Actual source code: cdiagonal.c
1: #include <petsc/private/matimpl.h>
3: typedef struct {
4: PetscScalar diag;
5: } Mat_ConstantDiagonal;
7: static PetscErrorCode MatAXPY_ConstantDiagonal(Mat Y, PetscScalar a, Mat X, MatStructure str)
8: {
9: Mat_ConstantDiagonal *yctx = (Mat_ConstantDiagonal *)Y->data;
10: Mat_ConstantDiagonal *xctx = (Mat_ConstantDiagonal *)X->data;
12: PetscFunctionBegin;
13: yctx->diag += a * xctx->diag;
14: PetscFunctionReturn(PETSC_SUCCESS);
15: }
17: static PetscErrorCode MatEqual_ConstantDiagonal(Mat Y, Mat X, PetscBool *equal)
18: {
19: Mat_ConstantDiagonal *yctx = (Mat_ConstantDiagonal *)Y->data;
20: Mat_ConstantDiagonal *xctx = (Mat_ConstantDiagonal *)X->data;
22: PetscFunctionBegin;
23: *equal = (yctx->diag == xctx->diag) ? PETSC_TRUE : PETSC_FALSE;
24: PetscFunctionReturn(PETSC_SUCCESS);
25: }
27: static PetscErrorCode MatGetRow_ConstantDiagonal(Mat A, PetscInt row, PetscInt *ncols, PetscInt *cols[], PetscScalar *vals[])
28: {
29: Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)A->data;
31: PetscFunctionBegin;
32: if (ncols) *ncols = 1;
33: if (cols) {
34: PetscCall(PetscMalloc1(1, cols));
35: (*cols)[0] = row;
36: }
37: if (vals) {
38: PetscCall(PetscMalloc1(1, vals));
39: (*vals)[0] = ctx->diag;
40: }
41: PetscFunctionReturn(PETSC_SUCCESS);
42: }
44: static PetscErrorCode MatRestoreRow_ConstantDiagonal(Mat A, PetscInt row, PetscInt *ncols, PetscInt *cols[], PetscScalar *vals[])
45: {
46: PetscFunctionBegin;
47: if (cols) PetscCall(PetscFree(*cols));
48: if (vals) PetscCall(PetscFree(*vals));
49: PetscFunctionReturn(PETSC_SUCCESS);
50: }
52: static PetscErrorCode MatMultAdd_ConstantDiagonal(Mat mat, Vec v1, Vec v2, Vec v3)
53: {
54: Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)mat->data;
56: PetscFunctionBegin;
57: if (v2 == v3) {
58: PetscCall(VecAXPBY(v3, ctx->diag, 1.0, v1));
59: } else {
60: PetscCall(VecAXPBYPCZ(v3, ctx->diag, 1.0, 0.0, v1, v2));
61: }
62: PetscFunctionReturn(PETSC_SUCCESS);
63: }
65: static PetscErrorCode MatMultHermitianTransposeAdd_ConstantDiagonal(Mat mat, Vec v1, Vec v2, Vec v3)
66: {
67: Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)mat->data;
69: PetscFunctionBegin;
70: if (v2 == v3) {
71: PetscCall(VecAXPBY(v3, PetscConj(ctx->diag), 1.0, v1));
72: } else {
73: PetscCall(VecAXPBYPCZ(v3, PetscConj(ctx->diag), 1.0, 0.0, v1, v2));
74: }
75: PetscFunctionReturn(PETSC_SUCCESS);
76: }
78: static PetscErrorCode MatNorm_ConstantDiagonal(Mat A, NormType type, PetscReal *nrm)
79: {
80: Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)A->data;
82: PetscFunctionBegin;
83: PetscCheck(type == NORM_FROBENIUS || type == NORM_2 || type == NORM_1 || type == NORM_INFINITY, PetscObjectComm((PetscObject)A), PETSC_ERR_SUP, "Unsupported norm");
84: *nrm = PetscAbsScalar(ctx->diag);
85: PetscFunctionReturn(PETSC_SUCCESS);
86: }
88: static PetscErrorCode MatCreateSubMatrices_ConstantDiagonal(Mat A, PetscInt n, const IS irow[], const IS icol[], MatReuse scall, Mat *submat[])
89: {
90: Mat B;
92: PetscFunctionBegin;
93: PetscCall(MatConvert(A, MATAIJ, MAT_INITIAL_MATRIX, &B));
94: PetscCall(MatCreateSubMatrices(B, n, irow, icol, scall, submat));
95: PetscCall(MatDestroy(&B));
96: PetscFunctionReturn(PETSC_SUCCESS);
97: }
99: static PetscErrorCode MatDuplicate_ConstantDiagonal(Mat A, MatDuplicateOption op, Mat *B)
100: {
101: Mat_ConstantDiagonal *actx = (Mat_ConstantDiagonal *)A->data;
