Actual source code: cdiagonal.c

  1: #include <petsc/private/matimpl.h>

  3: typedef struct {
  4:   PetscScalar diag;
  5: } Mat_ConstantDiagonal;

  7: static PetscErrorCode MatAXPY_ConstantDiagonal(Mat Y, PetscScalar a, Mat X, MatStructure str)
  8: {
  9:   Mat_ConstantDiagonal *yctx = (Mat_ConstantDiagonal *)Y->data;
 10:   Mat_ConstantDiagonal *xctx = (Mat_ConstantDiagonal *)X->data;

 12:   PetscFunctionBegin;
 13:   yctx->diag += a * xctx->diag;
 14:   PetscFunctionReturn(PETSC_SUCCESS);
 15: }

 17: static PetscErrorCode MatEqual_ConstantDiagonal(Mat Y, Mat X, PetscBool *equal)
 18: {
 19:   Mat_ConstantDiagonal *yctx = (Mat_ConstantDiagonal *)Y->data;
 20:   Mat_ConstantDiagonal *xctx = (Mat_ConstantDiagonal *)X->data;

 22:   PetscFunctionBegin;
 23:   *equal = (yctx->diag == xctx->diag) ? PETSC_TRUE : PETSC_FALSE;
 24:   PetscFunctionReturn(PETSC_SUCCESS);
 25: }

 27: static PetscErrorCode MatGetRow_ConstantDiagonal(Mat A, PetscInt row, PetscInt *ncols, PetscInt *cols[], PetscScalar *vals[])
 28: {
 29:   Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)A->data;

 31:   PetscFunctionBegin;
 32:   if (ncols) *ncols = 1;
 33:   if (cols) {
 34:     PetscCall(PetscMalloc1(1, cols));
 35:     (*cols)[0] = row;
 36:   }
 37:   if (vals) {
 38:     PetscCall(PetscMalloc1(1, vals));
 39:     (*vals)[0] = ctx->diag;
 40:   }
 41:   PetscFunctionReturn(PETSC_SUCCESS);
 42: }

 44: static PetscErrorCode MatRestoreRow_ConstantDiagonal(Mat A, PetscInt row, PetscInt *ncols, PetscInt *cols[], PetscScalar *vals[])
 45: {
 46:   PetscFunctionBegin;
 47:   if (cols) PetscCall(PetscFree(*cols));
 48:   if (vals) PetscCall(PetscFree(*vals));
 49:   PetscFunctionReturn(PETSC_SUCCESS);
 50: }

 52: static PetscErrorCode MatMultAdd_ConstantDiagonal(Mat mat, Vec v1, Vec v2, Vec v3)
 53: {
 54:   Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)mat->data;

 56:   PetscFunctionBegin;
 57:   if (v2 == v3) {
 58:     PetscCall(VecAXPBY(v3, ctx->diag, 1.0, v1));
 59:   } else {
 60:     PetscCall(VecAXPBYPCZ(v3, ctx->diag, 1.0, 0.0, v1, v2));
 61:   }
 62:   PetscFunctionReturn(PETSC_SUCCESS);
 63: }

 65: static PetscErrorCode MatMultHermitianTransposeAdd_ConstantDiagonal(Mat mat, Vec v1, Vec v2, Vec v3)
 66: {
 67:   Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)mat->data;

 69:   PetscFunctionBegin;
 70:   if (v2 == v3) {
 71:     PetscCall(VecAXPBY(v3, PetscConj(ctx->diag), 1.0, v1));
 72:   } else {
 73:     PetscCall(VecAXPBYPCZ(v3, PetscConj(ctx->diag), 1.0, 0.0, v1, v2));
 74:   }
 75:   PetscFunctionReturn(PETSC_SUCCESS);
 76: }

 78: static PetscErrorCode MatNorm_ConstantDiagonal(Mat A, NormType type, PetscReal *nrm)
 79: {
 80:   Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)A->data;

 82:   PetscFunctionBegin;
 83:   PetscCheck(type == NORM_FROBENIUS || type == NORM_2 || type == NORM_1 || type == NORM_INFINITY, PetscObjectComm((PetscObject)A), PETSC_ERR_SUP, "Unsupported norm");
 84:   *nrm = PetscAbsScalar(ctx->diag);
 85:   PetscFunctionReturn(PETSC_SUCCESS);
 86: }

 88: static PetscErrorCode MatCreateSubMatrices_ConstantDiagonal(Mat A, PetscInt n, const IS irow[], const IS icol[], MatReuse scall, Mat *submat[])
 89: {
 90:   Mat B;

