Actual source code: precon.c

  1: /*
  2:     The PC (preconditioner) interface routines, callable by users.
  3: */
  4: #include <petsc/private/pcimpl.h>
  5: #include <petscdm.h>

  7: /* Logging support */
  8: PetscClassId  PC_CLASSID;
  9: PetscLogEvent PC_SetUp, PC_SetUpOnBlocks, PC_Apply, PC_MatApply, PC_ApplyCoarse, PC_ApplySymmetricLeft;
 10: PetscLogEvent PC_ApplySymmetricRight, PC_ModifySubMatrices, PC_ApplyOnBlocks, PC_ApplyTransposeOnBlocks;
 11: PetscInt      PetscMGLevelId;
 12: PetscLogStage PCMPIStage;

 14: PETSC_INTERN PetscErrorCode PCGetDefaultType_Private(PC pc, const char *type[])
 15: {
 16:   PetscMPIInt size;
 17:   PetscBool   hasopblock, hasopsolve, flg1, flg2, set, flg3, isnormal;

 19:   PetscFunctionBegin;
 20:   PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)pc), &size));
 21:   if (pc->pmat) {
 22:     PetscCall(MatHasOperation(pc->pmat, MATOP_GET_DIAGONAL_BLOCK, &hasopblock));
 23:     PetscCall(MatHasOperation(pc->pmat, MATOP_SOLVE, &hasopsolve));
 24:     if (size == 1) {
 25:       PetscCall(MatGetFactorAvailable(pc->pmat, "petsc", MAT_FACTOR_ICC, &flg1));
 26:       PetscCall(MatGetFactorAvailable(pc->pmat, "petsc", MAT_FACTOR_ILU, &flg2));
 27:       PetscCall(MatIsSymmetricKnown(pc->pmat, &set, &flg3));
 28:       PetscCall(PetscObjectTypeCompareAny((PetscObject)pc->pmat, &isnormal, MATNORMAL, MATNORMALHERMITIAN, NULL));
 29:       if (flg1 && (!flg2 || (set && flg3))) {
 30:         *type = PCICC;
 31:       } else if (flg2) {
 32:         *type = PCILU;
 33:       } else if (isnormal) {
 34:         *type = PCNONE;
 35:       } else if (hasopblock) { /* likely is a parallel matrix run on one processor */
 36:         *type = PCBJACOBI;
 37:       } else if (hasopsolve) {
 38:         *type = PCMAT;
 39:       } else {
 40:         *type = PCNONE;
 41:       }
 42:     } else {
 43:       if (hasopblock) {
 44:         *type = PCBJACOBI;
 45:       } else if (hasopsolve) {
 46:         *type = PCMAT;
 47:       } else {
 48:         *type = PCNONE;
 49:       }
 50:     }
 51:   } else *type = NULL;
 52:   PetscFunctionReturn(PETSC_SUCCESS);
 53: }

 55: /* do not log solves, setup and applications of preconditioners while constructing preconditioners; perhaps they should be logged separately from the regular solves */
 56: PETSC_EXTERN PetscLogEvent KSP_Solve, KSP_SetUp;

 58: static PetscErrorCode PCLogEventsDeactivatePush(void)
 59: {
 60:   PetscFunctionBegin;
 61:   PetscCall(KSPInitializePackage());
 62:   PetscCall(PetscLogEventDeactivatePush(KSP_Solve));
 63:   PetscCall(PetscLogEventDeactivatePush(KSP_SetUp));
 64:   PetscCall(PetscLogEventDeactivatePush(PC_Apply));
 65:   PetscCall(PetscLogEventDeactivatePush(PC_SetUp));
 66:   PetscCall(PetscLogEventDeactivatePush(PC_SetUpOnBlocks));
 67:   PetscFunctionReturn(PETSC_SUCCESS);
 68: }

 70: static PetscErrorCode PCLogEventsDeactivatePop(void)
 71: {
 72:   PetscFunctionBegin;
 73:   PetscCall(KSPInitializePackage());
 74:   PetscCall(PetscLogEventDeactivatePop(KSP_Solve));
 75:   PetscCall(PetscLogEventDeactivatePop(KSP_SetUp));
 76:   PetscCall(PetscLogEventDeactivatePop(PC_Apply));
 77:   PetscCall(PetscLogEventDeactivatePop(PC_SetUp));
 78:   PetscCall(PetscLogEventDeactivatePop(PC_SetUpOnBlocks));
 79:   PetscFunctionReturn(PETSC_SUCCESS);
 80: }

 82: /*@
 83:   PCReset - Resets a `PC` context to the state it was in before `PCSetUp()` was called, and removes any allocated `Vec` and `Mat` from its data structure

 85:   Collective

 87:   Input Parameter:
 88: . pc - the `PC` preconditioner context

 90:   Level: developer

 92:   Notes:
 93:   Any options set, including those set with `KSPSetFromOptions()` remain.

 95:   This allows a `PC` to be reused for a different sized linear system but using the same options that have been previously set in `pc`

 97: .seealso: [](ch_ksp), `PC`, `PCCreate()`, `PCSetUp()`
 98: @*/
 99: PetscErrorCode PCReset(PC pc)
100: {
101:   PetscFunctionBegin;
103:   PetscTryTypeMethod(pc, reset);
104:   PetscCall(VecDestroy(&pc->diagonalscaleright));
105:   PetscCall(VecDestroy(&pc->diagonalscaleleft));
106:   PetscCall(MatDestroy(&pc->pmat));
107:   PetscCall(MatDestroy(&pc->mat));

109:   pc->setupcalled = 0;
110:   PetscFunctionReturn(PETSC_SUCCESS);
111: }

113: /*@
114:   PCDestroy - Destroys `PC` context that was created with `PCCreate()`.

116:   Collective

118:   Input Parameter:
119: . pc - the `PC` preconditioner context

121:   Level: developer

123: .seealso: [](ch_ksp), `PC`, `PCCreate()`, `PCSetUp()`
124: @*/
125: PetscErrorCode PCDestroy(PC *pc)
126: {
127:   PetscFunctionBegin;
128:   if (!*pc) PetscFunctionReturn(PETSC_SUCCESS);
130:   if (--((PetscObject)*pc)->refct > 0) {
131:     *pc = NULL;
132:     PetscFunctionReturn(PETSC_SUCCESS);
133:   }

135:   PetscCall(PCReset(*pc));

137:   /* if memory was published with SAWs then destroy it */
138:   PetscCall(PetscObjectSAWsViewOff((PetscObject)*pc));
139:   PetscTryTypeMethod(*pc, destroy);
140:   PetscCall(DMDestroy(&(*pc)->dm));
141:   PetscCall(PetscHeaderDestroy(pc));
142:   PetscFunctionReturn(PETSC_SUCCESS);
143: }

145: /*@
146:   PCGetDiagonalScale - Indicates if the preconditioner applies an additional left and right
147:   scaling as needed by certain time-stepping codes.

149:   Logically Collective

151:   Input Parameter:
152: . pc - the `PC` preconditioner context

154:   Output Parameter:
155: . flag - `PETSC_TRUE` if it applies the scaling

157:   Level: developer

159:   Note:
160:   If this returns `PETSC_TRUE` then the system solved via the Krylov method is, for left and right preconditioning,

162:   $$
163:   \begin{align*}
164:   D M A D^{-1} y = D M b  \\
165:   D A M D^{-1} z = D b.
166:   \end{align*}
167:   $$

169: .seealso: [](ch_ksp), `PC`, `PCCreate()`, `PCSetUp()`, `PCDiagonalScaleLeft()`, `PCDiagonalScaleRight()`, `PCSetDiagonalScale()`
170: @*/
171: PetscErrorCode PCGetDiagonalScale(PC pc, PetscBool *flag)
172: {
173:   PetscFunctionBegin;
175:   PetscAssertPointer(flag, 2);
176:   *flag = pc->diagonalscale;
177:   PetscFunctionReturn(PETSC_SUCCESS);
178: }

180: /*@
181:   PCSetDiagonalScale - Indicates the left scaling to use to apply an additional left and right
182:   scaling as needed by certain time-stepping codes.

184:   Logically Collective

186:   Input Parameters:
187: + pc - the `PC` preconditioner context
188: - s  - scaling vector

190:   Level: intermediate

192:   Notes:
193:   The system solved via the Krylov method is, for left and right preconditioning,
194:   $$
195:   \begin{align*}
196:   D M A D^{-1} y = D M b \\
197:   D A M D^{-1} z = D b.
198:   \end{align*}
199:   $$

201:   `PCDiagonalScaleLeft()` scales a vector by $D$. `PCDiagonalScaleRight()` scales a vector by $D^{-1}$.

203: .seealso: [](ch_ksp), `PCCreate()`, `PCSetUp()`, `PCDiagonalScaleLeft()`, `PCDiagonalScaleRight()`, `PCGetDiagonalScale()`
204: @*/
205: PetscErrorCode PCSetDiagonalScale(PC pc, Vec s)
206: {
207:   PetscFunctionBegin;
210:   pc->diagonalscale = PETSC_TRUE;

212:   PetscCall(PetscObjectReference((PetscObject)s));
213:   PetscCall(VecDestroy(&pc->diagonalscaleleft));

215:   pc->diagonalscaleleft = s;

217:   PetscCall(VecDuplicate(s, &pc->diagonalscaleright));
218:   PetscCall(VecCopy(s, pc->diagonalscaleright));
219:   PetscCall(VecReciprocal(pc->diagonalscaleright));
220:   PetscFunctionReturn(PETSC_SUCCESS);
221: }

223: /*@
224:   PCDiagonalScaleLeft - Scales a vector by the left scaling as needed by certain time-stepping codes.

226:   Logically Collective

228:   Input Parameters:
229: + pc  - the `PC` preconditioner context
230: . in  - input vector
231: - out - scaled vector (maybe the same as in)

233:   Level: intermediate

235:   Notes:
236:   The system solved via the Krylov method is, for left and right preconditioning,

238:   $$
239:   \begin{align*}
240:   D M A D^{-1} y = D M b  \\
241:   D A M D^{-1} z = D b.
242:   \end{align*}
243:   $$

245:   `PCDiagonalScaleLeft()` scales a vector by $D$. `PCDiagonalScaleRight()` scales a vector by $D^{-1}$.

247:   If diagonal scaling is turned off and `in` is not `out` then `in` is copied to `out`

249: .seealso: [](ch_ksp), `PCCreate()`, `PCSetUp()`, `PCSetDiagonalScale()`, `PCDiagonalScaleRight()`, `MatDiagonalScale()`
250: @*/
251: PetscErrorCode PCDiagonalScaleLeft(PC pc, Vec in, Vec out)
252: {
253:   PetscFunctionBegin;
257:   if (pc->diagonalscale) {
258:     PetscCall(VecPointwiseMult(out, pc->diagonalscaleleft, in));
259:   } else if (in != out) {
260:     PetscCall(VecCopy(in, out));
261:   }
262:   PetscFunctionReturn(PETSC_SUCCESS);
263: }

265: /*@
266:   PCDiagonalScaleRight - Scales a vector by the right scaling as needed by certain time-stepping codes.

268:   Logically Collective

270:   Input Parameters:
271: + pc  - the `PC` preconditioner context
272: . in  - input vector
273: - out - scaled vector (maybe the same as in)

275:   Level: intermediate

277:   Notes:
278:   The system solved via the Krylov method is, for left and right preconditioning,

280:   $$
281:   \begin{align*}
282:   D M A D^{-1} y = D M b  \\
283:   D A M D^{-1} z = D b.
284:   \end{align*}
285:   $$

287:   `PCDiagonalScaleLeft()` scales a vector by $D$. `PCDiagonalScaleRight()` scales a vector by $D^{-1}$.

