Actual source code: cdiagonal.c

  1: #include <petsc/private/matimpl.h>

  3: typedef struct {
  4:   PetscScalar diag;
  5: } Mat_ConstantDiagonal;

  7: static PetscErrorCode MatAXPY_ConstantDiagonal(Mat Y, PetscScalar a, Mat X, MatStructure str)
  8: {
  9:   Mat_ConstantDiagonal *yctx = (Mat_ConstantDiagonal *)Y->data;
 10:   Mat_ConstantDiagonal *xctx = (Mat_ConstantDiagonal *)X->data;

 12:   PetscFunctionBegin;
 13:   yctx->diag += a * xctx->diag;
 14:   PetscFunctionReturn(PETSC_SUCCESS);
 15: }

 17: static PetscErrorCode MatEqual_ConstantDiagonal(Mat Y, Mat X, PetscBool *equal)
 18: {
 19:   Mat_ConstantDiagonal *yctx = (Mat_ConstantDiagonal *)Y->data;
 20:   Mat_ConstantDiagonal *xctx = (Mat_ConstantDiagonal *)X->data;

 22:   PetscFunctionBegin;
 23:   *equal = (yctx->diag == xctx->diag) ? PETSC_TRUE : PETSC_FALSE;
 24:   PetscFunctionReturn(PETSC_SUCCESS);
 25: }

 27: static PetscErrorCode MatGetRow_ConstantDiagonal(Mat A, PetscInt row, PetscInt *ncols, PetscInt *cols[], PetscScalar *vals[])
 28: {
 29:   Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)A->data;

 31:   PetscFunctionBegin;
 32:   if (ncols) *ncols = 1;
 33:   if (cols) {
 34:     PetscCall(PetscMalloc1(1, cols));
 35:     (*cols)[0] = row;
 36:   }
 37:   if (vals) {
 38:     PetscCall(PetscMalloc1(1, vals));
 39:     (*vals)[0] = ctx->diag;
 40:   }
 41:   PetscFunctionReturn(PETSC_SUCCESS);
 42: }

 44: static PetscErrorCode MatRestoreRow_ConstantDiagonal(Mat A, PetscInt row, PetscInt *ncols, PetscInt *cols[], PetscScalar *vals[])
 45: {
 46:   PetscFunctionBegin;
 47:   if (cols) PetscCall(PetscFree(*cols));
 48:   if (vals) PetscCall(PetscFree(*vals));
 49:   PetscFunctionReturn(PETSC_SUCCESS);
 50: }

 52: static PetscErrorCode MatMultAdd_ConstantDiagonal(Mat mat, Vec v1, Vec v2, Vec v3)
 53: {
 54:   Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)mat->data;

 56:   PetscFunctionBegin;
 57:   if (v2 == v3) {
 58:     PetscCall(VecAXPBY(v3, ctx->diag, 1.0, v1));
 59:   } else {
 60:     PetscCall(VecAXPBYPCZ(v3, ctx->diag, 1.0, 0.0, v1, v2));
 61:   }
 62:   PetscFunctionReturn(PETSC_SUCCESS);
 63: }

 65: static PetscErrorCode MatMultHermitianTransposeAdd_ConstantDiagonal(Mat mat, Vec v1, Vec v2, Vec v3)
 66: {
 67:   Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)mat->data;

 69:   PetscFunctionBegin;
 70:   if (v2 == v3) {
 71:     PetscCall(VecAXPBY(v3, PetscConj(ctx->diag), 1.0, v1));
 72:   } else {
 73:     PetscCall(VecAXPBYPCZ(v3, PetscConj(ctx->diag), 1.0, 0.0, v1, v2));
 74:   }
 75:   PetscFunctionReturn(PETSC_SUCCESS);
 76: }

 78: static PetscErrorCode MatNorm_ConstantDiagonal(Mat A, NormType type, PetscReal *nrm)
 79: {
 80:   Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)A->data;

