Actual source code: cdiagonal.c
1: #include <petsc/private/matimpl.h>
3: typedef struct {
4: PetscScalar diag;
5: } Mat_ConstantDiagonal;
7: static PetscErrorCode MatAXPY_ConstantDiagonal(Mat Y, PetscScalar a, Mat X, MatStructure str)
8: {
9: Mat_ConstantDiagonal *yctx = (Mat_ConstantDiagonal *)Y->data;
10: Mat_ConstantDiagonal *xctx = (Mat_ConstantDiagonal *)X->data;
12: PetscFunctionBegin;
13: yctx->diag += a * xctx->diag;
14: PetscFunctionReturn(PETSC_SUCCESS);
15: }
17: static PetscErrorCode MatEqual_ConstantDiagonal(Mat Y, Mat X, PetscBool *equal)
18: {
19: Mat_ConstantDiagonal *yctx = (Mat_ConstantDiagonal *)Y->data;
20: Mat_ConstantDiagonal *xctx = (Mat_ConstantDiagonal *)X->data;
22: PetscFunctionBegin;
23: *equal = (yctx->diag == xctx->diag) ? PETSC_TRUE : PETSC_FALSE;
24: PetscFunctionReturn(PETSC_SUCCESS);
25: }
27: static PetscErrorCode MatGetRow_ConstantDiagonal(Mat A, PetscInt row, PetscInt *ncols, PetscInt *cols[], PetscScalar *vals[])
28: {
29: Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)A->data;
31: PetscFunctionBegin;
32: if (ncols) *ncols = 1;
33: if (cols) {
34: PetscCall(PetscMalloc1(1, cols));
35: (*cols)[0] = row;
36: }
37: if (vals) {
38: PetscCall(PetscMalloc1(1, vals));
39: (*vals)[0] = ctx->diag;
40: }
41: PetscFunctionReturn(PETSC_SUCCESS);
42: }
44: static PetscErrorCode MatRestoreRow_ConstantDiagonal(Mat A, PetscInt row, PetscInt *ncols, PetscInt *cols[], PetscScalar *vals[])
45: {
46: PetscFunctionBegin;
47: if (cols) PetscCall(PetscFree(*cols));
48: if (vals) PetscCall(PetscFree(*vals));
49: PetscFunctionReturn(PETSC_SUCCESS);
50: }
52: static PetscErrorCode MatMultAdd_ConstantDiagonal(Mat mat, Vec v1, Vec v2, Vec v3)
53: {
54: Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)mat->data;
56: PetscFunctionBegin;
57: if (v2 == v3) {
58: PetscCall(VecAXPBY(v3, ctx->diag, 1.0, v1));
59: } else {
60: PetscCall(VecAXPBYPCZ(v3, ctx->diag, 1.0, 0.0, v1, v2));
61: }
62: PetscFunctionReturn(PETSC_SUCCESS);
63: }
65: static PetscErrorCode MatMultHermitianTransposeAdd_ConstantDiagonal(Mat mat, Vec v1, Vec v2, Vec v3)
66: {
67: Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)mat->data;
69: PetscFunctionBegin;
70: if (v2 == v3) {
71: PetscCall(VecAXPBY(v3, PetscConj(ctx->diag), 1.0, v1));
72: } else {
73: PetscCall(VecAXPBYPCZ(v3, PetscConj(ctx->diag), 1.0, 0.0, v1, v2));
74: }
75: PetscFunctionReturn(PETSC_SUCCESS);
76: }
78: static PetscErrorCode MatNorm_ConstantDiagonal(Mat A, NormType type, PetscReal *nrm)
79: {
80: Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)A->data;
82: PetscFunctionBegin;
83: if (type == NORM_FROBENIUS || type == NORM_2 || type == NORM_1 || type == NORM_INFINITY) *nrm = PetscAbsScalar(ctx->diag);
84: else SETERRQ(PetscObjectComm((PetscObject)A), PETSC_ERR_SUP, "Unsupported norm");
85: PetscFunctionReturn(PETSC_SUCCESS);
86: }
88: static PetscErrorCode MatCreateSubMatrices_ConstantDiagonal(Mat A, PetscInt n, const IS irow[], const IS icol[], MatReuse scall, Mat *submat[])
90: {
91: Mat B;
93: PetscFunctionBegin;
94: PetscCall(MatConvert(A, MATAIJ, MAT_INITIAL_MATRIX, &B));
95: PetscCall(MatCreateSubMatrices(B, n, irow, icol, scall, submat));
96: PetscCall(MatDestroy(&B));
97: PetscFunctionReturn(PETSC_SUCCESS);
98: }
100: static PetscErrorCode MatDuplicate_ConstantDiagonal(Mat A, MatDuplicateOption op, Mat *B)
101: {
102: Mat_ConstantDiagonal *actx = (Mat_ConstantDiagonal *)A->data;
