesViewType, ScratchPadIntViewType>;
 88:     ScratchPadIntViewType r(member.team_scratch(1), _r.extent(1));
 89:     ScratchPadIntViewType c(member.team_scratch(1), _c.extent(1));

 91:     TeamVectorCopy1D::invoke(member, Kokkos::subview(_r, graphID, Kokkos::ALL), r);
 92:     TeamVectorCopy1D::invoke(member, Kokkos::subview(_c, graphID, Kokkos::ALL), c);
 93:     Operator A(d, r, c);

 95:     ScratchPadValuesViewType diag(member.team_scratch(1), last_matrix - first_matrix, _diag.extent(1));
 96:     using PrecOperator = KokkosBatched::JacobiPrec<ScratchPadValuesViewType>;

 98:     KokkosBatched::TeamVectorCopy<MemberType>::invoke(member, Kokkos::subview(_diag, Kokkos::make_pair(first_matrix, last_matrix), Kokkos::ALL), diag);
 99:     PrecOperator P(diag);
100:     P.setComputedInverse();

102:     KokkosBatched::TeamVectorGMRES<MemberType>::template invoke<Operator, VectorViewType, PrecOperator, KrylovHandleType>(member, A, b, x, P, _handle);
103:   }
104:   inline double run(PC pc)
105:   {
106:     //typedef typename ValuesViewType::value_type value_type;
107:     std::string   name("KokkosBatched::Test::TeamVectorGMRES");
108:     Kokkos::Timer timer;
109:     Kokkos::Profiling::pushRegion(name.c_str());

111:     Kokkos::TeamPolicy<DeviceType> auto_policy(ceil(1. * _D.extent(0) / _N_team), Kokkos::AUTO(), Kokkos::AUTO());
112:     Kokkos::TeamPolicy<DeviceType> tuned_policy(ceil(1. * _D.extent(0) / _N_team), _team_size, _vector_length);
113:     Kokkos::TeamPolicy<DeviceType> policy;

115:     if (_team_size < 1) policy = auto_policy;
116:     else policy = tuned_policy;

118:     _handle.set_max_iteration(_N_iteration);
119:     _handle.set_tolerance(_tol);
120:     _handle.set_ortho_strategy(_ortho_strategy);
121:     _handle.set_scratch_pad_level(_scratch_pad_level);
122:     _handle.set_compute_last_residual(true);

124:     int maximum_iteration = _handle.get_max_iteration();

126:     using ScalarType = typename ValuesViewType::non_const_value_type;
127:     using Layout     = typename ValuesViewType::array_layout;
128:     using EXSP       = typename ValuesViewType::execution_space;

130:     using ViewType2D    = Kokkos::View<ScalarType **, Layout, EXSP>;
131:     using IntViewType1D = Kokkos::View<PetscInt *, Layout, EXSP>;

133:     size_t bytes_1D      = ViewType2D::shmem_size(_N_team, 1);
134:     size_t bytes_row_ptr = IntViewType1D::shmem_size(_r.extent(1));
135:     size_t bytes_col_idc = IntViewType1D::shmem_size(_c.extent(1));
136:     size_t bytes_2D_1    = ViewType2D::shmem_size(_N_team, _X.extent(1));
137:     size_t bytes_2D_2    = ViewType2D::shmem_size(_N_team, maximum_iteration + 1);

139:     size_t bytes_diag = bytes_2D_1;
140:     size_t bytes_tmp  = 2 * bytes_2D_1 + 2 * bytes_1D + bytes_2D_2;

142:     policy.set_scratch_size(0, Kokkos::PerTeam(bytes_tmp));
143:     policy.set_scratch_size(1, Kokkos::PerTeam(bytes_col_idc + bytes_row_ptr + bytes_diag));
144:     PetscCall(PetscInfo(pc, "%d scratch memory(0) = %d + %d + %d bytes_diag=%d; %d scratch memory(1); %d maximum_iterations\n", (int)bytes_tmp, 2 * (int)bytes_2D_1, 2 * (int)bytes_1D, (int)bytes_2D_2, (int)bytes_diag, (int)(bytes_row_ptr + bytes_col_idc + bytes_diag), (int)maximum_iteration));
145:     exec_space().fence();
146:     timer.reset();
147:     Kokkos::parallel_for(name.c_str(), policy, *this);
148:     exec_space().fence();
149:     double sec = timer.seconds();

151:     return sec;
152:   }
153: };