 82:   PetscFunctionBegin;
 83:   if (type == NORM_FROBENIUS || type == NORM_2 || type == NORM_1 || type == NORM_INFINITY) *nrm = PetscAbsScalar(ctx->diag);
 84:   else SETERRQ(PetscObjectComm((PetscObject)A), PETSC_ERR_SUP, "Unsupported norm");
 85:   PetscFunctionReturn(PETSC_SUCCESS);
 86: }

 88: static PetscErrorCode MatCreateSubMatrices_ConstantDiagonal(Mat A, PetscInt n, const IS irow[], const IS icol[], MatReuse scall, Mat *submat[])

 90: {
 91:   Mat B;

 93:   PetscFunctionBegin;
 94:   PetscCall(MatConvert(A, MATAIJ, MAT_INITIAL_MATRIX, &B));
 95:   PetscCall(MatCreateSubMatrices(B, n, irow, icol, scall, submat));
 96:   PetscCall(MatDestroy(&B));
 97:   PetscFunctionReturn(PETSC_SUCCESS);
 98: }

100: static PetscErrorCode MatDuplicate_ConstantDiagonal(Mat A, MatDuplicateOption op, Mat *B)
101: {
102:   Mat_ConstantDiagonal *actx = (Mat_ConstantDiagonal *)A->data;

104:   PetscFunctionBegin;
105:   PetscCall(MatCreate(PetscObjectComm((PetscObject)A), B));
106:   PetscCall(MatSetSizes(*B, A->rmap->n, A->cmap->n, A->rmap->N, A->cmap->N));
107:   PetscCall(MatSetBlockSizesFromMats(*B, A, A));
108:   PetscCall(MatSetType(*B, MATCONSTANTDIAGONAL));
109:   PetscCall(PetscLayoutReference(A->rmap, &(*B)->rmap));
110:   PetscCall(PetscLayoutReference(A->cmap, &(*B)->cmap));
111:   if (op == MAT_COPY_VALUES) {
112:     Mat_ConstantDiagonal *bctx = (Mat_ConstantDiagonal *)(*B)->data;
113:     bctx->diag                 = actx->diag;
114:   }
115:   PetscFunctionReturn(PETSC_SUCCESS);
116: }

118: static PetscErrorCode MatMissingDiagonal_ConstantDiagonal(Mat mat, PetscBool *missing, PetscInt *dd)
119: {
120:   PetscFunctionBegin;
121:   *missing = PETSC_FALSE;
122:   PetscFunctionReturn(PETSC_SUCCESS);
123: }

125: static PetscErrorCode MatDestroy_ConstantDiagonal(Mat mat)
126: {
127:   PetscFunctionBegin;
128:   PetscCall(PetscFree(mat->data));
129:   mat->structural_symmetry_eternal = PETSC_FALSE;
130:   mat->symmetry_eternal            = PETSC_FALSE;
131:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConstantDiagonalGetConstant_C", NULL));
132:   PetscFunctionReturn(PETSC_SUCCESS);
133: }

135: static PetscErrorCode MatView_ConstantDiagonal(Mat J, PetscViewer viewer)
136: {
137:   Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)J->data;
138:   PetscBool             iascii;

140:   PetscFunctionBegin;
141:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
142:   if (iascii) {
143:     PetscViewerFormat format;

145:     PetscCall(PetscViewerGetFormat(viewer, &format));
146:     if (format == PETSC_VIEWER_ASCII_FACTOR_INFO || format == PETSC_VIEWER_ASCII_INFO) PetscFunctionReturn(PETSC_SUCCESS);
147:     if (PetscImaginaryPart(ctx->diag) == 0) {
148:       PetscCall(PetscViewerASCIIPrintf(viewer, "Diagonal value: %g\n", (double)PetscRealPart(ctx->diag)));
149:     } else {
150:       PetscCall(PetscViewerASCIIPrintf(viewer, "Diagonal value: %g + i %g\n", (double)PetscRealPart(ctx->diag), (double)PetscImaginaryPart(ctx->diag)));
151:     }
152:   }
153:   PetscFunctionReturn(PETSC_SUCCESS);
154: }