289:   If diagonal scaling is turned off and `in` is not `out` then `in` is copied to `out`

291: .seealso: [](ch_ksp), `PCCreate()`, `PCSetUp()`, `PCDiagonalScaleLeft()`, `PCSetDiagonalScale()`, `MatDiagonalScale()`
292: @*/
293: PetscErrorCode PCDiagonalScaleRight(PC pc, Vec in, Vec out)
294: {
295:   PetscFunctionBegin;
299:   if (pc->diagonalscale) {
300:     PetscCall(VecPointwiseMult(out, pc->diagonalscaleright, in));
301:   } else if (in != out) {
302:     PetscCall(VecCopy(in, out));
303:   }
304:   PetscFunctionReturn(PETSC_SUCCESS);
305: }

307: /*@
308:   PCSetUseAmat - Sets a flag to indicate that when the preconditioner needs to apply (part of) the
309:   operator during the preconditioning process it applies the Amat provided to `TSSetRHSJacobian()`,
310:   `TSSetIJacobian()`, `SNESSetJacobian()`, `KSPSetOperators()` or `PCSetOperators()` not the Pmat.

312:   Logically Collective

314:   Input Parameters:
315: + pc  - the `PC` preconditioner context
316: - flg - `PETSC_TRUE` to use the Amat, `PETSC_FALSE` to use the Pmat (default is false)

318:   Options Database Key:
319: . -pc_use_amat <true,false> - use the amat argument to `KSPSetOperators()` or `PCSetOperators()` to apply the operator

321:   Level: intermediate

323:   Note:
324:   For the common case in which the linear system matrix and the matrix used to construct the
325:   preconditioner are identical, this routine has no affect.

327: .seealso: [](ch_ksp), `PC`, `PCGetUseAmat()`, `PCBJACOBI`, `PCMG`, `PCFIELDSPLIT`, `PCCOMPOSITE`,
328:           `KSPSetOperators()`, `PCSetOperators()`
329: @*/
330: PetscErrorCode PCSetUseAmat(PC pc, PetscBool flg)
331: {
332:   PetscFunctionBegin;
334:   pc->useAmat = flg;
335:   PetscFunctionReturn(PETSC_SUCCESS);
336: }

338: /*@
339:   PCSetErrorIfFailure - Causes `PC` to generate an error if a floating point exception, for example a zero pivot, is detected.

341:   Logically Collective

343:   Input Parameters:
344: + pc  - iterative context obtained from `PCCreate()`
345: - flg - `PETSC_TRUE` indicates you want the error generated

347:   Level: advanced

349:   Notes:
350:   Normally PETSc continues if a linear solver fails due to a failed setup of a preconditioner, you can call `KSPGetConvergedReason()` after a `KSPSolve()`
351:   to determine if it has converged or failed. Or use -ksp_error_if_not_converged to cause the program to terminate as soon as lack of convergence is
352:   detected.

354:   This is propagated into `KSP`s used by this `PC`, which then propagate it into `PC`s used by those `KSP`s

356: .seealso: [](ch_ksp), `PC`, `KSPSetErrorIfNotConverged()`, `PCGetInitialGuessNonzero()`, `PCSetInitialGuessKnoll()`, `PCGetInitialGuessKnoll()`
357: @*/
358: PetscErrorCode PCSetErrorIfFailure(PC pc, PetscBool flg)
359: {
360:   PetscFunctionBegin;
363:   pc->erroriffailure = flg;
364:   PetscFunctionReturn(PETSC_SUCCESS);
365: }

367: /*@
368:   PCGetUseAmat - Gets a flag to indicate that when the preconditioner needs to apply (part of) the
369:   operator during the preconditioning process it applies the Amat provided to `TSSetRHSJacobian()`,
370:   `TSSetIJacobian()`, `SNESSetJacobian()`, `KSPSetOperators()` or `PCSetOperators()` not the Pmat.

372:   Logically Collective

374:   Input Parameter:
375: . pc - the `PC` preconditioner context

377:   Output Parameter:
378: . flg - `PETSC_TRUE` to use the Amat, `PETSC_FALSE` to use the Pmat (default is false)

380:   Level: intermediate

382:   Note:
383:   For the common case in which the linear system matrix and the matrix used to construct the
384:   preconditioner are identical, this routine is does nothing.

386: .seealso: [](ch_ksp), `PC`, `PCSetUseAmat()`, `PCBJACOBI`, `PCMG`, `PCFIELDSPLIT`, `PCCOMPOSITE`
387: @*/
388: PetscErrorCode PCGetUseAmat(PC pc, PetscBool *flg)
389: {
390:   PetscFunctionBegin;
392:   *flg = pc->useAmat;
393:   PetscFunctionReturn(PETSC_SUCCESS);
394: }

396: /*@
397:   PCSetKSPNestLevel - sets the amount of nesting the `KSP` that contains this `PC` has

399:   Collective

401:   Input Parameters:
402: + pc    - the `PC`
403: - level - the nest level

405:   Level: developer

407: .seealso: [](ch_ksp), `KSPSetUp()`, `KSPSolve()`, `KSPDestroy()`, `KSP`, `KSPGMRES`, `KSPType`, `KSPGetNestLevel()`, `PCGetKSPNestLevel()`, `KSPSetNestLevel()`
408: @*/
409: PetscErrorCode PCSetKSPNestLevel(PC pc, PetscInt level)
410: {
411:   PetscFunctionBegin;
414:   pc->kspnestlevel = level;
415:   PetscFunctionReturn(PETSC_SUCCESS);
416: }

418: /*@
419:   PCGetKSPNestLevel - gets the amount of nesting the `KSP` that contains this `PC` has

421:   Not Collective

423:   Input Parameter:
424: . pc - the `PC`

426:   Output Parameter:
427: . level - the nest level

429:   Level: developer

431: .seealso: [](ch_ksp), `KSPSetUp()`, `KSPSolve()`, `KSPDestroy()`, `KSP`, `KSPGMRES`, `KSPType`, `KSPSetNestLevel()`, `PCSetKSPNestLevel()`, `KSPGetNestLevel()`
432: @*/
433: PetscErrorCode PCGetKSPNestLevel(PC pc, PetscInt *level)
434: {
435:   PetscFunctionBegin;
437:   PetscAssertPointer(level, 2);
438:   *level = pc->kspnestlevel;
439:   PetscFunctionReturn(PETSC_SUCCESS);
440: }

442: /*@
443:   PCCreate - Creates a preconditioner context, `PC`

445:   Collective

447:   Input Parameter:
448: . comm - MPI communicator

450:   Output Parameter:
451: . newpc - location to put the `PC` preconditioner context

453:   Level: developer

455:   Notes:
456:   This is rarely called directly by users since `KSP` manages the `PC` objects it uses. Use `KSPGetPC()` to access the `PC` used by a `KSP`.

458:   Use `PCSetType()` or `PCSetFromOptions()` with the option `-pc_type pctype` to set the `PCType` for this `PC`

460:   The default preconditioner type `PCType` for sparse matrices is `PCILU` or `PCICC` with 0 fill on one process and block Jacobi (`PCBJACOBI`) with `PCILU` or `PCICC`
461:   in parallel. For dense matrices it is always `PCNONE`.

463: .seealso: [](ch_ksp), `PC`, `PCType`, `PCSetType`, `PCSetUp()`, `PCApply()`, `PCDestroy()`, `KSP`, `KSPGetPC()`
464: @*/
465: PetscErrorCode PCCreate(MPI_Comm comm, PC *newpc)
466: {
467:   PC pc;

469:   PetscFunctionBegin;
470:   PetscAssertPointer(newpc, 2);
471:   PetscCall(PCInitializePackage());

473:   PetscCall(PetscHeaderCreate(pc, PC_CLASSID, "PC", "Preconditioner", "PC", comm, PCDestroy, PCView));
474:   pc->mat                  = NULL;
475:   pc->pmat                 = NULL;
476:   pc->setupcalled          = 0;
477:   pc->setfromoptionscalled = 0;
478:   pc->data                 = NULL;
479:   pc->diagonalscale        = PETSC_FALSE;
480:   pc->diagonalscaleleft    = NULL;
481:   pc->diagonalscaleright   = NULL;

483:   pc->modifysubmatrices  = NULL;
484:   pc->modifysubmatricesP = NULL;

486:   *newpc = pc;
487:   PetscFunctionReturn(PETSC_SUCCESS);
488: }

490: /*@
491:   PCApply - Applies the preconditioner to a vector.

493:   Collective

495:   Input Parameters:
496: + pc - the `PC` preconditioner context
497: - x  - input vector

499:   Output Parameter:
500: . y - output vector

502:   Level: developer

504: .seealso: [](ch_ksp), `PC`, `PCApplyTranspose()`, `PCApplyBAorAB()`
505: @*/
506: PetscErrorCode PCApply(PC pc, Vec x, Vec y)
507: {
508:   PetscInt m, n, mv, nv;

510:   PetscFunctionBegin;
514:   PetscCheck(x != y, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_IDN, "x and y must be different vectors");
515:   if (pc->erroriffailure) PetscCall(VecValidValues_Internal(x, 2, PETSC_TRUE));
516:   /* use pmat to check vector sizes since for KSPLSQR the pmat may be of a different size than mat */
517:   PetscCall(MatGetLocalSize(pc->pmat, &m, &n));
518:   PetscCall(VecGetLocalSize(x, &mv));
519:   PetscCall(VecGetLocalSize(y, &nv));
520:   /* check pmat * y = x is feasible */
521:   PetscCheck(mv == m, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Preconditioner number of local rows %" PetscInt_FMT " does not equal input vector size %" PetscInt_FMT, m, mv);
522:   PetscCheck(nv == n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Preconditioner number of local columns %" PetscInt_FMT " does not equal output vector size %" PetscInt_FMT, n, nv);
523:   PetscCall(VecSetErrorIfLocked(y, 3));

525:   PetscCall(PCSetUp(pc));
526:   PetscCall(VecLockReadPush(x));
527:   PetscCall(PetscLogEventBegin(PC_Apply, pc, x, y, 0));
528:   PetscUseTypeMethod(pc, apply, x, y);
529:   PetscCall(PetscLogEventEnd(PC_Apply, pc, x, y, 0));
530:   if (pc->erroriffailure) PetscCall(VecValidValues_Internal(y, 3, PETSC_FALSE));
531:   PetscCall(VecLockReadPop(x));
532:   PetscFunctionReturn(PETSC_SUCCESS);
533: }

535: static PetscErrorCode PCMatApplyTranspose_Private(PC pc, Mat X, Mat Y, PetscBool transpose)
536: {
537:   Mat       A;
538:   Vec       cy, cx;
539:   PetscInt  m1, M1, m2, M2, n1, N1, n2, N2, m3, M3, n3, N3;
540:   PetscBool match;