104: PetscFunctionBegin;
105: PetscCall(MatCreate(PetscObjectComm((PetscObject)A), B));
106: PetscCall(MatSetSizes(*B, A->rmap->n, A->cmap->n, A->rmap->N, A->cmap->N));
107: PetscCall(MatSetBlockSizesFromMats(*B, A, A));
108: PetscCall(MatSetType(*B, MATCONSTANTDIAGONAL));
109: PetscCall(PetscLayoutReference(A->rmap, &(*B)->rmap));
110: PetscCall(PetscLayoutReference(A->cmap, &(*B)->cmap));
111: if (op == MAT_COPY_VALUES) {
112: Mat_ConstantDiagonal *bctx = (Mat_ConstantDiagonal *)(*B)->data;
113: bctx->diag = actx->diag;
114: }
115: PetscFunctionReturn(PETSC_SUCCESS);
116: }
118: static PetscErrorCode MatMissingDiagonal_ConstantDiagonal(Mat mat, PetscBool *missing, PetscInt *dd)
119: {
120: PetscFunctionBegin;
121: *missing = PETSC_FALSE;
122: PetscFunctionReturn(PETSC_SUCCESS);
123: }
125: static PetscErrorCode MatDestroy_ConstantDiagonal(Mat mat)
126: {
127: PetscFunctionBegin;
128: PetscCall(PetscFree(mat->data));
129: mat->structural_symmetry_eternal = PETSC_FALSE;
130: mat->symmetry_eternal = PETSC_FALSE;
131: PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConstantDiagonalGetConstant_C", NULL));
132: PetscFunctionReturn(PETSC_SUCCESS);
133: }
135: static PetscErrorCode MatView_ConstantDiagonal(Mat J, PetscViewer viewer)
136: {
137: Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)J->data;
138: PetscBool iascii;
140: PetscFunctionBegin;
141: PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
142: if (iascii) {
143: PetscViewerFormat format;
145: PetscCall(PetscViewerGetFormat(viewer, &format));
146: if (format == PETSC_VIEWER_ASCII_FACTOR_INFO || format == PETSC_VIEWER_ASCII_INFO) PetscFunctionReturn(PETSC_SUCCESS);
147: if (PetscImaginaryPart(ctx->diag) == 0) {
148: PetscCall(PetscViewerASCIIPrintf(viewer, "Diagonal value: %g\n", (double)PetscRealPart(ctx->diag)));
149: } else {
150: PetscCall(PetscViewerASCIIPrintf(viewer, "Diagonal value: %g + i %g\n", (double)PetscRealPart(ctx->diag), (double)PetscImaginaryPart(ctx->diag)));
151: }
152: }
153: PetscFunctionReturn(PETSC_SUCCESS);
154: }
156: static PetscErrorCode MatMult_ConstantDiagonal(Mat J, Vec x, Vec y)
157: {
158: Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)J->data;
160: PetscFunctionBegin;
161: PetscCall(VecAXPBY(y, ctx->diag, 0.0, x));
162: PetscFunctionReturn(PETSC_SUCCESS);
163: }
165: static PetscErrorCode MatMultHermitianTranspose_ConstantDiagonal(Mat J, Vec x, Vec y)
166: {
167: Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)J->data;
169: PetscFunctionBegin;
170: PetscCall(VecAXPBY(y, PetscConj(ctx->diag), 0.0, x));
171: PetscFunctionReturn(PETSC_SUCCESS);
172: }
174: static PetscErrorCode MatGetDiagonal_ConstantDiagonal(Mat J, Vec x)
175: {
176: Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)J->data;
178: PetscFunctionBegin;
179: PetscCall(VecSet(x, ctx->diag));
180: PetscFunctionReturn(PETSC_SUCCESS);
181: }
183: static PetscErrorCode MatShift_ConstantDiagonal(Mat Y, PetscScalar a)
184: {
185: Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)Y->data;
187: PetscFunctionBegin;
188: ctx->diag += a;
189: PetscFunctionReturn(PETSC_SUCCESS);
190: }
192: static PetscErrorCode MatScale_ConstantDiagonal(Mat Y, PetscScalar a)
193: {
194: Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)Y->data;
196: PetscFunctionBegin;
197: ctx->diag *= a;
198: PetscFunctionReturn(PETSC_SUCCESS);
199: }
201: static PetscErrorCode MatZeroEntries_ConstantDiagonal(Mat Y)