 92:   PetscFunctionBegin;
 93:   PetscCall(MatConvert(A, MATAIJ, MAT_INITIAL_MATRIX, &B));
 94:   PetscCall(MatCreateSubMatrices(B, n, irow, icol, scall, submat));
 95:   PetscCall(MatDestroy(&B));
 96:   PetscFunctionReturn(PETSC_SUCCESS);
 97: }

 99: static PetscErrorCode MatDuplicate_ConstantDiagonal(Mat A, MatDuplicateOption op, Mat *B)
100: {
101:   Mat_ConstantDiagonal *actx = (Mat_ConstantDiagonal *)A->data;

103:   PetscFunctionBegin;
104:   PetscCall(MatCreate(PetscObjectComm((PetscObject)A), B));
105:   PetscCall(MatSetSizes(*B, A->rmap->n, A->cmap->n, A->rmap->N, A->cmap->N));
106:   PetscCall(MatSetBlockSizesFromMats(*B, A, A));
107:   PetscCall(MatSetType(*B, MATCONSTANTDIAGONAL));
108:   PetscCall(PetscLayoutReference(A->rmap, &(*B)->rmap));
109:   PetscCall(PetscLayoutReference(A->cmap, &(*B)->cmap));
110:   if (op == MAT_COPY_VALUES) {
111:     Mat_ConstantDiagonal *bctx = (Mat_ConstantDiagonal *)(*B)->data;
112:     bctx->diag                 = actx->diag;
113:   }
114:   PetscFunctionReturn(PETSC_SUCCESS);
115: }

117: static PetscErrorCode MatDestroy_ConstantDiagonal(Mat mat)
118: {
119:   PetscFunctionBegin;
120:   PetscCall(PetscFree(mat->data));
121:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConstantDiagonalGetConstant_C", NULL));
122:   PetscFunctionReturn(PETSC_SUCCESS);
123: }

125: static PetscErrorCode MatView_ConstantDiagonal(Mat J, PetscViewer viewer)
126: {
127:   Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)J->data;
128:   PetscBool             isascii;

130:   PetscFunctionBegin;
131:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &isascii));
132:   if (isascii) {
133:     PetscViewerFormat format;

135:     PetscCall(PetscViewerGetFormat(viewer, &format));
136:     if (format == PETSC_VIEWER_ASCII_FACTOR_INFO || format == PETSC_VIEWER_ASCII_INFO) PetscFunctionReturn(PETSC_SUCCESS);
137:     if (PetscImaginaryPart(ctx->diag) == 0) {
138:       PetscCall(PetscViewerASCIIPrintf(viewer, "Diagonal value: %g\n", (double)PetscRealPart(ctx->diag)));
139:     } else {
140:       PetscCall(PetscViewerASCIIPrintf(viewer, "Diagonal value: %g + i %g\n", (double)PetscRealPart(ctx->diag), (double)PetscImaginaryPart(ctx->diag)));
141:     }
142:   }
143:   PetscFunctionReturn(PETSC_SUCCESS);
144: }

146: static PetscErrorCode MatMult_ConstantDiagonal(Mat J, Vec x, Vec y)
147: {
148:   Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)J->data;

150:   PetscFunctionBegin;
151:   PetscCall(VecAXPBY(y, ctx->diag, 0.0, x));
152:   PetscFunctionReturn(PETSC_SUCCESS);
153: }

155: static PetscErrorCode MatMultHermitianTranspose_ConstantDiagonal(Mat J, Vec x, Vec y)
156: {
157:   Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)J->data;

159:   PetscFunctionBegin;
160:   PetscCall(VecAXPBY(y, PetscConj(ctx->diag), 0.0, x));
161:   PetscFunctionReturn(PETSC_SUCCESS);
162: }

164: static PetscErrorCode MatGetDiagonal_ConstantDiagonal(Mat J, Vec x)
165: {
166:   Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)J->data;

168:   PetscFunctionBegin;
169:   PetscCall(VecSet(x, ctx->diag));
170:   PetscFunctionReturn(PETSC_SUCCESS);
171: }

173: static PetscErrorCode MatShift_ConstantDiagonal(Mat Y, PetscScalar a)
174: {
175:   Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)Y->data;

177:   PetscFunctionBegin;
178:   ctx->diag += a;
179:   PetscFunctionReturn(PETSC_SUCCESS);
180: }

182: static PetscErrorCode MatScale_ConstantDiagonal(Mat Y, PetscScalar a)
183: {
184:   Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)Y->data;

186:   PetscFunctionBegin;
187:   ctx->diag *= a;
188:   PetscFunctionReturn(PETSC_SUCCESS);
189: }