542:   PetscFunctionBegin;
546:   PetscCheckSameComm(pc, 1, X, 2);
547:   PetscCheckSameComm(pc, 1, Y, 3);
548:   PetscCheck(Y != X, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_IDN, "Y and X must be different matrices");
549:   PetscCall(PCGetOperators(pc, NULL, &A));
550:   PetscCall(MatGetLocalSize(A, &m3, &n3));
551:   PetscCall(MatGetLocalSize(X, &m2, &n2));
552:   PetscCall(MatGetLocalSize(Y, &m1, &n1));
553:   PetscCall(MatGetSize(A, &M3, &N3));
554:   PetscCall(MatGetSize(X, &M2, &N2));
555:   PetscCall(MatGetSize(Y, &M1, &N1));
556:   PetscCheck(n1 == n2 && N1 == N2, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Incompatible number of columns between block of input vectors (n,N) = (%" PetscInt_FMT ",%" PetscInt_FMT ") and block of output vectors (n,N) = (%" PetscInt_FMT ",%" PetscInt_FMT ")", n2, N2, n1, N1);
557:   PetscCheck(m2 == m3 && M2 == M3, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Incompatible layout between block of input vectors (m,M) = (%" PetscInt_FMT ",%" PetscInt_FMT ") and Pmat (m,M)x(n,N) = (%" PetscInt_FMT ",%" PetscInt_FMT ")x(%" PetscInt_FMT ",%" PetscInt_FMT ")", m2, M2, m3, M3, n3, N3);
558:   PetscCheck(m1 == n3 && M1 == N3, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Incompatible layout between block of output vectors (m,M) = (%" PetscInt_FMT ",%" PetscInt_FMT ") and Pmat (m,M)x(n,N) = (%" PetscInt_FMT ",%" PetscInt_FMT ")x(%" PetscInt_FMT ",%" PetscInt_FMT ")", m1, M1, m3, M3, n3, N3);
559:   PetscCall(PetscObjectBaseTypeCompareAny((PetscObject)Y, &match, MATSEQDENSE, MATMPIDENSE, ""));
560:   PetscCheck(match, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Provided block of output vectors not stored in a dense Mat");
561:   PetscCall(PetscObjectBaseTypeCompareAny((PetscObject)X, &match, MATSEQDENSE, MATMPIDENSE, ""));
562:   PetscCheck(match, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Provided block of input vectors not stored in a dense Mat");
563:   PetscCall(PCSetUp(pc));
564:   if (!transpose && pc->ops->matapply) {
565:     PetscCall(PetscLogEventBegin(PC_MatApply, pc, X, Y, 0));
566:     PetscUseTypeMethod(pc, matapply, X, Y);
567:     PetscCall(PetscLogEventEnd(PC_MatApply, pc, X, Y, 0));
568:   } else if (transpose && pc->ops->matapplytranspose) {
569:     PetscCall(PetscLogEventBegin(PC_MatApply, pc, X, Y, 0));
570:     PetscUseTypeMethod(pc, matapplytranspose, X, Y);
571:     PetscCall(PetscLogEventEnd(PC_MatApply, pc, X, Y, 0));
572:   } else {
573:     PetscCall(PetscInfo(pc, "PC type %s applying column by column\n", ((PetscObject)pc)->type_name));
574:     for (n1 = 0; n1 < N1; ++n1) {
575:       PetscCall(MatDenseGetColumnVecRead(X, n1, &cx));
576:       PetscCall(MatDenseGetColumnVecWrite(Y, n1, &cy));
577:       if (!transpose) PetscCall(PCApply(pc, cx, cy));
578:       else PetscCall(PCApplyTranspose(pc, cx, cy));
579:       PetscCall(MatDenseRestoreColumnVecWrite(Y, n1, &cy));
580:       PetscCall(MatDenseRestoreColumnVecRead(X, n1, &cx));
581:     }
582:   }
583:   PetscFunctionReturn(PETSC_SUCCESS);
584: }

586: /*@
587:   PCMatApply - Applies the preconditioner to multiple vectors stored as a `MATDENSE`. Like `PCApply()`, `Y` and `X` must be different matrices.

589:   Collective

591:   Input Parameters:
592: + pc - the `PC` preconditioner context
593: - X  - block of input vectors

595:   Output Parameter:
596: . Y - block of output vectors

598:   Level: developer

600: .seealso: [](ch_ksp), `PC`, `PCApply()`, `KSPMatSolve()`
601: @*/
602: PetscErrorCode PCMatApply(PC pc, Mat X, Mat Y)
603: {
604:   PetscFunctionBegin;
605:   PetscCall(PCMatApplyTranspose_Private(pc, X, Y, PETSC_FALSE));
606:   PetscFunctionReturn(PETSC_SUCCESS);
607: }

609: /*@
610:   PCMatApplyTranspose - Applies the transpose of preconditioner to multiple vectors stored as a `MATDENSE`. Like `PCApplyTranspose()`, `Y` and `X` must be different matrices.

612:   Collective

614:   Input Parameters:
615: + pc - the `PC` preconditioner context
616: - X  - block of input vectors

618:   Output Parameter:
619: . Y - block of output vectors

621:   Level: developer

623: .seealso: [](ch_ksp), `PC`, `PCApplyTranspose()`, `KSPMatSolveTranspose()`
624: @*/
625: PetscErrorCode PCMatApplyTranspose(PC pc, Mat X, Mat Y)
626: {
627:   PetscFunctionBegin;
628:   PetscCall(PCMatApplyTranspose_Private(pc, X, Y, PETSC_TRUE));
629:   PetscFunctionReturn(PETSC_SUCCESS);
630: }

632: /*@
633:   PCApplySymmetricLeft - Applies the left part of a symmetric preconditioner to a vector.

635:   Collective

637:   Input Parameters:
638: + pc - the `PC` preconditioner context
639: - x  - input vector

641:   Output Parameter:
642: . y - output vector

644:   Level: developer

646:   Note:
647:   Currently, this routine is implemented only for `PCICC` and `PCJACOBI` preconditioners.

649: .seealso: [](ch_ksp), `PC`, `PCApply()`, `PCApplySymmetricRight()`
650: @*/
651: PetscErrorCode PCApplySymmetricLeft(PC pc, Vec x, Vec y)
652: {
653:   PetscFunctionBegin;
657:   PetscCheck(x != y, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_IDN, "x and y must be different vectors");
658:   if (pc->erroriffailure) PetscCall(VecValidValues_Internal(x, 2, PETSC_TRUE));
659:   PetscCall(PCSetUp(pc));
660:   PetscCall(VecLockReadPush(x));
661:   PetscCall(PetscLogEventBegin(PC_ApplySymmetricLeft, pc, x, y, 0));
662:   PetscUseTypeMethod(pc, applysymmetricleft, x, y);
663:   PetscCall(PetscLogEventEnd(PC_ApplySymmetricLeft, pc, x, y, 0));
664:   PetscCall(VecLockReadPop(x));
665:   if (pc->erroriffailure) PetscCall(VecValidValues_Internal(y, 3, PETSC_FALSE));
666:   PetscFunctionReturn(PETSC_SUCCESS);
667: }

669: /*@
670:   PCApplySymmetricRight - Applies the right part of a symmetric preconditioner to a vector.

672:   Collective

674:   Input Parameters:
675: + pc - the `PC` preconditioner context
676: - x  - input vector

678:   Output Parameter:
679: . y - output vector

681:   Level: developer

683:   Note:
684:   Currently, this routine is implemented only for `PCICC` and `PCJACOBI` preconditioners.

686: .seealso: [](ch_ksp), `PC`, `PCApply()`, `PCApplySymmetricLeft()`
687: @*/
688: PetscErrorCode PCApplySymmetricRight(PC pc, Vec x, Vec y)
689: {
690:   PetscFunctionBegin;
694:   PetscCheck(x != y, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_IDN, "x and y must be different vectors");
695:   if (pc->erroriffailure) PetscCall(VecValidValues_Internal(x, 2, PETSC_TRUE));
696:   PetscCall(PCSetUp(pc));
697:   PetscCall(VecLockReadPush(x));
698:   PetscCall(PetscLogEventBegin(PC_ApplySymmetricRight, pc, x, y, 0));
699:   PetscUseTypeMethod(pc, applysymmetricright, x, y);
700:   PetscCall(PetscLogEventEnd(PC_ApplySymmetricRight, pc, x, y, 0));
701:   PetscCall(VecLockReadPop(x));
702:   if (pc->erroriffailure) PetscCall(VecValidValues_Internal(y, 3, PETSC_FALSE));
703:   PetscFunctionReturn(PETSC_SUCCESS);
704: }

706: /*@
707:   PCApplyTranspose - Applies the transpose of preconditioner to a vector.

709:   Collective

711:   Input Parameters:
712: + pc - the `PC` preconditioner context
713: - x  - input vector

715:   Output Parameter:
716: . y - output vector

718:   Level: developer

720:   Note:
721:   For complex numbers this applies the non-Hermitian transpose.

723:   Developer Note:
724:   We need to implement a `PCApplyHermitianTranspose()`

726: .seealso: [](ch_ksp), `PC`, `PCApply()`, `PCApplyBAorAB()`, `PCApplyBAorABTranspose()`, `PCApplyTransposeExists()`
727: @*/
728: PetscErrorCode PCApplyTranspose(PC pc, Vec x, Vec y)
729: {
730:   PetscFunctionBegin;
734:   PetscCheck(x != y, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_IDN, "x and y must be different vectors");
735:   if (pc->erroriffailure) PetscCall(VecValidValues_Internal(x, 2, PETSC_TRUE));
736:   PetscCall(PCSetUp(pc));
737:   PetscCall(VecLockReadPush(x));
738:   PetscCall(PetscLogEventBegin(PC_Apply, pc, x, y, 0));
739:   PetscUseTypeMethod(pc, applytranspose, x, y);
740:   PetscCall(PetscLogEventEnd(PC_Apply, pc, x, y, 0));
741:   PetscCall(VecLockReadPop(x));
742:   if (pc->erroriffailure) PetscCall(VecValidValues_Internal(y, 3, PETSC_FALSE));
743:   PetscFunctionReturn(PETSC_SUCCESS);
744: }

746: /*@
747:   PCApplyTransposeExists - Test whether the preconditioner has a transpose apply operation

749:   Collective

751:   Input Parameter:
752: . pc - the `PC` preconditioner context

754:   Output Parameter:
755: . flg - `PETSC_TRUE` if a transpose operation is defined

757:   Level: developer

759: .seealso: [](ch_ksp), `PC`, `PCApplyTranspose()`
760: @*/
761: PetscErrorCode PCApplyTransposeExists(PC pc, PetscBool *flg)
762: {
763:   PetscFunctionBegin;
765:   PetscAssertPointer(flg, 2);
766:   if (pc->ops->applytranspose) *flg = PETSC_TRUE;
767:   else *flg = PETSC_FALSE;
768:   PetscFunctionReturn(PETSC_SUCCESS);
769: }

771: /*@
772:   PCApplyBAorAB - Applies the preconditioner and operator to a vector. $y = B*A*x $ or $ y = A*B*x$.

774:   Collective

776:   Input Parameters:
777: + pc   - the `PC` preconditioner context
778: . side - indicates the preconditioner side, one of `PC_LEFT`, `PC_RIGHT`, or `PC_SYMMETRIC`
779: . x    - input vector
780: - work - work vector

782:   Output Parameter:
783: . y - output vector

785:   Level: developer

787:   Note:
788:   If the `PC` has had `PCSetDiagonalScale()` set then $ D M A D^{-1} $ for left preconditioning or $ D A M D^{-1} $ is actually applied.
789:   The specific `KSPSolve()` method must also be written to handle the post-solve "correction" for the diagonal scaling.

