Actual source code: mcrl.c

  1: /*
  2:   Defines a matrix-vector product for the MATMPIAIJCRL matrix class.
  3:   This class is derived from the MATMPIAIJ class and retains the
  4:   compressed row storage (aka Yale sparse matrix format) but augments
  5:   it with a column oriented storage that is more efficient for
  6:   matrix vector products on Vector machines.

  8:   CRL stands for constant row length (that is the same number of columns
  9:   is kept (padded with zeros) for each row of the sparse matrix.

 11:    See src/mat/impls/aij/seq/crl/crl.c for the sequential version
 12: */

 14: #include <../src/mat/impls/aij/mpi/mpiaij.h>
 15: #include <../src/mat/impls/aij/seq/crl/crl.h>

 17: static PetscErrorCode MatDestroy_MPIAIJCRL(Mat A)
 18: {
 19:   Mat_AIJCRL *aijcrl = (Mat_AIJCRL *)A->spptr;

 21:   PetscFunctionBegin;
 22:   if (aijcrl) {
 23:     PetscCall(PetscFree2(aijcrl->acols, aijcrl->icols));
 24:     PetscCall(VecDestroy(&aijcrl->fwork));
 25:     PetscCall(VecDestroy(&aijcrl->xwork));
 26:     PetscCall(PetscFree(aijcrl->array));
 27:   }
 28:   PetscCall(PetscFree(A->spptr));

 30:   PetscCall(PetscObjectChangeTypeName((PetscObject)A, MATMPIAIJ));
 31:   PetscCall(MatDestroy_MPIAIJ(A));
 32:   PetscFunctionReturn(PETSC_SUCCESS);
 33: }

 35: static PetscErrorCode MatMPIAIJCRL_create_aijcrl(Mat A)
 36: {
 37:   Mat_MPIAIJ  *a   = (Mat_MPIAIJ *)A->data;
 38:   Mat_SeqAIJ  *Aij = (Mat_SeqAIJ *)a->A->data, *Bij = (Mat_SeqAIJ *)a->B->data;
 39:   Mat_AIJCRL  *aijcrl = (Mat_AIJCRL *)A->spptr;
 40:   PetscInt     m      = A->rmap->n;       /* Number of rows in the matrix. */
 41:   PetscInt     nd     = a->A->cmap->n;    /* number of columns in diagonal portion */
 42:   PetscInt    *aj = Aij->j, *bj = Bij->j; /* From the CSR representation; points to the beginning  of each row. */
 43:   PetscInt     i, j, rmax = 0, *icols, *ailen = Aij->ilen, *bilen = Bij->ilen;
 44:   PetscScalar *aa = Aij->a, *ba = Bij->a, *acols, *array;

 46:   PetscFunctionBegin;
 47:   /* determine the row with the most columns */
 48:   for (i = 0; i < m; i++) rmax = PetscMax(rmax, ailen[i] + bilen[i]);
 49:   aijcrl->nz   = Aij->nz + Bij->nz;
 50:   aijcrl->m    = A->rmap->n;
 51:   aijcrl->rmax = rmax;

 53:   PetscCall(PetscFree2(aijcrl->acols, aijcrl->icols));
 54:   PetscCall(PetscMalloc2(rmax * m, &aijcrl->acols, rmax * m, &aijcrl->icols));
 55:   acols = aijcrl->acols;
 56:   icols = aijcrl->icols;
 57:   for (i = 0; i < m; i++) {
 58:     for (j = 0; j < ailen[i]; j++) {
 59:       acols[j * m + i] = *aa++;
 60:       icols[j * m + i] = *aj++;
 61:     }
 62:     for (; j < ailen[i] + bilen[i]; j++) {
 63:       acols[j * m + i] = *ba++;
 64:       icols[j * m + i] = nd + *bj++;
 65:     }
 66:     for (; j < rmax; j++) { /* empty column entries */
 67:       acols[j * m + i] = 0.0;
 68:       icols[j * m + i] = (j) ? icols[(j - 1) * m + i] : 0; /* handle case where row is EMPTY */
 69:     }
 70:   }
 71:   PetscCall(PetscInfo(A, "Percentage of 0's introduced for vectorized multiply %g\n", 1.0 - ((double)aijcrl->nz) / PetscMax((double)rmax * m, 1)));

 73:   PetscCall(PetscFree(aijcrl->array));
 74:   PetscCall(PetscMalloc1(a->B->cmap->n + nd, &array));
 75:   /* xwork array is actually B->n+nd long, but we define xwork this length so can copy into it */
 76:   PetscCall(VecDestroy(&aijcrl->xwork));
 77:   PetscCall(VecCreateMPIWithArray(PetscObjectComm((PetscObject)A), 1, nd, PETSC_DECIDE, array, &aijcrl->xwork));
 78:   PetscCall(VecDestroy(&aijcrl->fwork));
 79:   PetscCall(VecCreateSeqWithArray(PETSC_COMM_SELF, 1, a->B->cmap->n, array + nd, &aijcrl->fwork));

 81:   aijcrl->array = array;
 82:   aijcrl->xscat = a->Mvctx;
 83:   PetscFunctionReturn(PETSC_SUCCESS);
 84: }

 86: static PetscErrorCode MatAssemblyEnd_MPIAIJCRL(Mat A, MatAssemblyType mode)
 87: {
 88:   Mat_MPIAIJ *a   = (Mat_MPIAIJ *)A->data;
 89:   Mat_SeqAIJ *Aij = (Mat_SeqAIJ *)a->A->data, *Bij = (Mat_SeqAIJ *)a->A->data;