156: static PetscErrorCode MatMult_ConstantDiagonal(Mat J, Vec x, Vec y)
157: {
158:   Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)J->data;

160:   PetscFunctionBegin;
161:   PetscCall(VecAXPBY(y, ctx->diag, 0.0, x));
162:   PetscFunctionReturn(PETSC_SUCCESS);
163: }

165: static PetscErrorCode MatMultHermitianTranspose_ConstantDiagonal(Mat J, Vec x, Vec y)
166: {
167:   Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)J->data;

169:   PetscFunctionBegin;
170:   PetscCall(VecAXPBY(y, PetscConj(ctx->diag), 0.0, x));
171:   PetscFunctionReturn(PETSC_SUCCESS);
172: }

174: static PetscErrorCode MatGetDiagonal_ConstantDiagonal(Mat J, Vec x)
175: {
176:   Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)J->data;

178:   PetscFunctionBegin;
179:   PetscCall(VecSet(x, ctx->diag));
180:   PetscFunctionReturn(PETSC_SUCCESS);
181: }

183: static PetscErrorCode MatShift_ConstantDiagonal(Mat Y, PetscScalar a)
184: {
185:   Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)Y->data;

187:   PetscFunctionBegin;
188:   ctx->diag += a;
189:   PetscFunctionReturn(PETSC_SUCCESS);
190: }

192: static PetscErrorCode MatScale_ConstantDiagonal(Mat Y, PetscScalar a)
193: {
194:   Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)Y->data;

196:   PetscFunctionBegin;
197:   ctx->diag *= a;
198:   PetscFunctionReturn(PETSC_SUCCESS);
199: }

201: static PetscErrorCode MatZeroEntries_ConstantDiagonal(Mat Y)
202: {
203:   Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)Y->data;

205:   PetscFunctionBegin;
206:   ctx->diag = 0.0;
207:   PetscFunctionReturn(PETSC_SUCCESS);
208: }

210: static PetscErrorCode MatConjugate_ConstantDiagonal(Mat Y)
211: {
212:   Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)Y->data;

214:   PetscFunctionBegin;
215:   ctx->diag = PetscConj(ctx->diag);
216:   PetscFunctionReturn(PETSC_SUCCESS);
217: }

219: static PetscErrorCode MatTranspose_ConstantDiagonal(Mat A, MatReuse reuse, Mat *matout)
220: {
221:   Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)A->data;

223:   PetscFunctionBegin;
224:   if (reuse == MAT_INPLACE_MATRIX) {
225:     PetscLayout tmplayout = A->rmap;

227:     A->rmap = A->cmap;
228:     A->cmap = tmplayout;
229:   } else {
230:     if (reuse == MAT_INITIAL_MATRIX) {
231:       PetscCall(MatCreateConstantDiagonal(PetscObjectComm((PetscObject)A), A->cmap->n, A->rmap->n, A->cmap->N, A->rmap->N, ctx->diag, matout));
232:     } else {
233:       PetscCall(MatZeroEntries(*matout));
234:       PetscCall(MatShift(*matout, ctx->diag));
235:     }
236:   }
237:   PetscFunctionReturn(PETSC_SUCCESS);
238: }

240: static PetscErrorCode MatSetRandom_ConstantDiagonal(Mat A, PetscRandom rand)
241: {
242:   PetscMPIInt           rank;
243:   MPI_Comm              comm;
244:   PetscScalar           v   = 0.0;
245:   Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)A->data;

247:   PetscFunctionBegin;
248:   PetscCall(PetscObjectGetComm((PetscObject)A, &comm));
249:   PetscCallMPI(MPI_Comm_rank(comm, &rank));
250:   if (!rank) PetscCall(PetscRandomGetValue(rand, &v));
251:   PetscCallMPI(MPI_Bcast(&v, 1, MPIU_SCALAR, 0, comm));
252:   ctx->diag = v;
253:   PetscFunctionReturn(PETSC_SUCCESS);
254: }