791: .seealso: [](ch_ksp), `PC`, `PCApply()`, `PCApplyTranspose()`, `PCApplyBAorABTranspose()`
792: @*/
793: PetscErrorCode PCApplyBAorAB(PC pc, PCSide side, Vec x, Vec y, Vec work)
794: {
795:   PetscFunctionBegin;
801:   PetscCheckSameComm(pc, 1, x, 3);
802:   PetscCheckSameComm(pc, 1, y, 4);
803:   PetscCheckSameComm(pc, 1, work, 5);
804:   PetscCheck(x != y, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_IDN, "x and y must be different vectors");
805:   PetscCheck(side == PC_LEFT || side == PC_SYMMETRIC || side == PC_RIGHT, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_OUTOFRANGE, "Side must be right, left, or symmetric");
806:   PetscCheck(!pc->diagonalscale || side != PC_SYMMETRIC, PetscObjectComm((PetscObject)pc), PETSC_ERR_SUP, "Cannot include diagonal scaling with symmetric preconditioner application");
807:   if (pc->erroriffailure) PetscCall(VecValidValues_Internal(x, 3, PETSC_TRUE));

809:   PetscCall(PCSetUp(pc));
810:   if (pc->diagonalscale) {
811:     if (pc->ops->applyBA) {
812:       Vec work2; /* this is expensive, but to fix requires a second work vector argument to PCApplyBAorAB() */
813:       PetscCall(VecDuplicate(x, &work2));
814:       PetscCall(PCDiagonalScaleRight(pc, x, work2));
815:       PetscUseTypeMethod(pc, applyBA, side, work2, y, work);
816:       PetscCall(PCDiagonalScaleLeft(pc, y, y));
817:       PetscCall(VecDestroy(&work2));
818:     } else if (side == PC_RIGHT) {
819:       PetscCall(PCDiagonalScaleRight(pc, x, y));
820:       PetscCall(PCApply(pc, y, work));
821:       PetscCall(MatMult(pc->mat, work, y));
822:       PetscCall(PCDiagonalScaleLeft(pc, y, y));
823:     } else if (side == PC_LEFT) {
824:       PetscCall(PCDiagonalScaleRight(pc, x, y));
825:       PetscCall(MatMult(pc->mat, y, work));
826:       PetscCall(PCApply(pc, work, y));
827:       PetscCall(PCDiagonalScaleLeft(pc, y, y));
828:     } else PetscCheck(side != PC_SYMMETRIC, PetscObjectComm((PetscObject)pc), PETSC_ERR_SUP, "Cannot provide diagonal scaling with symmetric application of preconditioner");
829:   } else {
830:     if (pc->ops->applyBA) {
831:       PetscUseTypeMethod(pc, applyBA, side, x, y, work);
832:     } else if (side == PC_RIGHT) {
833:       PetscCall(PCApply(pc, x, work));
834:       PetscCall(MatMult(pc->mat, work, y));
835:     } else if (side == PC_LEFT) {
836:       PetscCall(MatMult(pc->mat, x, work));
837:       PetscCall(PCApply(pc, work, y));
838:     } else if (side == PC_SYMMETRIC) {
839:       /* There's an extra copy here; maybe should provide 2 work vectors instead? */
840:       PetscCall(PCApplySymmetricRight(pc, x, work));
841:       PetscCall(MatMult(pc->mat, work, y));
842:       PetscCall(VecCopy(y, work));
843:       PetscCall(PCApplySymmetricLeft(pc, work, y));
844:     }
845:   }
846:   if (pc->erroriffailure) PetscCall(VecValidValues_Internal(y, 4, PETSC_FALSE));
847:   PetscFunctionReturn(PETSC_SUCCESS);
848: }

850: /*@
851:   PCApplyBAorABTranspose - Applies the transpose of the preconditioner
852:   and operator to a vector. That is, applies $B^T * A^T$ with left preconditioning,
853:   NOT $(B*A)^T = A^T*B^T$.

855:   Collective

857:   Input Parameters:
858: + pc   - the `PC` preconditioner context
859: . side - indicates the preconditioner side, one of `PC_LEFT`, `PC_RIGHT`, or `PC_SYMMETRIC`
860: . x    - input vector
861: - work - work vector

863:   Output Parameter:
864: . y - output vector

866:   Level: developer

868:   Note:
869:   This routine is used internally so that the same Krylov code can be used to solve $A x = b$ and $A^T x = b$, with a preconditioner
870:   defined by $B^T$. This is why this has the funny form that it computes $B^T * A^T$

872: .seealso: [](ch_ksp), `PC`, `PCApply()`, `PCApplyTranspose()`, `PCApplyBAorAB()`
873: @*/
874: PetscErrorCode PCApplyBAorABTranspose(PC pc, PCSide side, Vec x, Vec y, Vec work)
875: {
876:   PetscFunctionBegin;
881:   PetscCheck(x != y, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_IDN, "x and y must be different vectors");
882:   if (pc->erroriffailure) PetscCall(VecValidValues_Internal(x, 3, PETSC_TRUE));
883:   if (pc->ops->applyBAtranspose) {
884:     PetscUseTypeMethod(pc, applyBAtranspose, side, x, y, work);
885:     if (pc->erroriffailure) PetscCall(VecValidValues_Internal(y, 4, PETSC_FALSE));
886:     PetscFunctionReturn(PETSC_SUCCESS);
887:   }
888:   PetscCheck(side == PC_LEFT || side == PC_RIGHT, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_OUTOFRANGE, "Side must be right or left");

890:   PetscCall(PCSetUp(pc));
891:   if (side == PC_RIGHT) {
892:     PetscCall(PCApplyTranspose(pc, x, work));
893:     PetscCall(MatMultTranspose(pc->mat, work, y));
894:   } else if (side == PC_LEFT) {
895:     PetscCall(MatMultTranspose(pc->mat, x, work));
896:     PetscCall(PCApplyTranspose(pc, work, y));
897:   }
898:   /* add support for PC_SYMMETRIC */
899:   if (pc->erroriffailure) PetscCall(VecValidValues_Internal(y, 4, PETSC_FALSE));
900:   PetscFunctionReturn(PETSC_SUCCESS);
901: }

903: /*@
904:   PCApplyRichardsonExists - Determines whether a particular preconditioner has a
905:   built-in fast application of Richardson's method.

907:   Not Collective

909:   Input Parameter:
910: . pc - the preconditioner

912:   Output Parameter:
913: . exists - `PETSC_TRUE` or `PETSC_FALSE`

915:   Level: developer

917: .seealso: [](ch_ksp), `PC`, `KSPRICHARDSON`, `PCApplyRichardson()`
918: @*/
919: PetscErrorCode PCApplyRichardsonExists(PC pc, PetscBool *exists)
920: {
921:   PetscFunctionBegin;
923:   PetscAssertPointer(exists, 2);
924:   if (pc->ops->applyrichardson) *exists = PETSC_TRUE;
925:   else *exists = PETSC_FALSE;
926:   PetscFunctionReturn(PETSC_SUCCESS);
927: }

929: /*@
930:   PCApplyRichardson - Applies several steps of Richardson iteration with
931:   the particular preconditioner. This routine is usually used by the
932:   Krylov solvers and not the application code directly.

934:   Collective

936:   Input Parameters:
937: + pc        - the `PC` preconditioner context
938: . b         - the right-hand side
939: . w         - one work vector
940: . rtol      - relative decrease in residual norm convergence criteria
941: . abstol    - absolute residual norm convergence criteria
942: . dtol      - divergence residual norm increase criteria
943: . its       - the number of iterations to apply.
944: - guesszero - if the input x contains nonzero initial guess

946:   Output Parameters:
947: + outits - number of iterations actually used (for SOR this always equals its)
948: . reason - the reason the apply terminated
949: - y      - the solution (also contains initial guess if guesszero is `PETSC_FALSE`

951:   Level: developer

953:   Notes:
954:   Most preconditioners do not support this function. Use the command
955:   `PCApplyRichardsonExists()` to determine if one does.

957:   Except for the `PCMG` this routine ignores the convergence tolerances
958:   and always runs for the number of iterations

960: .seealso: [](ch_ksp), `PC`, `PCApplyRichardsonExists()`
961: @*/
962: PetscErrorCode PCApplyRichardson(PC pc, Vec b, Vec y, Vec w, PetscReal rtol, PetscReal abstol, PetscReal dtol, PetscInt its, PetscBool guesszero, PetscInt *outits, PCRichardsonConvergedReason *reason)
963: {
964:   PetscFunctionBegin;
969:   PetscCheck(b != y, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_IDN, "b and y must be different vectors");
970:   PetscCall(PCSetUp(pc));
971:   PetscUseTypeMethod(pc, applyrichardson, b, y, w, rtol, abstol, dtol, its, guesszero, outits, reason);
972:   PetscFunctionReturn(PETSC_SUCCESS);
973: }

975: /*@
976:   PCSetFailedReason - Sets the reason a `PCSetUp()` failed or `PC_NOERROR` if it did not fail

978:   Logically Collective

980:   Input Parameters:
981: + pc     - the `PC` preconditioner context
982: - reason - the reason it failed

984:   Level: advanced

986: .seealso: [](ch_ksp), `PC`, `PCCreate()`, `PCApply()`, `PCDestroy()`, `PCFailedReason`
987: @*/
988: PetscErrorCode PCSetFailedReason(PC pc, PCFailedReason reason)
989: {
990:   PetscFunctionBegin;
992:   pc->failedreason = reason;
993:   PetscFunctionReturn(PETSC_SUCCESS);
994: }

996: /*@
997:   PCGetFailedReason - Gets the reason a `PCSetUp()` failed or `PC_NOERROR` if it did not fail

999:   Not Collective

1001:   Input Parameter:
1002: . pc - the `PC` preconditioner context

1004:   Output Parameter:
1005: . reason - the reason it failed

1007:   Level: advanced

1009:   Note:
1010:   After a call to `KSPCheckDot()` or  `KSPCheckNorm()` inside a `KSPSolve()` or a call to `PCReduceFailedReason()`
1011:   this is the maximum reason over all MPI processes in the `PC` communicator and hence logically collective.
1012:   Otherwise it returns the local value.

1014: .seealso: [](ch_ksp), `PC`, `PCCreate()`, `PCApply()`, `PCDestroy()`, `PCSetFailedReason()`, `PCFailedReason`
1015: @*/
1016: PetscErrorCode PCGetFailedReason(PC pc, PCFailedReason *reason)
1017: {
1018:   PetscFunctionBegin;
1020:   if (pc->setupcalled < 0) *reason = (PCFailedReason)pc->setupcalled;
1021:   else *reason = pc->failedreason;
1022:   PetscFunctionReturn(PETSC_SUCCESS);
1023: }

1025: /*@
1026:   PCReduceFailedReason - Reduce the failed reason among the MPI processes that share the `PC`

1028:   Collective

1030:   Input Parameter:
1031: . pc - the `PC` preconditioner context

1033:   Level: advanced

1035:   Note:
1036:   Different MPI processes may have different reasons or no reason, see `PCGetFailedReason()`. This routine
1037:   makes them have a common value (failure if any MPI process had a failure).

1039: .seealso: [](ch_ksp), `PC`, `PCCreate()`, `PCApply()`, `PCDestroy()`, `PCGetFailedReason()`, `PCSetFailedReason()`, `PCFailedReason`
1040: @*/
1041: PetscErrorCode PCReduceFailedReason(PC pc)
1042: {
1043:   PetscInt buf;

1045:   PetscFunctionBegin;
1047:   buf = (PetscInt)pc->failedreason;
1048:   PetscCallMPI(MPIU_Allreduce(MPI_IN_PLACE, &buf, 1, MPIU_INT, MPI_MAX, PetscObjectComm((PetscObject)pc)));
1049:   pc->failedreason = (PCFailedReason)buf;
1050:   PetscFunctionReturn(PETSC_SUCCESS);
1051: }

1053: /*
1054:       a setupcall of 0 indicates never setup,
1055:                      1 indicates has been previously setup
1056:                     -1 indicates a PCSetUp() was attempted and failed
1057: */
1058: /*@
1059:   PCSetUp - Prepares for the use of a preconditioner. Performs all the one-time operations needed before the preconditioner
1060:   can be used with `PCApply()`

1062:   Collective

1064:   Input Parameter:
1065: . pc - the `PC` preconditioner context

1067:   Level: developer

1069:   Notes:
1070:   For example, for `PCLU` this will compute the factorization.