191: static PetscErrorCode MatZeroEntries_ConstantDiagonal(Mat Y)
192: {
193:   Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)Y->data;

195:   PetscFunctionBegin;
196:   ctx->diag = 0.0;
197:   PetscFunctionReturn(PETSC_SUCCESS);
198: }

200: static PetscErrorCode MatConjugate_ConstantDiagonal(Mat Y)
201: {
202:   Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)Y->data;

204:   PetscFunctionBegin;
205:   ctx->diag = PetscConj(ctx->diag);
206:   PetscFunctionReturn(PETSC_SUCCESS);
207: }

209: static PetscErrorCode MatTranspose_ConstantDiagonal(Mat A, MatReuse reuse, Mat *matout)
210: {
211:   Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)A->data;

213:   PetscFunctionBegin;
214:   if (reuse == MAT_INPLACE_MATRIX) {
215:     PetscLayout tmplayout = A->rmap;

217:     A->rmap = A->cmap;
218:     A->cmap = tmplayout;
219:   } else {
220:     if (reuse == MAT_INITIAL_MATRIX) {
221:       PetscCall(MatCreateConstantDiagonal(PetscObjectComm((PetscObject)A), A->cmap->n, A->rmap->n, A->cmap->N, A->rmap->N, ctx->diag, matout));
222:     } else {
223:       PetscCall(MatZeroEntries(*matout));
224:       PetscCall(MatShift(*matout, ctx->diag));
225:     }
226:   }
227:   PetscFunctionReturn(PETSC_SUCCESS);
228: }

230: static PetscErrorCode MatSetRandom_ConstantDiagonal(Mat A, PetscRandom rand)
231: {
232:   PetscMPIInt           rank;
233:   MPI_Comm              comm;
234:   PetscScalar           v   = 0.0;
235:   Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)A->data;

237:   PetscFunctionBegin;
238:   PetscCall(PetscObjectGetComm((PetscObject)A, &comm));
239:   PetscCallMPI(MPI_Comm_rank(comm, &rank));
240:   if (!rank) PetscCall(PetscRandomGetValue(rand, &v));
241:   PetscCallMPI(MPI_Bcast(&v, 1, MPIU_SCALAR, 0, comm));
242:   ctx->diag = v;
243:   PetscFunctionReturn(PETSC_SUCCESS);
244: }

246: static PetscErrorCode MatSolve_ConstantDiagonal(Mat matin, Vec b, Vec x)
247: {
248:   Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)matin->data;

250:   PetscFunctionBegin;
251:   if (ctx->diag == 0.0) matin->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
252:   else matin->factorerrortype = MAT_FACTOR_NOERROR;
253:   PetscCall(VecAXPBY(x, 1.0 / ctx->diag, 0.0, b));
254:   PetscFunctionReturn(PETSC_SUCCESS);
255: }

257: static PetscErrorCode MatSOR_ConstantDiagonal(Mat matin, Vec x, PetscReal omega, MatSORType flag, PetscReal fshift, PetscInt its, PetscInt lits, Vec y)
258: {
259:   PetscFunctionBegin;
260:   PetscCall(MatSolve_ConstantDiagonal(matin, x, y));
261:   PetscFunctionReturn(PETSC_SUCCESS);
262: }

264: static PetscErrorCode MatGetInfo_ConstantDiagonal(Mat A, MatInfoType flag, MatInfo *info)
265: {
266:   PetscFunctionBegin;
267:   info->block_size   = 1.0;
268:   info->nz_allocated = 1.0;
269:   info->nz_used      = 1.0;
270:   info->nz_unneeded  = 0.0;
271:   info->assemblies   = A->num_ass;
272:   info->mallocs      = 0.0;
273:   info->memory       = 0; /* REVIEW ME */
274:   if (A->factortype) {
275:     info->fill_ratio_given  = 1.0;
276:     info->fill_ratio_needed = 1.0;
277:     info->factor_mallocs    = 0.0;
278:   } else {
279:     info->fill_ratio_given  = 0;
280:     info->fill_ratio_needed = 0;
281:     info->factor_mallocs    = 0;
282:   }
283:   PetscFunctionReturn(PETSC_SUCCESS);
284: }

286: /*@
287:   MatCreateConstantDiagonal - Creates a matrix with a uniform value along the diagonal