256: static PetscErrorCode MatSolve_ConstantDiagonal(Mat matin, Vec b, Vec x)
257: {
258:   Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)matin->data;

260:   PetscFunctionBegin;
261:   if (ctx->diag == 0.0) matin->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
262:   else matin->factorerrortype = MAT_FACTOR_NOERROR;
263:   PetscCall(VecAXPBY(x, 1.0 / ctx->diag, 0.0, b));
264:   PetscFunctionReturn(PETSC_SUCCESS);
265: }

267: static PetscErrorCode MatSOR_ConstantDiagonal(Mat matin, Vec x, PetscReal omega, MatSORType flag, PetscReal fshift, PetscInt its, PetscInt lits, Vec y)
268: {
269:   PetscFunctionBegin;
270:   PetscCall(MatSolve_ConstantDiagonal(matin, x, y));
271:   PetscFunctionReturn(PETSC_SUCCESS);
272: }

274: static PetscErrorCode MatGetInfo_ConstantDiagonal(Mat A, MatInfoType flag, MatInfo *info)
275: {
276:   PetscFunctionBegin;
277:   info->block_size   = 1.0;
278:   info->nz_allocated = 1.0;
279:   info->nz_used      = 1.0;
280:   info->nz_unneeded  = 0.0;
281:   info->assemblies   = A->num_ass;
282:   info->mallocs      = 0.0;
283:   info->memory       = 0; /* REVIEW ME */
284:   if (A->factortype) {
285:     info->fill_ratio_given  = 1.0;
286:     info->fill_ratio_needed = 1.0;
287:     info->factor_mallocs    = 0.0;
288:   } else {
289:     info->fill_ratio_given  = 0;
290:     info->fill_ratio_needed = 0;
291:     info->factor_mallocs    = 0;
292:   }
293:   PetscFunctionReturn(PETSC_SUCCESS);
294: }

296: /*@
297:   MatCreateConstantDiagonal - Creates a matrix with a uniform value along the diagonal

299:   Collective

301:   Input Parameters:
302: + comm - MPI communicator
303: . m    - number of local rows (or `PETSC_DECIDE` to have calculated if `M` is given)
304:            This value should be the same as the local size used in creating the
305:            y vector for the matrix-vector product y = Ax.
306: . n    - This value should be the same as the local size used in creating the
307:        x vector for the matrix-vector product y = Ax. (or `PETSC_DECIDE` to have
308:        calculated if `N` is given) For square matrices n is almost always `m`.
309: . M    - number of global rows (or `PETSC_DETERMINE` to have calculated if m is given)
310: . N    - number of global columns (or `PETSC_DETERMINE` to have calculated if n is given)
311: - diag - the diagonal value

313:   Output Parameter:
314: . J - the diagonal matrix

316:   Level: advanced

318:   Notes:
319:   Only supports square matrices with the same number of local rows and columns

321: .seealso: [](ch_matrices), `Mat`, `MatDestroy()`, `MATCONSTANTDIAGONAL`, `MatScale()`, `MatShift()`, `MatMult()`, `MatGetDiagonal()`, `MatGetFactor()`, `MatSolve()`
322: @*/
323: PetscErrorCode MatCreateConstantDiagonal(MPI_Comm comm, PetscInt m, PetscInt n, PetscInt M, PetscInt N, PetscScalar diag, Mat *J)
324: {
325:   PetscFunctionBegin;
326:   PetscCall(MatCreate(comm, J));
327:   PetscCall(MatSetSizes(*J, m, n, M, N));
328:   PetscCall(MatSetType(*J, MATCONSTANTDIAGONAL));
329:   PetscCall(MatShift(*J, diag));
330:   PetscCall(MatSetUp(*J));
331:   PetscFunctionReturn(PETSC_SUCCESS);
332: }