1072:   This is called automatically by `KSPSetUp()` or `PCApply()` so rarely needs to be called directly.

1074:   For nested preconditioners, such as `PCFIELDSPLIT` or `PCBJACOBI` this may not finish the construction of the preconditioner
1075:   on the inner levels, the routine `PCSetUpOnBlocks()` may compute more of the preconditioner in those situations.

1077: .seealso: [](ch_ksp), `PC`, `PCCreate()`, `PCApply()`, `PCDestroy()`, `KSPSetUp()`, `PCSetUpOnBlocks()`
1078: @*/
1079: PetscErrorCode PCSetUp(PC pc)
1080: {
1081:   const char      *def;
1082:   PetscObjectState matstate, matnonzerostate;

1084:   PetscFunctionBegin;
1086:   PetscCheck(pc->mat, PetscObjectComm((PetscObject)pc), PETSC_ERR_ARG_WRONGSTATE, "Matrix must be set first");

1088:   if (pc->setupcalled && pc->reusepreconditioner) {
1089:     PetscCall(PetscInfo(pc, "Leaving PC with identical preconditioner since reuse preconditioner is set\n"));
1090:     PetscFunctionReturn(PETSC_SUCCESS);
1091:   }

1093:   PetscCall(PetscObjectStateGet((PetscObject)pc->pmat, &matstate));
1094:   PetscCall(MatGetNonzeroState(pc->pmat, &matnonzerostate));
1095:   if (!pc->setupcalled) {
1096:     //PetscCall(PetscInfo(pc, "Setting up PC for first time\n"));
1097:     pc->flag = DIFFERENT_NONZERO_PATTERN;
1098:   } else if (matstate == pc->matstate) PetscFunctionReturn(PETSC_SUCCESS);
1099:   else {
1100:     if (matnonzerostate != pc->matnonzerostate) {
1101:       PetscCall(PetscInfo(pc, "Setting up PC with different nonzero pattern\n"));
1102:       pc->flag = DIFFERENT_NONZERO_PATTERN;
1103:     } else {
1104:       //PetscCall(PetscInfo(pc, "Setting up PC with same nonzero pattern\n"));
1105:       pc->flag = SAME_NONZERO_PATTERN;
1106:     }
1107:   }
1108:   pc->matstate        = matstate;
1109:   pc->matnonzerostate = matnonzerostate;

1111:   if (!((PetscObject)pc)->type_name) {
1112:     PetscCall(PCGetDefaultType_Private(pc, &def));
1113:     PetscCall(PCSetType(pc, def));
1114:   }

1116:   PetscCall(MatSetErrorIfFailure(pc->pmat, pc->erroriffailure));
1117:   PetscCall(MatSetErrorIfFailure(pc->mat, pc->erroriffailure));
1118:   PetscCall(PetscLogEventBegin(PC_SetUp, pc, 0, 0, 0));
1119:   if (pc->ops->setup) {
1120:     PetscCall(PCLogEventsDeactivatePush());
1121:     PetscUseTypeMethod(pc, setup);
1122:     PetscCall(PCLogEventsDeactivatePop());
1123:   }
1124:   PetscCall(PetscLogEventEnd(PC_SetUp, pc, 0, 0, 0));
1125:   if (!pc->setupcalled) pc->setupcalled = 1;
1126:   PetscFunctionReturn(PETSC_SUCCESS);
1127: }

1129: /*@
1130:   PCSetUpOnBlocks - Sets up the preconditioner for each block in
1131:   the block Jacobi, overlapping Schwarz, and fieldsplit methods.

1133:   Collective

1135:   Input Parameter:
1136: . pc - the `PC` preconditioner context

1138:   Level: developer

1140:   Notes:
1141:   For nested preconditioners such as `PCBJACOBI`, `PCSetUp()` is not called on each sub-`KSP` when `PCSetUp()` is
1142:   called on the outer `PC`, this routine ensures it is called.

1144:   It calls `PCSetUp()` if not yet called.

1146: .seealso: [](ch_ksp), `PC`, `PCSetUp()`, `PCCreate()`, `PCApply()`, `PCDestroy()`
1147: @*/
1148: PetscErrorCode PCSetUpOnBlocks(PC pc)
1149: {
1150:   PetscFunctionBegin;
1152:   if (!pc->setupcalled) PetscCall(PCSetUp(pc)); /* "if" to prevent -info extra prints */
1153:   if (!pc->ops->setuponblocks) PetscFunctionReturn(PETSC_SUCCESS);
1154:   PetscCall(MatSetErrorIfFailure(pc->pmat, pc->erroriffailure));
1155:   PetscCall(PetscLogEventBegin(PC_SetUpOnBlocks, pc, 0, 0, 0));
1156:   PetscCall(PCLogEventsDeactivatePush());
1157:   PetscUseTypeMethod(pc, setuponblocks);
1158:   PetscCall(PCLogEventsDeactivatePop());
1159:   PetscCall(PetscLogEventEnd(PC_SetUpOnBlocks, pc, 0, 0, 0));
1160:   PetscFunctionReturn(PETSC_SUCCESS);
1161: }

1163: /*@C
1164:   PCSetModifySubMatrices - Sets a user-defined routine for modifying the
1165:   submatrices that arise within certain subdomain-based preconditioners such as `PCASM`

1167:   Logically Collective

1169:   Input Parameters:
1170: + pc   - the `PC` preconditioner context
1171: . func - routine for modifying the submatrices
1172: - ctx  - optional user-defined context (may be `NULL`)

1174:   Calling sequence of `func`:
1175: + pc     - the `PC` preconditioner context
1176: . nsub   - number of index sets
1177: . row    - an array of index sets that contain the global row numbers
1178:          that comprise each local submatrix
1179: . col    - an array of index sets that contain the global column numbers
1180:          that comprise each local submatrix
1181: . submat - array of local submatrices
1182: - ctx    - optional user-defined context for private data for the
1183:          user-defined func routine (may be `NULL`)

1185:   Level: advanced

1187:   Notes:
1188:   The basic submatrices are extracted from the preconditioner matrix as
1189:   usual; the user can then alter these (for example, to set different boundary
1190:   conditions for each submatrix) before they are used for the local solves.

1192:   `PCSetModifySubMatrices()` MUST be called before `KSPSetUp()` and
1193:   `KSPSolve()`.

1195:   A routine set by `PCSetModifySubMatrices()` is currently called within
1196:   the block Jacobi (`PCBJACOBI`) and additive Schwarz (`PCASM`)
1197:   preconditioners.  All other preconditioners ignore this routine.

1199: .seealso: [](ch_ksp), `PC`, `PCBJACOBI`, `PCASM`, `PCModifySubMatrices()`
1200: @*/
1201: PetscErrorCode PCSetModifySubMatrices(PC pc, PetscErrorCode (*func)(PC pc, PetscInt nsub, const IS row[], const IS col[], Mat submat[], void *ctx), void *ctx)
1202: {
1203:   PetscFunctionBegin;
1205:   pc->modifysubmatrices  = func;
1206:   pc->modifysubmatricesP = ctx;
1207:   PetscFunctionReturn(PETSC_SUCCESS);
1208: }

1210: /*@C
1211:   PCModifySubMatrices - Calls an optional user-defined routine within
1212:   certain preconditioners if one has been set with `PCSetModifySubMatrices()`.

1214:   Collective

1216:   Input Parameters:
1217: + pc     - the `PC` preconditioner context
1218: . nsub   - the number of local submatrices
1219: . row    - an array of index sets that contain the global row numbers
1220:          that comprise each local submatrix
1221: . col    - an array of index sets that contain the global column numbers
1222:          that comprise each local submatrix
1223: . submat - array of local submatrices
1224: - ctx    - optional user-defined context for private data for the
1225:          user-defined routine (may be `NULL`)

1227:   Output Parameter:
1228: . submat - array of local submatrices (the entries of which may
1229:             have been modified)

1231:   Level: developer

1233:   Note:
1234:   The user should NOT generally call this routine, as it will
1235:   automatically be called within certain preconditioners.

1237: .seealso: [](ch_ksp), `PC`, `PCSetModifySubMatrices()`
1238: @*/
1239: PetscErrorCode PCModifySubMatrices(PC pc, PetscInt nsub, const IS row[], const IS col[], Mat submat[], void *ctx)
1240: {
1241:   PetscFunctionBegin;
1243:   if (!pc->modifysubmatrices) PetscFunctionReturn(PETSC_SUCCESS);
1244:   PetscCall(PetscLogEventBegin(PC_ModifySubMatrices, pc, 0, 0, 0));
1245:   PetscCall((*pc->modifysubmatrices)(pc, nsub, row, col, submat, ctx));
1246:   PetscCall(PetscLogEventEnd(PC_ModifySubMatrices, pc, 0, 0, 0));
1247:   PetscFunctionReturn(PETSC_SUCCESS);
1248: }

1250: /*@
1251:   PCSetOperators - Sets the matrix associated with the linear system and
1252:   a (possibly) different one associated with the preconditioner.

1254:   Logically Collective

1256:   Input Parameters:
1257: + pc   - the `PC` preconditioner context
1258: . Amat - the matrix that defines the linear system
1259: - Pmat - the matrix to be used in constructing the preconditioner, usually the same as Amat.

1261:   Level: intermediate

1263:   Notes:
1264:   Passing a `NULL` for `Amat` or `Pmat` removes the matrix that is currently used.

1266:   If you wish to replace either `Amat` or `Pmat` but leave the other one untouched then
1267:   first call `KSPGetOperators()` to get the one you wish to keep, call `PetscObjectReference()`
1268:   on it and then pass it back in in your call to `KSPSetOperators()`.

1270:   More Notes about Repeated Solution of Linear Systems:
1271:   PETSc does NOT reset the matrix entries of either `Amat` or `Pmat`
1272:   to zero after a linear solve; the user is completely responsible for
1273:   matrix assembly.  See the routine `MatZeroEntries()` if desiring to
1274:   zero all elements of a matrix.

1276: .seealso: [](ch_ksp), `PC`, `PCGetOperators()`, `MatZeroEntries()`
1277:  @*/
1278: PetscErrorCode PCSetOperators(PC pc, Mat Amat, Mat Pmat)
1279: {
1280:   PetscInt m1, n1, m2, n2;

1282:   PetscFunctionBegin;
1286:   if (Amat) PetscCheckSameComm(pc, 1, Amat, 2);
1287:   if (Pmat) PetscCheckSameComm(pc, 1, Pmat, 3);
1288:   if (pc->setupcalled && pc->mat && pc->pmat && Amat && Pmat) {
1289:     PetscCall(MatGetLocalSize(Amat, &m1, &n1));
1290:     PetscCall(MatGetLocalSize(pc->mat, &m2, &n2));
1291:     PetscCheck(m1 == m2 && n1 == n2, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Cannot change local size of Amat after use old sizes %" PetscInt_FMT " %" PetscInt_FMT " new sizes %" PetscInt_FMT " %" PetscInt_FMT, m2, n2, m1, n1);
1292:     PetscCall(MatGetLocalSize(Pmat, &m1, &n1));
1293:     PetscCall(MatGetLocalSize(pc->pmat, &m2, &n2));
1294:     PetscCheck(m1 == m2 && n1 == n2, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Cannot change local size of Pmat after use old sizes %" PetscInt_FMT " %" PetscInt_FMT " new sizes %" PetscInt_FMT " %" PetscInt_FMT, m2, n2, m1, n1);
1295:   }

1297:   if (Pmat != pc->pmat) {
1298:     /* changing the operator that defines the preconditioner thus reneed to clear current states so new preconditioner is built */
1299:     pc->matnonzerostate = -1;
1300:     pc->matstate        = -1;
1301:   }

1303:   /* reference first in case the matrices are the same */
1304:   if (Amat) PetscCall(PetscObjectReference((PetscObject)Amat));
1305:   PetscCall(MatDestroy(&pc->mat));
1306:   if (Pmat) PetscCall(PetscObjectReference((PetscObject)Pmat));
1307:   PetscCall(MatDestroy(&pc->pmat));
1308:   pc->mat  = Amat;
1309:   pc->pmat = Pmat;
1310:   PetscFunctionReturn(PETSC_SUCCESS);
1311: }

1313: /*@
1314:   PCSetReusePreconditioner - reuse the current preconditioner even if the operator in the preconditioner `PC` has changed.