202: {
203: Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)Y->data;
205: PetscFunctionBegin;
206: ctx->diag = 0.0;
207: PetscFunctionReturn(PETSC_SUCCESS);
208: }
210: static PetscErrorCode MatConjugate_ConstantDiagonal(Mat Y)
211: {
212: Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)Y->data;
214: PetscFunctionBegin;
215: ctx->diag = PetscConj(ctx->diag);
216: PetscFunctionReturn(PETSC_SUCCESS);
217: }
219: static PetscErrorCode MatTranspose_ConstantDiagonal(Mat A, MatReuse reuse, Mat *matout)
220: {
221: Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)A->data;
223: PetscFunctionBegin;
224: if (reuse == MAT_INPLACE_MATRIX) {
225: PetscLayout tmplayout = A->rmap;
227: A->rmap = A->cmap;
228: A->cmap = tmplayout;
229: } else {
230: if (reuse == MAT_INITIAL_MATRIX) {
231: PetscCall(MatCreateConstantDiagonal(PetscObjectComm((PetscObject)A), A->cmap->n, A->rmap->n, A->cmap->N, A->rmap->N, ctx->diag, matout));
232: } else {
233: PetscCall(MatZeroEntries(*matout));
234: PetscCall(MatShift(*matout, ctx->diag));
235: }
236: }
237: PetscFunctionReturn(PETSC_SUCCESS);
238: }
240: static PetscErrorCode MatSetRandom_ConstantDiagonal(Mat A, PetscRandom rand)
241: {
242: PetscMPIInt rank;
243: MPI_Comm comm;
244: PetscScalar v = 0.0;
245: Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)A->data;
247: PetscFunctionBegin;
248: PetscCall(PetscObjectGetComm((PetscObject)A, &comm));
249: PetscCallMPI(MPI_Comm_rank(comm, &rank));
250: if (!rank) PetscCall(PetscRandomGetValue(rand, &v));
251: PetscCallMPI(MPI_Bcast(&v, 1, MPIU_SCALAR, 0, comm));
252: ctx->diag = v;
253: PetscFunctionReturn(PETSC_SUCCESS);
254: }
256: static PetscErrorCode MatSolve_ConstantDiagonal(Mat matin, Vec b, Vec x)
257: {
258: Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)matin->data;
260: PetscFunctionBegin;
261: if (ctx->diag == 0.0) matin->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
262: else matin->factorerrortype = MAT_FACTOR_NOERROR;
263: PetscCall(VecAXPBY(x, 1.0 / ctx->diag, 0.0, b));
264: PetscFunctionReturn(PETSC_SUCCESS);
265: }
267: static PetscErrorCode MatSOR_ConstantDiagonal(Mat matin, Vec x, PetscReal omega, MatSORType flag, PetscReal fshift, PetscInt its, PetscInt lits, Vec y)
268: {
269: PetscFunctionBegin;
270: PetscCall(MatSolve_ConstantDiagonal(matin, x, y));
271: PetscFunctionReturn(PETSC_SUCCESS);
272: }
274: static PetscErrorCode MatGetInfo_ConstantDiagonal(Mat A, MatInfoType flag, MatInfo *info)
275: {
276: PetscFunctionBegin;
277: info->block_size = 1.0;
278: info->nz_allocated = 1.0;
279: info->nz_used = 1.0;
280: info->nz_unneeded = 0.0;
281: info->assemblies = A->num_ass;
282: info->mallocs = 0.0;
283: info->memory = 0; /* REVIEW ME */
284: if (A->factortype) {
285: info->fill_ratio_given = 1.0;
286: info->fill_ratio_needed = 1.0;
287: info->factor_mallocs = 0.0;
288: } else {
289: info->fill_ratio_given = 0;
290: info->fill_ratio_needed = 0;
291: info->factor_mallocs = 0;
292: }
293: PetscFunctionReturn(PETSC_SUCCESS);
294: }
296: /*@
297: MatCreateConstantDiagonal - Creates a matrix with a uniform value along the diagonal
299: Collective
301: Input Parameters:
302: + comm - MPI communicator
303: . m - number of local rows (or `PETSC_DECIDE` to have calculated if `M` is given)
304: This value should be the same as the local size used in creating the
305: y vector for the matrix-vector product y = Ax.