334: /*@
335:   MatConstantDiagonalGetConstant - Get the scalar constant of a constant diagonal matrix

337:   Not collective

339:   Input Parameter:
340: . mat - a `MATCONSTANTDIAGONAL`

342:   Output Parameter:
343: . value - the scalar value

345:   Level: developer

347: .seealso: [](ch_matrices), `Mat`, `MatDestroy()`, `MATCONSTANTDIAGONAL`
348: @*/
349: PetscErrorCode MatConstantDiagonalGetConstant(Mat mat, PetscScalar *value)
350: {
351:   PetscFunctionBegin;
352:   PetscUseMethod(mat, "MatConstantDiagonalGetConstant_C", (Mat, PetscScalar *), (mat, value));
353:   PetscFunctionReturn(PETSC_SUCCESS);
354: }

356: static PetscErrorCode MatConstantDiagonalGetConstant_ConstantDiagonal(Mat mat, PetscScalar *value)
357: {
358:   Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)mat->data;

360:   PetscFunctionBegin;
361:   *value = ctx->diag;
362:   PetscFunctionReturn(PETSC_SUCCESS);
363: }

365: /*MC
366:    MATCONSTANTDIAGONAL - "constant-diagonal" - A diagonal matrix type with a uniform value
367:    along the diagonal.

369:   Level: advanced

371: .seealso: [](ch_matrices), `Mat`, `MatCreateConstantDiagonal()`
372: M*/
373: PETSC_EXTERN PetscErrorCode MatCreate_ConstantDiagonal(Mat A)
374: {
375:   Mat_ConstantDiagonal *ctx;

377:   PetscFunctionBegin;
378:   PetscCall(PetscNew(&ctx));
379:   ctx->diag = 0.0;
380:   A->data   = (void *)ctx;

382:   A->assembled                   = PETSC_TRUE;
383:   A->preallocated                = PETSC_TRUE;
384:   A->structurally_symmetric      = PETSC_BOOL3_TRUE;
385:   A->structural_symmetry_eternal = PETSC_TRUE;
386:   A->symmetric                   = PETSC_BOOL3_TRUE;
387:   if (!PetscDefined(USE_COMPLEX)) A->hermitian = PETSC_BOOL3_TRUE;
388:   A->symmetry_eternal = PETSC_TRUE;

390:   A->ops->mult                      = MatMult_ConstantDiagonal;
391:   A->ops->multadd                   = MatMultAdd_ConstantDiagonal;
392:   A->ops->multtranspose             = MatMult_ConstantDiagonal;
393:   A->ops->multtransposeadd          = MatMultAdd_ConstantDiagonal;
394:   A->ops->multhermitiantranspose    = MatMultHermitianTranspose_ConstantDiagonal;
395:   A->ops->multhermitiantransposeadd = MatMultHermitianTransposeAdd_ConstantDiagonal;
396:   A->ops->solve                     = MatSolve_ConstantDiagonal;
397:   A->ops->solvetranspose            = MatSolve_ConstantDiagonal;
398:   A->ops->norm                      = MatNorm_ConstantDiagonal;
399:   A->ops->createsubmatrices         = MatCreateSubMatrices_ConstantDiagonal;
400:   A->ops->duplicate                 = MatDuplicate_ConstantDiagonal;
401:   A->ops->missingdiagonal           = MatMissingDiagonal_ConstantDiagonal;
402:   A->ops->getrow                    = MatGetRow_ConstantDiagonal;
403:   A->ops->restorerow                = MatRestoreRow_ConstantDiagonal;
404:   A->ops->sor                       = MatSOR_ConstantDiagonal;
405:   A->ops->shift                     = MatShift_ConstantDiagonal;
406:   A->ops->scale                     = MatScale_ConstantDiagonal;
407:   A->ops->getdiagonal               = MatGetDiagonal_ConstantDiagonal;
408:   A->ops->view                      = MatView_ConstantDiagonal;
409:   A->ops->zeroentries               = MatZeroEntries_ConstantDiagonal;
410:   A->ops->destroy                   = MatDestroy_ConstantDiagonal;
411:   A->ops->getinfo                   = MatGetInfo_ConstantDiagonal;
412:   A->ops->equal                     = MatEqual_ConstantDiagonal;
413:   A->ops->axpy                      = MatAXPY_ConstantDiagonal;
414:   A->ops->setrandom                 = MatSetRandom_ConstantDiagonal;
415:   A->ops->conjugate                 = MatConjugate_ConstantDiagonal;
416:   A->ops->transpose                 = MatTranspose_ConstantDiagonal;