1316:   Logically Collective

1318:   Input Parameters:
1319: + pc   - the `PC` preconditioner context
1320: - flag - `PETSC_TRUE` do not compute a new preconditioner, `PETSC_FALSE` do compute a new preconditioner

1322:   Level: intermediate

1324:   Note:
1325:   Normally if a matrix inside a `PC` changes the `PC` automatically updates itself using information from the changed matrix. This option
1326:   prevents this.

1328: .seealso: [](ch_ksp), `PC`, `PCGetOperators()`, `MatZeroEntries()`, `PCGetReusePreconditioner()`, `KSPSetReusePreconditioner()`
1329:  @*/
1330: PetscErrorCode PCSetReusePreconditioner(PC pc, PetscBool flag)
1331: {
1332:   PetscFunctionBegin;
1335:   pc->reusepreconditioner = flag;
1336:   PetscFunctionReturn(PETSC_SUCCESS);
1337: }

1339: /*@
1340:   PCGetReusePreconditioner - Determines if the `PC` reuses the current preconditioner even if the operator in the preconditioner has changed.

1342:   Not Collective

1344:   Input Parameter:
1345: . pc - the `PC` preconditioner context

1347:   Output Parameter:
1348: . flag - `PETSC_TRUE` do not compute a new preconditioner, `PETSC_FALSE` do compute a new preconditioner

1350:   Level: intermediate

1352: .seealso: [](ch_ksp), `PC`, `PCGetOperators()`, `MatZeroEntries()`, `PCSetReusePreconditioner()`
1353:  @*/
1354: PetscErrorCode PCGetReusePreconditioner(PC pc, PetscBool *flag)
1355: {
1356:   PetscFunctionBegin;
1358:   PetscAssertPointer(flag, 2);
1359:   *flag = pc->reusepreconditioner;
1360:   PetscFunctionReturn(PETSC_SUCCESS);
1361: }

1363: /*@
1364:   PCGetOperators - Gets the matrix associated with the linear system and
1365:   possibly a different one which is used to construct the preconditioner.

1367:   Not Collective, though parallel `Mat`s are returned if `pc` is parallel

1369:   Input Parameter:
1370: . pc - the `PC` preconditioner context

1372:   Output Parameters:
1373: + Amat - the matrix defining the linear system
1374: - Pmat - the matrix from which the preconditioner is constructed, usually the same as Amat.

1376:   Level: intermediate

1378:   Note:
1379:   Does not increase the reference count of the matrices, so you should not destroy them

1381:   Alternative usage: If the operators have NOT been set with `KSPSetOperators()`/`PCSetOperators()` then the operators
1382:   are created in `PC` and returned to the user. In this case, if both operators
1383:   mat and pmat are requested, two DIFFERENT operators will be returned. If
1384:   only one is requested both operators in the PC will be the same (i.e. as
1385:   if one had called `KSPSetOperators()`/`PCSetOperators()` with the same argument for both Mats).
1386:   The user must set the sizes of the returned matrices and their type etc just
1387:   as if the user created them with `MatCreate()`. For example,

1389: .vb
1390:          KSP/PCGetOperators(ksp/pc,&Amat,NULL); is equivalent to
1391:            set size, type, etc of Amat

1393:          MatCreate(comm,&mat);
1394:          KSP/PCSetOperators(ksp/pc,Amat,Amat);
1395:          PetscObjectDereference((PetscObject)mat);
1396:            set size, type, etc of Amat
1397: .ve

1399:   and

1401: .vb
1402:          KSP/PCGetOperators(ksp/pc,&Amat,&Pmat); is equivalent to
1403:            set size, type, etc of Amat and Pmat

1405:          MatCreate(comm,&Amat);
1406:          MatCreate(comm,&Pmat);
1407:          KSP/PCSetOperators(ksp/pc,Amat,Pmat);
1408:          PetscObjectDereference((PetscObject)Amat);
1409:          PetscObjectDereference((PetscObject)Pmat);
1410:            set size, type, etc of Amat and Pmat
1411: .ve

1413:   The rationale for this support is so that when creating a `TS`, `SNES`, or `KSP` the hierarchy
1414:   of underlying objects (i.e. `SNES`, `KSP`, `PC`, `Mat`) and their lifespans can be completely
1415:   managed by the top most level object (i.e. the `TS`, `SNES`, or `KSP`). Another way to look
1416:   at this is when you create a `SNES` you do not NEED to create a `KSP` and attach it to
1417:   the `SNES` object (the `SNES` object manages it for you). Similarly when you create a KSP
1418:   you do not need to attach a `PC` to it (the `KSP` object manages the `PC` object for you).
1419:   Thus, why should YOU have to create the `Mat` and attach it to the `SNES`/`KSP`/`PC`, when
1420:   it can be created for you?

1422: .seealso: [](ch_ksp), `PC`, `PCSetOperators()`, `KSPGetOperators()`, `KSPSetOperators()`, `PCGetOperatorsSet()`
1423: @*/
1424: PetscErrorCode PCGetOperators(PC pc, Mat *Amat, Mat *Pmat)
1425: {
1426:   PetscFunctionBegin;
1428:   if (Amat) {
1429:     if (!pc->mat) {
1430:       if (pc->pmat && !Pmat) { /* Pmat has been set, but user did not request it, so use for Amat */
1431:         pc->mat = pc->pmat;
1432:         PetscCall(PetscObjectReference((PetscObject)pc->mat));
1433:       } else { /* both Amat and Pmat are empty */
1434:         PetscCall(MatCreate(PetscObjectComm((PetscObject)pc), &pc->mat));
1435:         if (!Pmat) { /* user did NOT request Pmat, so make same as Amat */
1436:           pc->pmat = pc->mat;
1437:           PetscCall(PetscObjectReference((PetscObject)pc->pmat));
1438:         }
1439:       }
1440:     }
1441:     *Amat = pc->mat;
1442:   }
1443:   if (Pmat) {
1444:     if (!pc->pmat) {
1445:       if (pc->mat && !Amat) { /* Amat has been set but was not requested, so use for pmat */
1446:         pc->pmat = pc->mat;
1447:         PetscCall(PetscObjectReference((PetscObject)pc->pmat));
1448:       } else {
1449:         PetscCall(MatCreate(PetscObjectComm((PetscObject)pc), &pc->pmat));
1450:         if (!Amat) { /* user did NOT request Amat, so make same as Pmat */
1451:           pc->mat = pc->pmat;
1452:           PetscCall(PetscObjectReference((PetscObject)pc->mat));
1453:         }
1454:       }
1455:     }
1456:     *Pmat = pc->pmat;
1457:   }
1458:   PetscFunctionReturn(PETSC_SUCCESS);
1459: }

1461: /*@
1462:   PCGetOperatorsSet - Determines if the matrix associated with the linear system and
1463:   possibly a different one associated with the preconditioner have been set in the `PC`.

1465:   Not Collective, though the results on all processes should be the same

1467:   Input Parameter:
1468: . pc - the `PC` preconditioner context

1470:   Output Parameters:
1471: + mat  - the matrix associated with the linear system was set
1472: - pmat - matrix associated with the preconditioner was set, usually the same

1474:   Level: intermediate

1476: .seealso: [](ch_ksp), `PC`, `PCSetOperators()`, `KSPGetOperators()`, `KSPSetOperators()`, `PCGetOperators()`
1477: @*/
1478: PetscErrorCode PCGetOperatorsSet(PC pc, PetscBool *mat, PetscBool *pmat)
1479: {
1480:   PetscFunctionBegin;
1482:   if (mat) *mat = (pc->mat) ? PETSC_TRUE : PETSC_FALSE;
1483:   if (pmat) *pmat = (pc->pmat) ? PETSC_TRUE : PETSC_FALSE;
1484:   PetscFunctionReturn(PETSC_SUCCESS);
1485: }

1487: /*@
1488:   PCFactorGetMatrix - Gets the factored matrix from the
1489:   preconditioner context.  This routine is valid only for the `PCLU`,
1490:   `PCILU`, `PCCHOLESKY`, and `PCICC` methods.

1492:   Not Collective though `mat` is parallel if `pc` is parallel

1494:   Input Parameter:
1495: . pc - the `PC` preconditioner context

1497:   Output Parameters:
1498: . mat - the factored matrix

1500:   Level: advanced

1502:   Note:
1503:   Does not increase the reference count for `mat` so DO NOT destroy it

1505: .seealso: [](ch_ksp), `PC`, `PCLU`, `PCILU`, `PCCHOLESKY`, `PCICC`
1506: @*/
1507: PetscErrorCode PCFactorGetMatrix(PC pc, Mat *mat)
1508: {
1509:   PetscFunctionBegin;
1511:   PetscAssertPointer(mat, 2);
1512:   PetscCall(PCFactorSetUpMatSolverType(pc));
1513:   PetscUseTypeMethod(pc, getfactoredmatrix, mat);
1514:   PetscFunctionReturn(PETSC_SUCCESS);
1515: }

1517: /*@
1518:   PCSetOptionsPrefix - Sets the prefix used for searching for all
1519:   `PC` options in the database.

1521:   Logically Collective

1523:   Input Parameters:
1524: + pc     - the `PC` preconditioner context
1525: - prefix - the prefix string to prepend to all `PC` option requests

1527:   Note:
1528:   A hyphen (-) must NOT be given at the beginning of the prefix name.
1529:   The first character of all runtime options is AUTOMATICALLY the
1530:   hyphen.

1532:   Level: advanced

1534: .seealso: [](ch_ksp), `PC`, `PCSetFromOptions`, `PCAppendOptionsPrefix()`, `PCGetOptionsPrefix()`
1535: @*/
1536: PetscErrorCode PCSetOptionsPrefix(PC pc, const char prefix[])
1537: {
1538:   PetscFunctionBegin;
1540:   PetscCall(PetscObjectSetOptionsPrefix((PetscObject)pc, prefix));
1541:   PetscFunctionReturn(PETSC_SUCCESS);
1542: }

1544: /*@
1545:   PCAppendOptionsPrefix - Appends to the prefix used for searching for all
1546:   `PC` options in the database.

1548:   Logically Collective

1550:   Input Parameters:
1551: + pc     - the `PC` preconditioner context
1552: - prefix - the prefix string to prepend to all `PC` option requests

1554:   Note:
1555:   A hyphen (-) must NOT be given at the beginning of the prefix name.
1556:   The first character of all runtime options is AUTOMATICALLY the
1557:   hyphen.

1559:   Level: advanced

1561: .seealso: [](ch_ksp), `PC`, `PCSetFromOptions`, `PCSetOptionsPrefix()`, `PCGetOptionsPrefix()`
1562: @*/
1563: PetscErrorCode PCAppendOptionsPrefix(PC pc, const char prefix[])
1564: {
1565:   PetscFunctionBegin;
1567:   PetscCall(PetscObjectAppendOptionsPrefix((PetscObject)pc, prefix));
1568:   PetscFunctionReturn(PETSC_SUCCESS);
1569: }

1571: /*@
1572:   PCGetOptionsPrefix - Gets the prefix used for searching for all
1573:   PC options in the database.