306: . n - This value should be the same as the local size used in creating the
307: x vector for the matrix-vector product y = Ax. (or `PETSC_DECIDE` to have
308: calculated if `N` is given) For square matrices n is almost always `m`.
309: . M - number of global rows (or `PETSC_DETERMINE` to have calculated if m is given)
310: . N - number of global columns (or `PETSC_DETERMINE` to have calculated if n is given)
311: - diag - the diagonal value
313: Output Parameter:
314: . J - the diagonal matrix
316: Level: advanced
318: Notes:
319: Only supports square matrices with the same number of local rows and columns
321: .seealso: [](ch_matrices), `Mat`, `MatDestroy()`, `MATCONSTANTDIAGONAL`, `MatScale()`, `MatShift()`, `MatMult()`, `MatGetDiagonal()`, `MatGetFactor()`, `MatSolve()`
322: @*/
323: PetscErrorCode MatCreateConstantDiagonal(MPI_Comm comm, PetscInt m, PetscInt n, PetscInt M, PetscInt N, PetscScalar diag, Mat *J)
324: {
325: PetscFunctionBegin;
326: PetscCall(MatCreate(comm, J));
327: PetscCall(MatSetSizes(*J, m, n, M, N));
328: PetscCall(MatSetType(*J, MATCONSTANTDIAGONAL));
329: PetscCall(MatShift(*J, diag));
330: PetscCall(MatSetUp(*J));
331: PetscFunctionReturn(PETSC_SUCCESS);
332: }
334: /*@
335: MatConstantDiagonalGetConstant - Get the scalar constant of a constant diagonal matrix
337: Not collective
339: Input Parameter:
340: . mat - a `MATCONSTANTDIAGONAL`
342: Output Parameter:
343: . value - the scalar value
345: Level: developer
347: .seealso: [](ch_matrices), `Mat`, `MatDestroy()`, `MATCONSTANTDIAGONAL`
348: @*/
349: PetscErrorCode MatConstantDiagonalGetConstant(Mat mat, PetscScalar *value)
350: {
351: PetscFunctionBegin;
352: PetscUseMethod(mat, "MatConstantDiagonalGetConstant_C", (Mat, PetscScalar *), (mat, value));
353: PetscFunctionReturn(PETSC_SUCCESS);
354: }
356: static PetscErrorCode MatConstantDiagonalGetConstant_ConstantDiagonal(Mat mat, PetscScalar *value)
357: {
358: Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)mat->data;
360: PetscFunctionBegin;
361: *value = ctx->diag;
362: PetscFunctionReturn(PETSC_SUCCESS);
363: }
365: /*MC
366: MATCONSTANTDIAGONAL - "constant-diagonal" - A diagonal matrix type with a uniform value
367: along the diagonal.
369: Level: advanced
371: .seealso: [](ch_matrices), `Mat`, `MatCreateConstantDiagonal()`
372: M*/
373: PETSC_EXTERN PetscErrorCode MatCreate_ConstantDiagonal(Mat A)
374: {
375: Mat_ConstantDiagonal *ctx;
377: PetscFunctionBegin;
378: PetscCall(PetscNew(&ctx));
379: ctx->diag = 0.0;
380: A->data = (void *)ctx;
382: A->assembled = PETSC_TRUE;
383: A->preallocated = PETSC_TRUE;
384: A->structurally_symmetric = PETSC_BOOL3_TRUE;
385: A->structural_symmetry_eternal = PETSC_TRUE;
386: A->symmetric = PETSC_BOOL3_TRUE;
387: if (!PetscDefined(USE_COMPLEX)) A->hermitian = PETSC_BOOL3_TRUE;
388: A->symmetry_eternal = PETSC_TRUE;
390: A->ops->mult = MatMult_ConstantDiagonal;
391: A->ops->multadd = MatMultAdd_ConstantDiagonal;
392: A->ops->multtranspose = MatMult_ConstantDiagonal;
393: A->ops->multtransposeadd = MatMultAdd_ConstantDiagonal;
394: A->ops->multhermitiantranspose = MatMultHermitianTranspose_ConstantDiagonal;
395: A->ops->multhermitiantransposeadd = MatMultHermitianTransposeAdd_ConstantDiagonal;
396: A->ops->solve = MatSolve_ConstantDiagonal;
397: A->ops->solvetranspose = MatSolve_ConstantDiagonal;