418:   PetscCall(PetscObjectChangeTypeName((PetscObject)A, MATCONSTANTDIAGONAL));
419:   PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConstantDiagonalGetConstant_C", MatConstantDiagonalGetConstant_ConstantDiagonal));
420:   PetscFunctionReturn(PETSC_SUCCESS);
421: }

423: static PetscErrorCode MatFactorNumeric_ConstantDiagonal(Mat fact, Mat A, const MatFactorInfo *info)
424: {
425:   Mat_ConstantDiagonal *actx = (Mat_ConstantDiagonal *)A->data, *fctx = (Mat_ConstantDiagonal *)fact->data;

427:   PetscFunctionBegin;
428:   if (actx->diag == 0.0) fact->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
429:   else fact->factorerrortype = MAT_FACTOR_NOERROR;
430:   fctx->diag       = 1.0 / actx->diag;
431:   fact->ops->solve = MatMult_ConstantDiagonal;
432:   PetscFunctionReturn(PETSC_SUCCESS);
433: }

435: static PetscErrorCode MatFactorSymbolic_LU_ConstantDiagonal(Mat fact, Mat A, IS isrow, IS iscol, const MatFactorInfo *info)
436: {
437:   PetscFunctionBegin;
438:   fact->ops->lufactornumeric = MatFactorNumeric_ConstantDiagonal;
439:   PetscFunctionReturn(PETSC_SUCCESS);
440: }

442: static PetscErrorCode MatFactorSymbolic_Cholesky_ConstantDiagonal(Mat fact, Mat A, IS isrow, const MatFactorInfo *info)
443: {
444:   PetscFunctionBegin;
445:   fact->ops->choleskyfactornumeric = MatFactorNumeric_ConstantDiagonal;
446:   PetscFunctionReturn(PETSC_SUCCESS);
447: }

449: PETSC_INTERN PetscErrorCode MatGetFactor_constantdiagonal_petsc(Mat A, MatFactorType ftype, Mat *B)
450: {
451:   PetscInt n = A->rmap->n, N = A->rmap->N;

453:   PetscFunctionBegin;
454:   PetscCall(MatCreateConstantDiagonal(PetscObjectComm((PetscObject)A), n, n, N, N, 0, B));

456:   (*B)->factortype                  = ftype;
457:   (*B)->ops->ilufactorsymbolic      = MatFactorSymbolic_LU_ConstantDiagonal;
458:   (*B)->ops->lufactorsymbolic       = MatFactorSymbolic_LU_ConstantDiagonal;
459:   (*B)->ops->iccfactorsymbolic      = MatFactorSymbolic_Cholesky_ConstantDiagonal;
460:   (*B)->ops->choleskyfactorsymbolic = MatFactorSymbolic_Cholesky_ConstantDiagonal;

462:   (*B)->ops->shift       = NULL;
463:   (*B)->ops->scale       = NULL;
464:   (*B)->ops->mult        = NULL;
465:   (*B)->ops->sor         = NULL;
466:   (*B)->ops->zeroentries = NULL;

468:   PetscCall(PetscFree((*B)->solvertype));
469:   PetscCall(PetscStrallocpy(MATSOLVERPETSC, &(*B)->solvertype));
470:   PetscFunctionReturn(PETSC_SUCCESS);
471: }