1575:   Not Collective

1577:   Input Parameter:
1578: . pc - the `PC` preconditioner context

1580:   Output Parameter:
1581: . prefix - pointer to the prefix string used, is returned

1583:   Level: advanced

1585: .seealso: [](ch_ksp), `PC`, `PCSetFromOptions`, `PCSetOptionsPrefix()`, `PCAppendOptionsPrefix()`
1586: @*/
1587: PetscErrorCode PCGetOptionsPrefix(PC pc, const char *prefix[])
1588: {
1589:   PetscFunctionBegin;
1591:   PetscAssertPointer(prefix, 2);
1592:   PetscCall(PetscObjectGetOptionsPrefix((PetscObject)pc, prefix));
1593:   PetscFunctionReturn(PETSC_SUCCESS);
1594: }

1596: /*
1597:    Indicates the right-hand side will be changed by KSPSolve(), this occurs for a few
1598:   preconditioners including BDDC and Eisentat that transform the equations before applying
1599:   the Krylov methods
1600: */
1601: PETSC_INTERN PetscErrorCode PCPreSolveChangeRHS(PC pc, PetscBool *change)
1602: {
1603:   PetscFunctionBegin;
1605:   PetscAssertPointer(change, 2);
1606:   *change = PETSC_FALSE;
1607:   PetscTryMethod(pc, "PCPreSolveChangeRHS_C", (PC, PetscBool *), (pc, change));
1608:   PetscFunctionReturn(PETSC_SUCCESS);
1609: }

1611: /*@
1612:   PCPreSolve - Optional pre-solve phase, intended for any preconditioner-specific actions that must be performed before
1613:   the iterative solve itself. Used in conjunction with `PCPostSolve()`

1615:   Collective

1617:   Input Parameters:
1618: + pc  - the `PC` preconditioner context
1619: - ksp - the Krylov subspace context

1621:   Level: developer

1623:   Notes:
1624:   `KSPSolve()` calls this directly, so is rarely called by the user.

1626:   Certain preconditioners, such as the `PCType` of `PCEISENSTAT`, change the formulation of the linear system to be solved iteratively.
1627:   This function performs that transformation. `PCPostSolve()` then transforms the system back to its original form after the solve.
1628:   `PCPostSolve()` also transforms the resulting solution of the transformed system to the solution of the original problem.

1630:   `KSPSetPreSolve()` and `KSPSetPostSolve()` provide an alternative way to provide such transformations.

1632: .seealso: [](ch_ksp), `PC`, `PCPostSolve()`, `KSP`, `PCSetPreSolve()`, `KSPSetPreSolve()`, `KSPSetPostSolve()`
1633: @*/
1634: PetscErrorCode PCPreSolve(PC pc, KSP ksp)
1635: {
1636:   Vec x, rhs;

1638:   PetscFunctionBegin;
1641:   pc->presolvedone++;
1642:   PetscCheck(pc->presolvedone <= 2, PetscObjectComm((PetscObject)pc), PETSC_ERR_SUP, "Cannot embed PCPreSolve() more than twice");
1643:   PetscCall(KSPGetSolution(ksp, &x));
1644:   PetscCall(KSPGetRhs(ksp, &rhs));

1646:   if (pc->ops->presolve) PetscUseTypeMethod(pc, presolve, ksp, rhs, x);
1647:   else if (pc->presolve) PetscCall(pc->presolve(pc, ksp));
1648:   PetscFunctionReturn(PETSC_SUCCESS);
1649: }

1651: /*@C
1652:   PCSetPreSolve - Sets function used by `PCPreSolve()` which is intended for any
1653:   preconditioner-specific actions that must be performed before
1654:   the iterative solve itself.

1656:   Logically Collective

1658:   Input Parameters:
1659: + pc       - the preconditioner object
1660: - presolve - the function to call before the solve

1662:   Calling sequence of `presolve`:
1663: + pc  - the `PC` context
1664: - ksp - the `KSP` context

1666:   Level: developer

1668: .seealso: [](ch_ksp), `PC`, `PCSetUp()`, `PCPreSolve()`
1669: @*/
1670: PetscErrorCode PCSetPreSolve(PC pc, PetscErrorCode (*presolve)(PC pc, KSP ksp))
1671: {
1672:   PetscFunctionBegin;
1674:   pc->presolve = presolve;
1675:   PetscFunctionReturn(PETSC_SUCCESS);
1676: }

1678: /*@
1679:   PCPostSolve - Optional post-solve phase, intended for any
1680:   preconditioner-specific actions that must be performed after
1681:   the iterative solve itself.

1683:   Collective

1685:   Input Parameters:
1686: + pc  - the `PC` preconditioner context
1687: - ksp - the `KSP` Krylov subspace context

1689:   Example Usage:
1690: .vb
1691:     PCPreSolve(pc,ksp);
1692:     KSPSolve(ksp,b,x);
1693:     PCPostSolve(pc,ksp);
1694: .ve

1696:   Level: developer

1698:   Note:
1699:   `KSPSolve()` calls this routine directly, so it is rarely called by the user.

1701: .seealso: [](ch_ksp), `PC`, `PCSetPreSolve()`, `KSPSetPostSolve()`, `KSPSetPreSolve()`, `PCPreSolve()`, `KSPSolve()`
1702: @*/
1703: PetscErrorCode PCPostSolve(PC pc, KSP ksp)
1704: {
1705:   Vec x, rhs;

1707:   PetscFunctionBegin;
1710:   pc->presolvedone--;
1711:   PetscCall(KSPGetSolution(ksp, &x));
1712:   PetscCall(KSPGetRhs(ksp, &rhs));
1713:   PetscTryTypeMethod(pc, postsolve, ksp, rhs, x);
1714:   PetscFunctionReturn(PETSC_SUCCESS);
1715: }

1717: /*@
1718:   PCLoad - Loads a `PC` that has been stored in binary  with `PCView()`.

1720:   Collective

1722:   Input Parameters:
1723: + newdm  - the newly loaded `PC`, this needs to have been created with `PCCreate()` or
1724:            some related function before a call to `PCLoad()`.
1725: - viewer - binary file viewer `PETSCVIEWERBINARY`, obtained from `PetscViewerBinaryOpen()`

1727:   Level: intermediate

1729:   Note:
1730:   The type is determined by the data in the file, any `PCType` set into the `PC` before this call is ignored.

1732: .seealso: [](ch_ksp), `PC`, `PetscViewerBinaryOpen()`, `PCView()`, `MatLoad()`, `VecLoad()`, `PETSCVIEWERBINARY`
1733: @*/
1734: PetscErrorCode PCLoad(PC newdm, PetscViewer viewer)
1735: {
1736:   PetscBool isbinary;
1737:   PetscInt  classid;
1738:   char      type[256];

1740:   PetscFunctionBegin;
1743:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERBINARY, &isbinary));
1744:   PetscCheck(isbinary, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Invalid viewer; open viewer with PetscViewerBinaryOpen()");

1746:   PetscCall(PetscViewerBinaryRead(viewer, &classid, 1, NULL, PETSC_INT));
1747:   PetscCheck(classid == PC_FILE_CLASSID, PetscObjectComm((PetscObject)newdm), PETSC_ERR_ARG_WRONG, "Not PC next in file");
1748:   PetscCall(PetscViewerBinaryRead(viewer, type, 256, NULL, PETSC_CHAR));
1749:   PetscCall(PCSetType(newdm, type));
1750:   PetscTryTypeMethod(newdm, load, viewer);
1751:   PetscFunctionReturn(PETSC_SUCCESS);
1752: }

1754: #include <petscdraw.h>
1755: #if defined(PETSC_HAVE_SAWS)
1756: #include <petscviewersaws.h>
1757: #endif

1759: /*@
1760:   PCViewFromOptions - View (print or provide information about) the `PC`, based on options in the options database

1762:   Collective

1764:   Input Parameters:
1765: + A    - the `PC` context
1766: . obj  - Optional object that provides the options prefix
1767: - name - command line option name

1769:   Level: developer

1771: .seealso: [](ch_ksp), `PC`, `PCView`, `PetscObjectViewFromOptions()`, `PCCreate()`
1772: @*/
1773: PetscErrorCode PCViewFromOptions(PC A, PetscObject obj, const char name[])
1774: {
1775:   PetscFunctionBegin;
1777:   PetscCall(PetscObjectViewFromOptions((PetscObject)A, obj, name));
1778:   PetscFunctionReturn(PETSC_SUCCESS);
1779: }

1781: /*@
1782:   PCView - Prints information about the `PC`

1784:   Collective

1786:   Input Parameters:
1787: + pc     - the `PC` preconditioner context
1788: - viewer - optional `PetscViewer` visualization context

1790:   Level: intermediate

1792:   Notes:
1793:   The available visualization contexts include
1794: +     `PETSC_VIEWER_STDOUT_SELF` - standard output (default)
1795: -     `PETSC_VIEWER_STDOUT_WORLD` - synchronized standard
1796:   output where only the first processor opens
1797:   the file. All other processors send their
1798:   data to the first processor to print.

1800:   The user can open an alternative visualization contexts with
1801:   `PetscViewerASCIIOpen()` (output to a specified file).

1803: .seealso: [](ch_ksp), `PC`, `PetscViewer`, `PetscViewerType`, `KSPView()`, `PetscViewerASCIIOpen()`
1804: @*/
1805: PetscErrorCode PCView(PC pc, PetscViewer viewer)
1806: {
1807:   PCType            cstr;
1808:   PetscViewerFormat format;
1809:   PetscBool         iascii, isstring, isbinary, isdraw, pop = PETSC_FALSE;
1810: #if defined(PETSC_HAVE_SAWS)
1811:   PetscBool issaws;
1812: #endif

1814:   PetscFunctionBegin;
1816:   if (!viewer) PetscCall(PetscViewerASCIIGetStdout(PetscObjectComm((PetscObject)pc), &viewer));
1818:   PetscCheckSameComm(pc, 1, viewer, 2);

1820:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
1821:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERSTRING, &isstring));
1822:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERBINARY, &isbinary));
1823:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERDRAW, &isdraw));
1824: #if defined(PETSC_HAVE_SAWS)
1825:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERSAWS, &issaws));
1826: #endif

1828:   if (iascii) {
1829:     PetscCall(PetscObjectPrintClassNamePrefixType((PetscObject)pc, viewer));
1830:     if (!pc->setupcalled) PetscCall(PetscViewerASCIIPrintf(viewer, "  PC has not been set up so information may be incomplete\n"));
1831:     PetscCall(PetscViewerASCIIPushTab(viewer));
1832:     PetscTryTypeMethod(pc, view, viewer);
1833:     PetscCall(PetscViewerASCIIPopTab(viewer));
1834:     if (pc->mat) {
1835:       PetscCall(PetscViewerGetFormat(viewer, &format));
1836:       if (format != PETSC_VIEWER_ASCII_INFO_DETAIL) {
1837:         PetscCall(PetscViewerPushFormat(viewer, PETSC_VIEWER_ASCII_INFO));
1838:         pop = PETSC_TRUE;
1839:       }
1840:       if (pc->pmat == pc->mat) {
1841:         PetscCall(PetscViewerASCIIPrintf(viewer, "  linear system matrix = precond matrix:\n"));
1842:         PetscCall(PetscViewerASCIIPushTab(viewer));
1843:         PetscCall(MatView(pc->mat, viewer));
1844:         PetscCall(PetscViewerASCIIPopTab(viewer));
1845:       } else {
1846:         if (pc->pmat) {
1847:           PetscCall(PetscViewerASCIIPrintf(viewer, "  linear system matrix followed by preconditioner matrix:\n"));
1848:         } else {
1849:           PetscCall(PetscViewerASCIIPrintf(viewer, "  linear system matrix:\n"));
1850:         }
1851:         PetscCall(PetscViewerASCIIPushTab(viewer));
1852:         PetscCall(MatView(pc->mat, viewer));
1853:         if (pc->pmat) PetscCall(MatView(pc->pmat, viewer));
1854:         PetscCall(PetscViewerASCIIPopTab(viewer));
1855:       }
1856:       if (pop) PetscCall(PetscViewerPopFormat(viewer));
1857:     }
1858:   } else if (isstring) {
1859:     PetscCall(PCGetType(pc, &cstr));
1860:     PetscCall(PetscViewerStringSPrintf(viewer, " PCType: %-7.7s", cstr));
1861:     PetscTryTypeMethod(pc, view, viewer);
1862:     if (pc->mat) PetscCall(MatView(pc->mat, viewer));
1863:     if (pc->pmat && pc->pmat != pc->mat) PetscCall(MatView(pc->pmat, viewer));
1864:   } else if (isbinary) {
1865:     PetscInt    classid = PC_FILE_CLASSID;
1866:     MPI_Comm    comm;
1867:     PetscMPIInt rank;
1868:     char        type[256];