289:   Collective

291:   Input Parameters:
292: + comm - MPI communicator
293: . m    - number of local rows (or `PETSC_DECIDE` to have calculated if `M` is given)
294:            This value should be the same as the local size used in creating the
295:            y vector for the matrix-vector product y = Ax.
296: . n    - This value should be the same as the local size used in creating the
297:        x vector for the matrix-vector product y = Ax. (or `PETSC_DECIDE` to have
298:        calculated if `N` is given) For square matrices n is almost always `m`.
299: . M    - number of global rows (or `PETSC_DETERMINE` to have calculated if m is given)
300: . N    - number of global columns (or `PETSC_DETERMINE` to have calculated if n is given)
301: - diag - the diagonal value

303:   Output Parameter:
304: . J - the diagonal matrix

306:   Level: advanced

308:   Notes:
309:   Only supports square matrices with the same number of local rows and columns

311: .seealso: [](ch_matrices), `Mat`, `MatDestroy()`, `MATCONSTANTDIAGONAL`, `MatScale()`, `MatShift()`, `MatMult()`, `MatGetDiagonal()`, `MatGetFactor()`, `MatSolve()`
312: @*/
313: PetscErrorCode MatCreateConstantDiagonal(MPI_Comm comm, PetscInt m, PetscInt n, PetscInt M, PetscInt N, PetscScalar diag, Mat *J)
314: {
315:   PetscFunctionBegin;
316:   PetscCall(MatCreate(comm, J));
317:   PetscCall(MatSetSizes(*J, m, n, M, N));
318:   PetscCall(MatSetType(*J, MATCONSTANTDIAGONAL));
319:   PetscCall(MatShift(*J, diag));
320:   PetscCall(MatSetUp(*J));
321:   PetscFunctionReturn(PETSC_SUCCESS);
322: }

324: /*@
325:   MatConstantDiagonalGetConstant - Get the scalar constant of a constant diagonal matrix

327:   Not collective

329:   Input Parameter:
330: . mat - a `MATCONSTANTDIAGONAL`

332:   Output Parameter:
333: . value - the scalar value

335:   Level: developer

337: .seealso: [](ch_matrices), `Mat`, `MatDestroy()`, `MATCONSTANTDIAGONAL`
338: @*/
339: PetscErrorCode MatConstantDiagonalGetConstant(Mat mat, PetscScalar *value)
340: {
341:   PetscFunctionBegin;
342:   PetscUseMethod(mat, "MatConstantDiagonalGetConstant_C", (Mat, PetscScalar *), (mat, value));
343:   PetscFunctionReturn(PETSC_SUCCESS);
344: }

346: static PetscErrorCode MatConstantDiagonalGetConstant_ConstantDiagonal(Mat mat, PetscScalar *value)
347: {
348:   Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)mat->data;

350:   PetscFunctionBegin;
351:   *value = ctx->diag;
352:   PetscFunctionReturn(PETSC_SUCCESS);
353: }

355: /*MC
356:    MATCONSTANTDIAGONAL - "constant-diagonal" - A diagonal matrix type with a uniform value
357:    along the diagonal.

359:   Level: advanced

361: .seealso: [](ch_matrices), `Mat`, `MatCreateConstantDiagonal()`
362: M*/
363: PETSC_EXTERN PetscErrorCode MatCreate_ConstantDiagonal(Mat A)
364: {
365:   Mat_ConstantDiagonal *ctx;

367:   PetscFunctionBegin;
368:   PetscCall(PetscNew(&ctx));
369:   ctx->diag = 0.0;
370:   A->data   = (void *)ctx;

372:   A->assembled                   = PETSC_TRUE;
373:   A->preallocated                = PETSC_TRUE;
374:   A->structurally_symmetric      = PETSC_BOOL3_TRUE;
375:   A->structural_symmetry_eternal = PETSC_TRUE;
376:   A->symmetric                   = PETSC_BOOL3_TRUE;
377:   if (!PetscDefined(USE_COMPLEX)) A->hermitian = PETSC_BOOL3_TRUE;
378:   A->symmetry_eternal = PETSC_TRUE;