 91:   PetscFunctionBegin;
 92:   Aij->inode.use = PETSC_FALSE;
 93:   Bij->inode.use = PETSC_FALSE;

 95:   PetscCall(MatAssemblyEnd_MPIAIJ(A, mode));
 96:   if (mode == MAT_FLUSH_ASSEMBLY) PetscFunctionReturn(PETSC_SUCCESS);

 98:   /* Now calculate the permutation and grouping information. */
 99:   PetscCall(MatMPIAIJCRL_create_aijcrl(A));
100:   PetscFunctionReturn(PETSC_SUCCESS);
101: }

103: extern PetscErrorCode MatMult_AIJCRL(Mat, Vec, Vec);
104: extern PetscErrorCode MatDuplicate_AIJCRL(Mat, MatDuplicateOption, Mat *);

106: /* MatConvert_MPIAIJ_MPIAIJCRL converts a MPIAIJ matrix into a
107:  * MPIAIJCRL matrix.  This routine is called by the MatCreate_MPIAIJCRL()
108:  * routine, but can also be used to convert an assembled MPIAIJ matrix
109:  * into a MPIAIJCRL one. */

111: PETSC_INTERN PetscErrorCode MatConvert_MPIAIJ_MPIAIJCRL(Mat A, MatType type, MatReuse reuse, Mat *newmat)
112: {
113:   Mat         B = *newmat;
114:   Mat_AIJCRL *aijcrl;

116:   PetscFunctionBegin;
117:   if (reuse == MAT_INITIAL_MATRIX) PetscCall(MatDuplicate(A, MAT_COPY_VALUES, &B));

119:   PetscCall(PetscNew(&aijcrl));
120:   B->spptr = (void *)aijcrl;

122:   /* Set function pointers for methods that we inherit from AIJ but override. */
123:   B->ops->duplicate   = MatDuplicate_AIJCRL;
124:   B->ops->assemblyend = MatAssemblyEnd_MPIAIJCRL;
125:   B->ops->destroy     = MatDestroy_MPIAIJCRL;
126:   B->ops->mult        = MatMult_AIJCRL;

128:   /* If A has already been assembled, compute the permutation. */
129:   if (A->assembled) PetscCall(MatMPIAIJCRL_create_aijcrl(B));
130:   PetscCall(PetscObjectChangeTypeName((PetscObject)B, MATMPIAIJCRL));
131:   *newmat = B;
132:   PetscFunctionReturn(PETSC_SUCCESS);
133: }

135: /*@C
136:   MatCreateMPIAIJCRL - Creates a sparse matrix of type `MATMPIAIJCRL`.

138:   Collective

140:   Input Parameters:
141: + comm - MPI communicator, set to `PETSC_COMM_SELF`
142: . m    - number of rows
143: . n    - number of columns
144: . nz   - number of nonzeros per row (same for all rows), for the "diagonal" submatrix
145: . nnz  - array containing the number of nonzeros in the various rows (possibly different for each row) or `NULL`, for the "diagonal" submatrix
146: . onz  - number of nonzeros per row (same for all rows), for the "off-diagonal" submatrix
147: - onnz - array containing the number of nonzeros in the various rows (possibly different for each row) or `NULL`, for the "off-diagonal" submatrix

149:   Output Parameter:
150: . A - the matrix

152:   Level: intermediate

154:   Notes:
155:   This type inherits from `MATAIJ`, but stores some additional information that is used to
156:   allow better vectorization of the matrix-vector product. At the cost of increased storage,
157:   the AIJ formatted matrix can be copied to a format in which pieces of the matrix are stored
158:   in ELLPACK format, allowing the vectorized matrix multiply routine to use stride-1 memory
159:   accesses.

161:   If `nnz` is given then `nz` is ignored

163: .seealso: [](ch_matrices), `Mat`, [Sparse Matrix Creation](sec_matsparse), `MATAIJ`, `MATAIJSELL`, `MATAIJPERM`, `MATAIJMKL`, `MatCreate()`, `MatCreateMPIAIJPERM()`, `MatSetValues()`
164: @*/
165: PetscErrorCode MatCreateMPIAIJCRL(MPI_Comm comm, PetscInt m, PetscInt n, PetscInt nz, const PetscInt nnz[], PetscInt onz, const PetscInt onnz[], Mat *A)
166: {
167:   PetscFunctionBegin;
168:   PetscCall(MatCreate(comm, A));
169:   PetscCall(MatSetSizes(*A, m, n, m, n));
170:   PetscCall(MatSetType(*A, MATMPIAIJCRL));
171:   PetscCall(MatMPIAIJSetPreallocation_MPIAIJ(*A, nz, (PetscInt *)nnz, onz, (PetscInt *)onnz));
172:   PetscFunctionReturn(PETSC_SUCCESS);
173: }

175: PETSC_EXTERN PetscErrorCode MatCreate_MPIAIJCRL(Mat A)
176: {
177:   PetscFunctionBegin;
178:   PetscCall(MatSetType(A, MATMPIAIJ));
179:   PetscCall(MatConvert_MPIAIJ_MPIAIJCRL(A, MATMPIAIJCRL, MAT_INPLACE_MATRIX, &A));
180:   PetscFunctionReturn(PETSC_SUCCESS);
181: }