1870:     PetscCall(PetscObjectGetComm((PetscObject)pc, &comm));
1871:     PetscCallMPI(MPI_Comm_rank(comm, &rank));
1872:     if (rank == 0) {
1873:       PetscCall(PetscViewerBinaryWrite(viewer, &classid, 1, PETSC_INT));
1874:       PetscCall(PetscStrncpy(type, ((PetscObject)pc)->type_name, 256));
1875:       PetscCall(PetscViewerBinaryWrite(viewer, type, 256, PETSC_CHAR));
1876:     }
1877:     PetscTryTypeMethod(pc, view, viewer);
1878:   } else if (isdraw) {
1879:     PetscDraw draw;
1880:     char      str[25];
1881:     PetscReal x, y, bottom, h;
1882:     PetscInt  n;

1884:     PetscCall(PetscViewerDrawGetDraw(viewer, 0, &draw));
1885:     PetscCall(PetscDrawGetCurrentPoint(draw, &x, &y));
1886:     if (pc->mat) {
1887:       PetscCall(MatGetSize(pc->mat, &n, NULL));
1888:       PetscCall(PetscSNPrintf(str, 25, "PC: %s (%" PetscInt_FMT ")", ((PetscObject)pc)->type_name, n));
1889:     } else {
1890:       PetscCall(PetscSNPrintf(str, 25, "PC: %s", ((PetscObject)pc)->type_name));
1891:     }
1892:     PetscCall(PetscDrawStringBoxed(draw, x, y, PETSC_DRAW_RED, PETSC_DRAW_BLACK, str, NULL, &h));
1893:     bottom = y - h;
1894:     PetscCall(PetscDrawPushCurrentPoint(draw, x, bottom));
1895:     PetscTryTypeMethod(pc, view, viewer);
1896:     PetscCall(PetscDrawPopCurrentPoint(draw));
1897: #if defined(PETSC_HAVE_SAWS)
1898:   } else if (issaws) {
1899:     PetscMPIInt rank;

1901:     PetscCall(PetscObjectName((PetscObject)pc));
1902:     PetscCallMPI(MPI_Comm_rank(PETSC_COMM_WORLD, &rank));
1903:     if (!((PetscObject)pc)->amsmem && rank == 0) PetscCall(PetscObjectViewSAWs((PetscObject)pc, viewer));
1904:     if (pc->mat) PetscCall(MatView(pc->mat, viewer));
1905:     if (pc->pmat && pc->pmat != pc->mat) PetscCall(MatView(pc->pmat, viewer));
1906: #endif
1907:   }
1908:   PetscFunctionReturn(PETSC_SUCCESS);
1909: }

1911: /*@C
1912:   PCRegister -  Adds a method (`PCType`) to the PETSc preconditioner package.

1914:   Not collective. No Fortran Support

1916:   Input Parameters:
1917: + sname    - name of a new user-defined solver
1918: - function - routine to create the method context which will be stored in a `PC` when `PCSetType()` is called

1920:   Example Usage:
1921: .vb
1922:    PCRegister("my_solver", MySolverCreate);
1923: .ve

1925:   Then, your solver can be chosen with the procedural interface via
1926: $     PCSetType(pc, "my_solver")
1927:   or at runtime via the option
1928: $     -pc_type my_solver

1930:   Level: advanced

1932:   Note:
1933:   A simpler alternative to using `PCRegister()` for an application specific preconditioner is to use a `PC` of `PCType` `PCSHELL` and
1934:   provide your customizations with `PCShellSetContext()` and `PCShellSetApply()`

1936:   `PCRegister()` may be called multiple times to add several user-defined preconditioners.

1938: .seealso: [](ch_ksp), `PC`, `PCType`, `PCRegisterAll()`, `PCSetType()`, `PCShellSetContext()`, `PCShellSetApply()`, `PCSHELL`
1939: @*/
1940: PetscErrorCode PCRegister(const char sname[], PetscErrorCode (*function)(PC))
1941: {
1942:   PetscFunctionBegin;
1943:   PetscCall(PCInitializePackage());
1944:   PetscCall(PetscFunctionListAdd(&PCList, sname, function));
1945:   PetscFunctionReturn(PETSC_SUCCESS);
1946: }

1948: static PetscErrorCode MatMult_PC(Mat A, Vec X, Vec Y)
1949: {
1950:   PC pc;

1952:   PetscFunctionBegin;
1953:   PetscCall(MatShellGetContext(A, &pc));
1954:   PetscCall(PCApply(pc, X, Y));
1955:   PetscFunctionReturn(PETSC_SUCCESS);
1956: }

1958: /*@
1959:   PCComputeOperator - Computes the explicit preconditioned operator as a matrix `Mat`.

1961:   Collective

1963:   Input Parameters:
1964: + pc      - the `PC` preconditioner object
1965: - mattype - the `MatType` to be used for the operator

1967:   Output Parameter:
1968: . mat - the explicit preconditioned operator

1970:   Level: advanced

1972:   Note:
1973:   This computation is done by applying the operators to columns of the identity matrix.
1974:   This routine is costly in general, and is recommended for use only with relatively small systems.
1975:   Currently, this routine uses a dense matrix format when `mattype` == `NULL`

1977:   Developer Note:
1978:   This should be called `PCCreateExplicitOperator()`

1980: .seealso: [](ch_ksp), `PC`, `KSPComputeOperator()`, `MatType`
1981: @*/
1982: PetscErrorCode PCComputeOperator(PC pc, MatType mattype, Mat *mat)
1983: {
1984:   PetscInt N, M, m, n;
1985:   Mat      A, Apc;

1987:   PetscFunctionBegin;
1989:   PetscAssertPointer(mat, 3);
1990:   PetscCall(PCGetOperators(pc, &A, NULL));
1991:   PetscCall(MatGetLocalSize(A, &m, &n));
1992:   PetscCall(MatGetSize(A, &M, &N));
1993:   PetscCall(MatCreateShell(PetscObjectComm((PetscObject)pc), m, n, M, N, pc, &Apc));
1994:   PetscCall(MatShellSetOperation(Apc, MATOP_MULT, (void (*)(void))MatMult_PC));
1995:   PetscCall(MatComputeOperator(Apc, mattype, mat));
1996:   PetscCall(MatDestroy(&Apc));
1997:   PetscFunctionReturn(PETSC_SUCCESS);
1998: }

2000: /*@
2001:   PCSetCoordinates - sets the coordinates of all the nodes (degrees of freedom in the vector) on the local process

2003:   Collective

2005:   Input Parameters:
2006: + pc     - the `PC` preconditioner context
2007: . dim    - the dimension of the coordinates 1, 2, or 3
2008: . nloc   - the blocked size of the coordinates array
2009: - coords - the coordinates array

2011:   Level: intermediate

2013:   Notes:
2014:   `coords` is an array of the dim coordinates for the nodes on
2015:   the local processor, of size `dim`*`nloc`.
2016:   If there are 108 equations (dofs) on a processor
2017:   for a 3d displacement finite element discretization of elasticity (so
2018:   that there are nloc = 36 = 108/3 nodes) then the array must have 108
2019:   double precision values (ie, 3 * 36).  These x y z coordinates
2020:   should be ordered for nodes 0 to N-1 like so: [ 0.x, 0.y, 0.z, 1.x,
2021:   ... , N-1.z ].

2023:   The information provided here can be used by some preconditioners, such as `PCGAMG`, to produce a better preconditioner.
2024:   See also  `MatSetNearNullSpace()`.

2026: .seealso: [](ch_ksp), `PC`, `MatSetNearNullSpace()`
2027: @*/
2028: PetscErrorCode PCSetCoordinates(PC pc, PetscInt dim, PetscInt nloc, PetscReal coords[])
2029: {
2030:   PetscFunctionBegin;
2033:   PetscTryMethod(pc, "PCSetCoordinates_C", (PC, PetscInt, PetscInt, PetscReal[]), (pc, dim, nloc, coords));
2034:   PetscFunctionReturn(PETSC_SUCCESS);
2035: }

2037: /*@
2038:   PCGetInterpolations - Gets interpolation matrices for all levels (except level 0)

2040:   Logically Collective

2042:   Input Parameter:
2043: . pc - the precondition context

2045:   Output Parameters:
2046: + num_levels     - the number of levels
2047: - interpolations - the interpolation matrices (size of `num_levels`-1)

2049:   Level: advanced

2051:   Developer Note:
2052:   Why is this here instead of in `PCMG` etc?

2054: .seealso: [](ch_ksp), `PC`, `PCMG`, `PCMGGetRestriction()`, `PCMGSetInterpolation()`, `PCMGGetInterpolation()`, `PCGetCoarseOperators()`
2055: @*/
2056: PetscErrorCode PCGetInterpolations(PC pc, PetscInt *num_levels, Mat *interpolations[])
2057: {
2058:   PetscFunctionBegin;
2060:   PetscAssertPointer(num_levels, 2);
2061:   PetscAssertPointer(interpolations, 3);
2062:   PetscUseMethod(pc, "PCGetInterpolations_C", (PC, PetscInt *, Mat *[]), (pc, num_levels, interpolations));
2063:   PetscFunctionReturn(PETSC_SUCCESS);
2064: }

2066: /*@
2067:   PCGetCoarseOperators - Gets coarse operator matrices for all levels (except the finest level)

2069:   Logically Collective

2071:   Input Parameter:
2072: . pc - the precondition context

2074:   Output Parameters:
2075: + num_levels      - the number of levels
2076: - coarseOperators - the coarse operator matrices (size of `num_levels`-1)

2078:   Level: advanced

2080:   Developer Note:
2081:   Why is this here instead of in `PCMG` etc?

2083: .seealso: [](ch_ksp), `PC`, `PCMG`, `PCMGGetRestriction()`, `PCMGSetInterpolation()`, `PCMGGetRScale()`, `PCMGGetInterpolation()`, `PCGetInterpolations()`
2084: @*/
2085: PetscErrorCode PCGetCoarseOperators(PC pc, PetscInt *num_levels, Mat *coarseOperators[])
2086: {
2087:   PetscFunctionBegin;
2089:   PetscAssertPointer(num_levels, 2);
2090:   PetscAssertPointer(coarseOperators, 3);
2091:   PetscUseMethod(pc, "PCGetCoarseOperators_C", (PC, PetscInt *, Mat *[]), (pc, num_levels, coarseOperators));
2092:   PetscFunctionReturn(PETSC_SUCCESS);
2093: }