155: PETSC_INTERN PetscErrorCode PCApply_BJKOKKOSKERNELS(PC pc, const PetscScalar *glb_bdata, PetscScalar *glb_xdata, const PetscInt *glb_Aai, const PetscInt *glb_Aaj, const PetscScalar *glb_Aaa, const PetscInt team_size, MatInfo info, const PetscInt batch_sz, PCFailedReason *pcreason)
156: {
157:   PC_PCBJKOKKOS     *jac   = (PC_PCBJKOKKOS *)pc->data;
158:   Mat                A     = pc->pmat;
159:   const PetscInt     maxit = jac->ksp->max_it, nBlk = jac->nBlocks;
160:   const int          Nsolves      = nBlk;
161:   int                Nsolves_team = jac->nsolves_team, fill_idx = 0;
162:   int                Nloc           = jac->const_block_size;       // same grids
163:   const int          nnz            = (int)info.nz_used / Nsolves; // fix for variable grid size
164:   PetscReal          rtol           = jac->ksp->rtol;
165:   const PetscScalar *glb_idiag      = jac->d_idiag_k->data();
166:   const PetscInt    *d_bid_eqOffset = jac->d_bid_eqOffset_k->data();
167:   const PetscInt    *d_isicol = jac->d_isicol_k->data(), *d_isrow = jac->d_isrow_k->data();

169:   PetscFunctionBegin;
170:   if (Nsolves_team > batch_sz) Nsolves_team = batch_sz; // silently fix this
171:   PetscCheck(jac->const_block_size, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_WRONG, "Kokkos (GMRES) solver requires constant block size (but can be made to work with species ordering or N_team==1)");
172:   PetscCheck(Nsolves % Nsolves_team == 0, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_WRONG, "Nsolves.mod(Nsolves_team) != 0: Nsolves = %d, Nsolves_team = %d", Nsolves, Nsolves_team);
173:   PetscCheck(((int)info.nz_used) % Nsolves == 0, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_WRONG, "info.nz_used.mod(Nsolves) != 0: info.nz_used = %g, Nsolves = %d", info.nz_used, Nsolves);
174:   #if defined(PETSC_HAVE_CUDA)
175:   nvtxRangePushA("gmres-kk");
176:   #endif
177:   Kokkos::View<PetscScalar **, layout, exec_space, Kokkos::MemoryTraits<Kokkos::Unmanaged>> inv_diag((PetscScalar *)glb_idiag, Nsolves, Nloc); // in correct order
178:   if (!jac->rowOffsets) {
179:     jac->rowOffsets   = new IntView("rowOffsets", Nsolves / Nsolves_team, Nloc + 1); // same grids
180:     jac->colIndices   = new IntView("colIndices", Nsolves / Nsolves_team, nnz);
181:     jac->batch_b      = new XYType("batch rhs", Nsolves, Nloc);
182:     jac->batch_x      = new XYType("batch sol", Nsolves, Nloc);
183:     jac->batch_values = new AMatrixValueView("batch values", Nsolves, nnz);
184:     fill_idx          = 1;
185:     PetscCall(PetscInfo(pc, "Setup indices Nloc=%d, nnz=%d\n", Nloc, nnz));
186:   }
187:   IntView          &rowOffsets   = *jac->rowOffsets;
188:   IntView          &colIndices   = *jac->colIndices;
189:   XYType           &batch_b      = *jac->batch_b;
190:   XYType           &batch_x      = *jac->batch_x;
191:   AMatrixValueView &batch_values = *jac->batch_values;