398: A->ops->norm = MatNorm_ConstantDiagonal;
399: A->ops->createsubmatrices = MatCreateSubMatrices_ConstantDiagonal;
400: A->ops->duplicate = MatDuplicate_ConstantDiagonal;
401: A->ops->missingdiagonal = MatMissingDiagonal_ConstantDiagonal;
402: A->ops->getrow = MatGetRow_ConstantDiagonal;
403: A->ops->restorerow = MatRestoreRow_ConstantDiagonal;
404: A->ops->sor = MatSOR_ConstantDiagonal;
405: A->ops->shift = MatShift_ConstantDiagonal;
406: A->ops->scale = MatScale_ConstantDiagonal;
407: A->ops->getdiagonal = MatGetDiagonal_ConstantDiagonal;
408: A->ops->view = MatView_ConstantDiagonal;
409: A->ops->zeroentries = MatZeroEntries_ConstantDiagonal;
410: A->ops->destroy = MatDestroy_ConstantDiagonal;
411: A->ops->getinfo = MatGetInfo_ConstantDiagonal;
412: A->ops->equal = MatEqual_ConstantDiagonal;
413: A->ops->axpy = MatAXPY_ConstantDiagonal;
414: A->ops->setrandom = MatSetRandom_ConstantDiagonal;
415: A->ops->conjugate = MatConjugate_ConstantDiagonal;
416: A->ops->transpose = MatTranspose_ConstantDiagonal;
418: PetscCall(PetscObjectChangeTypeName((PetscObject)A, MATCONSTANTDIAGONAL));
419: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConstantDiagonalGetConstant_C", MatConstantDiagonalGetConstant_ConstantDiagonal));
420: PetscFunctionReturn(PETSC_SUCCESS);
421: }
423: static PetscErrorCode MatFactorNumeric_ConstantDiagonal(Mat fact, Mat A, const MatFactorInfo *info)
424: {
425: Mat_ConstantDiagonal *actx = (Mat_ConstantDiagonal *)A->data, *fctx = (Mat_ConstantDiagonal *)fact->data;
427: PetscFunctionBegin;
428: if (actx->diag == 0.0) fact->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
429: else fact->factorerrortype = MAT_FACTOR_NOERROR;
430: fctx->diag = 1.0 / actx->diag;
431: fact->ops->solve = MatMult_ConstantDiagonal;
432: PetscFunctionReturn(PETSC_SUCCESS);
433: }
435: static PetscErrorCode MatFactorSymbolic_LU_ConstantDiagonal(Mat fact, Mat A, IS isrow, IS iscol, const MatFactorInfo *info)
436: {
437: PetscFunctionBegin;
438: fact->ops->lufactornumeric = MatFactorNumeric_ConstantDiagonal;
439: PetscFunctionReturn(PETSC_SUCCESS);
440: }
442: static PetscErrorCode MatFactorSymbolic_Cholesky_ConstantDiagonal(Mat fact, Mat A, IS isrow, const MatFactorInfo *info)
443: {
444: PetscFunctionBegin;
445: fact->ops->choleskyfactornumeric = MatFactorNumeric_ConstantDiagonal;
446: PetscFunctionReturn(PETSC_SUCCESS);
447: }
449: PETSC_INTERN PetscErrorCode MatGetFactor_constantdiagonal_petsc(Mat A, MatFactorType ftype, Mat *B)
450: {
451: PetscInt n = A->rmap->n, N = A->rmap->N;
453: PetscFunctionBegin;
454: PetscCall(MatCreateConstantDiagonal(PetscObjectComm((PetscObject)A), n, n, N, N, 0, B));
456: (*B)->factortype = ftype;
457: (*B)->ops->ilufactorsymbolic = MatFactorSymbolic_LU_ConstantDiagonal;
458: (*B)->ops->lufactorsymbolic = MatFactorSymbolic_LU_ConstantDiagonal;
459: (*B)->ops->iccfactorsymbolic = MatFactorSymbolic_Cholesky_ConstantDiagonal;
460: (*B)->ops->choleskyfactorsymbolic = MatFactorSymbolic_Cholesky_ConstantDiagonal;
462: (*B)->ops->shift = NULL;
463: (*B)->ops->scale = NULL;
464: (*B)->ops->mult = NULL;
465: (*B)->ops->sor = NULL;
466: (*B)->ops->zeroentries = NULL;
468: PetscCall(PetscFree((*B)->solvertype));
469: PetscCall(PetscStrallocpy(MATSOLVERPETSC, &(*B)->solvertype));
470: PetscFunctionReturn(PETSC_SUCCESS);
471: }