380:   A->ops->mult                      = MatMult_ConstantDiagonal;
381:   A->ops->multadd                   = MatMultAdd_ConstantDiagonal;
382:   A->ops->multtranspose             = MatMult_ConstantDiagonal;
383:   A->ops->multtransposeadd          = MatMultAdd_ConstantDiagonal;
384:   A->ops->multhermitiantranspose    = MatMultHermitianTranspose_ConstantDiagonal;
385:   A->ops->multhermitiantransposeadd = MatMultHermitianTransposeAdd_ConstantDiagonal;
386:   A->ops->solve                     = MatSolve_ConstantDiagonal;
387:   A->ops->solvetranspose            = MatSolve_ConstantDiagonal;
388:   A->ops->norm                      = MatNorm_ConstantDiagonal;
389:   A->ops->createsubmatrices         = MatCreateSubMatrices_ConstantDiagonal;
390:   A->ops->duplicate                 = MatDuplicate_ConstantDiagonal;
391:   A->ops->getrow                    = MatGetRow_ConstantDiagonal;
392:   A->ops->restorerow                = MatRestoreRow_ConstantDiagonal;
393:   A->ops->sor                       = MatSOR_ConstantDiagonal;
394:   A->ops->shift                     = MatShift_ConstantDiagonal;
395:   A->ops->scale                     = MatScale_ConstantDiagonal;
396:   A->ops->getdiagonal               = MatGetDiagonal_ConstantDiagonal;
397:   A->ops->view                      = MatView_ConstantDiagonal;
398:   A->ops->zeroentries               = MatZeroEntries_ConstantDiagonal;
399:   A->ops->destroy                   = MatDestroy_ConstantDiagonal;
400:   A->ops->getinfo                   = MatGetInfo_ConstantDiagonal;
401:   A->ops->equal                     = MatEqual_ConstantDiagonal;
402:   A->ops->axpy                      = MatAXPY_ConstantDiagonal;
403:   A->ops->setrandom                 = MatSetRandom_ConstantDiagonal;
404:   A->ops->conjugate                 = MatConjugate_ConstantDiagonal;
405:   A->ops->transpose                 = MatTranspose_ConstantDiagonal;

407:   PetscCall(PetscObjectChangeTypeName((PetscObject)A, MATCONSTANTDIAGONAL));
408:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConstantDiagonalGetConstant_C", MatConstantDiagonalGetConstant_ConstantDiagonal));
409:   PetscFunctionReturn(PETSC_SUCCESS);
410: }

412: static PetscErrorCode MatFactorNumeric_ConstantDiagonal(Mat fact, Mat A, const MatFactorInfo *info)
413: {
414:   Mat_ConstantDiagonal *actx = (Mat_ConstantDiagonal *)A->data, *fctx = (Mat_ConstantDiagonal *)fact->data;

416:   PetscFunctionBegin;
417:   if (actx->diag == 0.0) fact->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
418:   else fact->factorerrortype = MAT_FACTOR_NOERROR;
419:   fctx->diag       = 1.0 / actx->diag;
420:   fact->ops->solve = MatMult_ConstantDiagonal;
421:   PetscFunctionReturn(PETSC_SUCCESS);
422: }

424: static PetscErrorCode MatFactorSymbolic_LU_ConstantDiagonal(Mat fact, Mat A, IS isrow, IS iscol, const MatFactorInfo *info)
425: {
426:   PetscFunctionBegin;
427:   fact->ops->lufactornumeric = MatFactorNumeric_ConstantDiagonal;
428:   PetscFunctionReturn(PETSC_SUCCESS);
429: }

431: static PetscErrorCode MatFactorSymbolic_Cholesky_ConstantDiagonal(Mat fact, Mat A, IS isrow, const MatFactorInfo *info)
432: {
433:   PetscFunctionBegin;
434:   fact->ops->choleskyfactornumeric = MatFactorNumeric_ConstantDiagonal;
435:   PetscFunctionReturn(PETSC_SUCCESS);
436: }

438: PETSC_INTERN PetscErrorCode MatGetFactor_constantdiagonal_petsc(Mat A, MatFactorType ftype, Mat *B)
439: {
440:   PetscInt n = A->rmap->n, N = A->rmap->N;

442:   PetscFunctionBegin;
443:   PetscCall(MatCreateConstantDiagonal(PetscObjectComm((PetscObject)A), n, n, N, N, 0, B));

445:   (*B)->factortype                  = ftype;
446:   (*B)->ops->ilufactorsymbolic      = MatFactorSymbolic_LU_ConstantDiagonal;
447:   (*B)->ops->lufactorsymbolic       = MatFactorSymbolic_LU_ConstantDiagonal;
448:   (*B)->ops->iccfactorsymbolic      = MatFactorSymbolic_Cholesky_ConstantDiagonal;
449:   (*B)->ops->choleskyfactorsymbolic = MatFactorSymbolic_Cholesky_ConstantDiagonal;

451:   (*B)->ops->shift       = NULL;
452:   (*B)->ops->scale       = NULL;
453:   (*B)->ops->mult        = NULL;
454:   (*B)->ops->sor         = NULL;
455:   (*B)->ops->zeroentries = NULL;

457:   PetscCall(PetscFree((*B)->solvertype));
458:   PetscCall(PetscStrallocpy(MATSOLVERPETSC, &(*B)->solvertype));
459:   PetscFunctionReturn(PETSC_SUCCESS);
460: }