193:   Kokkos::deep_copy(batch_x, 0.);
194:   PetscCall(PetscInfo(pc, "\tjac->n = %d, Nloc = %d, Nsolves = %d, nnz = %d, Nsolves_team = %d, league size = %d, maxit = %d\n", (int)jac->n, Nloc, Nsolves, nnz, Nsolves_team, Nsolves / Nsolves_team, (int)maxit));
195:   Kokkos::parallel_for(
196:     "rowOffsets+map", Kokkos::TeamPolicy<>(Nsolves, team_size, PCBJKOKKOS_VEC_SIZE), KOKKOS_LAMBDA(const team_member team) {
197:       const int blkID = team.league_rank(), start = d_bid_eqOffset[blkID], end = d_bid_eqOffset[blkID + 1];
198:       if (fill_idx) {
199:         if (blkID % Nsolves_team == 0) {                                                        // first matrix on this member
200:           Kokkos::parallel_for(Kokkos::TeamVectorRange(team, start, end), [=](const int rowb) { // Nloc
201:             int rowa                                           = d_isicol[rowb];
202:             int n                                              = glb_Aai[rowa + 1] - glb_Aai[rowa];
203:             rowOffsets(blkID / Nsolves_team, rowb + 1 - start) = n; // save sizes
204:           });
205:         }
206:       }
207:       // map b into field major space
208:       Kokkos::parallel_for(Kokkos::TeamVectorRange(team, start, end), [=](int rowb) {
209:         int rowa                     = d_isicol[rowb];
210:         batch_b(blkID, rowb - start) = glb_bdata[rowa];
211:       });
212:     });
213:   Kokkos::fence();
214:   if (fill_idx) {
215:     Kokkos::parallel_for(
216:       "prefix sum", Kokkos::TeamPolicy<>(Nsolves / Nsolves_team, 1, 1), KOKKOS_LAMBDA(const team_member team) {
217:         const int graphID      = team.league_rank();
218:         rowOffsets(graphID, 0) = 0;
219:         for (int i = 0; i < Nloc; ++i) rowOffsets(graphID, i + 1) += rowOffsets(graphID, i);
220:       });
221:     Kokkos::fence();
222:   }
223:   Kokkos::parallel_for(
224:     "copy matrix", Kokkos::TeamPolicy<>(Nsolves /* /batch_sz */, team_size, PCBJKOKKOS_VEC_SIZE), KOKKOS_LAMBDA(const team_member team) {
225:       const int blkID = team.league_rank(), start = d_bid_eqOffset[blkID], end = d_bid_eqOffset[blkID + 1], graphID = blkID / Nsolves_team;
226:       Kokkos::parallel_for(Kokkos::TeamThreadRange(team, start, end), [=](const int rowb) {
227:         int                rowa = d_isicol[rowb];
228:         int                n    = glb_Aai[rowa + 1] - glb_Aai[rowa];
229:         const PetscInt    *aj   = glb_Aaj + glb_Aai[rowa]; // global index
230:         const PetscScalar *aa   = glb_Aaa + glb_Aai[rowa];
231:         Kokkos::parallel_for(Kokkos::ThreadVectorRange(team, n), [=](const int &i) {
232:           PetscScalar val = aa[i];
233:           if (fill_idx && blkID % Nsolves_team == 0) colIndices(graphID, rowOffsets(graphID, rowb - start) + i) = d_isrow[aj[i]] - blkID * Nloc; // local" global - block start
234:           batch_values(blkID, rowOffsets(graphID, rowb - start) + i) = val;
235:         });
236:       });
237:     });
238:   Kokkos::fence();
239:   // setup solver
240:   using ScalarType    = typename AMatrixValueView::non_const_value_type;
241:   using MagnitudeType = typename Kokkos::Details::ArithTraits<ScalarType>::mag_type;
242:   //using NormViewType              = Kokkos::View;
243:   using Norm2DViewType   = Kokkos::View<MagnitudeType **, layout, exec_space>;
244:   using Scalar3DViewType = Kokkos::View<ScalarType ***, layout, exec_space>;
245:   using IntViewType      = Kokkos::View<int *, layout, exec_space>;
246:   using KrylovHandleType = KokkosBatched::KrylovHandle<Norm2DViewType, IntViewType, Scalar3DViewType>;
247:   const int n_iterations = maxit;
248:   //const int        team_size      = -1;
249:   const int        vector_length  = -1;
250:   const double     tol            = rtol;
251:   const int        ortho_strategy = 0;
252:   KrylovHandleType handle(Nsolves, Nsolves_team, n_iterations, true);
253:   handle.Arnoldi_view = Scalar3DViewType("", Nsolves, n_iterations, Nloc + n_iterations + 3);
254:   // solve
255:   Functor_TestBatchedTeamVectorGMRES<exec_space, AMatrixValueView, IntView, XYType, KrylovHandleType>(batch_values, inv_diag, rowOffsets, colIndices, batch_x, batch_b, Nsolves_team, -1, vector_length, n_iterations, tol, ortho_strategy, 0, handle).run(pc);
256:   Kokkos::fence();
257:   // get data back
258:   Kokkos::parallel_for(
259:     "map", Kokkos::TeamPolicy<>(Nsolves /* /batch_sz */, -1, PCBJKOKKOS_VEC_SIZE), KOKKOS_LAMBDA(const team_member team) {
260:       const int blkID = team.league_rank(), start = d_bid_eqOffset[blkID], end = d_bid_eqOffset[blkID + 1]; // 0
261:       // map x into Plex/PETSc
262:       Kokkos::parallel_for(Kokkos::TeamVectorRange(team, start, end), [=](int rowb) {
263:         int rowa        = d_isicol[rowb];
264:         glb_xdata[rowa] = batch_x(blkID, rowb - start);
265:       });
266:     });
267:   // output assume species major - clone from Kokkos solvers
268:   #if PCBJKOKKOS_VERBOSE_LEVEL >= 3
269:     #if PCBJKOKKOS_VERBOSE_LEVEL >= 4
270:   PetscCall(PetscPrintf(PetscObjectComm((PetscObject)A), "Iterations\n"));
271:     #else
272:   PetscCall(PetscPrintf(PetscObjectComm((PetscObject)A), "max iterations per species (gmres) :"));
273:     #endif
274:   for (PetscInt dmIdx = 0, s = 0, head = 0; dmIdx < jac->num_dms; dmIdx += batch_sz) {
275:     for (PetscInt f = 0, idx = head; f < jac->dm_Nf[dmIdx]; f++, s++, idx++) {
276:     #if PCBJKOKKOS_VERBOSE_LEVEL >= 4
277:       PetscCall(PetscPrintf(PetscObjectComm((PetscObject)A), "%2D:", s));
278:       for (int bid = 0; bid < batch_sz; bid++) PetscCall(PetscPrintf(PetscObjectComm((PetscObject)A), "%3D ", handle.get_iteration_host(idx + bid * jac->dm_Nf[dmIdx])));
279:       PetscCall(PetscPrintf(PetscObjectComm((PetscObject)A), "\n"));
280:     #else
281:       int count = 0, ii;
282:       for (int bid = 0; bid < batch_sz; bid++) {
283:         if ((ii = handle.get_iteration_host(idx + bid * jac->dm_Nf[dmIdx])) > count) count = ii;
284:       }
285:       PetscCall(PetscPrintf(PetscObjectComm((PetscObject)A), "%3d", count));
286:     #endif
287:     }
288:     head += batch_sz * jac->dm_Nf[dmIdx];
289:   }
290:     #if PCBJKOKKOS_VERBOSE_LEVEL == 3
291:   PetscCall(PetscPrintf(PetscObjectComm((PetscObject)A), "\n"));
292:     #endif
293:   #endif
294:   // return error code, get max it
295:   PetscInt count = 0, mbid = 0;
296:   if (handle.is_converged_host()) {
297:     *pcreason = PC_NOERROR;
298:     if (!jac->max_nits) {
299:       for (int blkID = 0; blkID < nBlk; blkID++) {
300:         if (handle.get_iteration_host(blkID) > jac->max_nits) {
301:           jac->max_nits = handle.get_iteration_host(blkID);
302:           mbid          = blkID;
303:         }
304:       }
305:     }
306:   } else {
307:     PetscCall(PetscPrintf(PETSC_COMM_SELF, "There is at least one system that did not converge."));
308:     *pcreason = PC_SUBPC_ERROR;
309:   }
310:   // output - assume species major order
311:   for (int blkID = 0; blkID < nBlk; blkID++) {
312:     if (jac->reason) { // -pc_bjkokkos_ksp_converged_reason
313:       if (jac->batch_target == blkID) {
314:         if (batch_sz != 1)
315:           PetscCall(PetscPrintf(PetscObjectComm((PetscObject)A), "    Linear solve %s in %d iterations, batch %" PetscInt_FMT ", species %" PetscInt_FMT "\n", handle.is_converged_host(blkID) ? "converged" : "diverged", handle.get_iteration_host(blkID), blkID % batch_sz, blkID / batch_sz));
316:         else PetscCall(PetscPrintf(PetscObjectComm((PetscObject)A), "    Linear solve %s in %d iterations, block %" PetscInt_FMT "\n", handle.is_converged_host(blkID) ? "converged" : "diverged", handle.get_iteration_host(blkID), blkID));
317:       } else if (jac->batch_target == -1 && handle.get_iteration_host(blkID) >= count) {
318:         jac->max_nits = count = handle.get_iteration_host(blkID);
319:         mbid                  = blkID;
320:       }
321:       if (!handle.is_converged_host(blkID)) PetscCall(PetscPrintf(PETSC_COMM_SELF, "ERROR species %d, batch %d did not converge with %d iterations\n", (int)(blkID / batch_sz), (int)blkID % batch_sz, handle.get_iteration_host(blkID)));
322:     }
323:   }
324:   if (jac->batch_target == -1 && jac->reason) {
325:     if (batch_sz != 1)
326:       PetscCall(PetscPrintf(PetscObjectComm((PetscObject)A), "    Linear solve %s in %d iteration, batch %" PetscInt_FMT ", specie %" PetscInt_FMT "\n", handle.is_converged_host(mbid) ? "converged" : "diverged", jac->max_nits, mbid % batch_sz, mbid / batch_sz));
327:     else PetscCall(PetscPrintf(PetscObjectComm((PetscObject)A), "    Linear solve %s in %d iteration, block %" PetscInt_FMT "\n", handle.is_converged_host(mbid) ? "converged" : "diverged", jac->max_nits, mbid));
328:   }
329:   #if defined(PETSC_HAVE_CUDA)
330:   nvtxRangePop();
331:   #endif

333:   return PETSC_SUCCESS;
334: }
335: #endif