103: PetscFunctionBegin;
104: PetscCall(MatCreate(PetscObjectComm((PetscObject)A), B));
105: PetscCall(MatSetSizes(*B, A->rmap->n, A->cmap->n, A->rmap->N, A->cmap->N));
106: PetscCall(MatSetBlockSizesFromMats(*B, A, A));
107: PetscCall(MatSetType(*B, MATCONSTANTDIAGONAL));
108: PetscCall(PetscLayoutReference(A->rmap, &(*B)->rmap));
109: PetscCall(PetscLayoutReference(A->cmap, &(*B)->cmap));
110: if (op == MAT_COPY_VALUES) {
111: Mat_ConstantDiagonal *bctx = (Mat_ConstantDiagonal *)(*B)->data;
112: bctx->diag = actx->diag;
113: }
114: PetscFunctionReturn(PETSC_SUCCESS);
115: }
117: static PetscErrorCode MatDestroy_ConstantDiagonal(Mat mat)
118: {
119: PetscFunctionBegin;
120: PetscCall(PetscFree(mat->data));
121: PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConstantDiagonalGetConstant_C", NULL));
122: PetscFunctionReturn(PETSC_SUCCESS);
123: }
125: static PetscErrorCode MatView_ConstantDiagonal(Mat J, PetscViewer viewer)
126: {
127: Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)J->data;
128: PetscBool isascii;
130: PetscFunctionBegin;
131: PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &isascii));
132: if (isascii) {
133: PetscViewerFormat format;
135: PetscCall(PetscViewerGetFormat(viewer, &format));
136: if (format == PETSC_VIEWER_ASCII_FACTOR_INFO || format == PETSC_VIEWER_ASCII_INFO) PetscFunctionReturn(PETSC_SUCCESS);
137: if (PetscImaginaryPart(ctx->diag) == 0) {
138: PetscCall(PetscViewerASCIIPrintf(viewer, "Diagonal value: %g\n", (double)PetscRealPart(ctx->diag)));
139: } else {
140: PetscCall(PetscViewerASCIIPrintf(viewer, "Diagonal value: %g + i %g\n", (double)PetscRealPart(ctx->diag), (double)PetscImaginaryPart(ctx->diag)));
141: }
142: }
143: PetscFunctionReturn(PETSC_SUCCESS);
144: }
146: static PetscErrorCode MatMult_ConstantDiagonal(Mat J, Vec x, Vec y)
147: {
148: Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)J->data;
150: PetscFunctionBegin;
151: PetscCall(VecAXPBY(y, ctx->diag, 0.0, x));
152: PetscFunctionReturn(PETSC_SUCCESS);
153: }
155: static PetscErrorCode MatMultHermitianTranspose_ConstantDiagonal(Mat J, Vec x, Vec y)
156: {
157: Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)J->data;
159: PetscFunctionBegin;
160: PetscCall(VecAXPBY(y, PetscConj(ctx->diag), 0.0, x));
161: PetscFunctionReturn(PETSC_SUCCESS);
162: }
164: static PetscErrorCode MatGetDiagonal_ConstantDiagonal(Mat J, Vec x)
165: {
166: Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)J->data;
168: PetscFunctionBegin;
169: PetscCall(VecSet(x, ctx->diag));
170: PetscFunctionReturn(PETSC_SUCCESS);
171: }
173: static PetscErrorCode MatShift_ConstantDiagonal(Mat Y, PetscScalar a)
174: {
175: Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)Y->data;
177: PetscFunctionBegin;
178: ctx->diag += a;
179: PetscFunctionReturn(PETSC_SUCCESS);
180: }
182: static PetscErrorCode MatScale_ConstantDiagonal(Mat Y, PetscScalar a)
183: {
184: Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)Y->data;
186: PetscFunctionBegin;
187: ctx->diag *= a;
188: PetscFunctionReturn(PETSC_SUCCESS);
189: }
191: static PetscErrorCode MatZeroEntries_ConstantDiagonal(Mat Y)
192: {
193: Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)Y->data;
195: PetscFunctionBegin;
196: ctx->diag = 0.0;
197: PetscFunctionReturn(PETSC_SUCCESS);
198: }
200: static PetscErrorCode MatConjugate_ConstantDiagonal(Mat Y)
201: {
202: Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)Y->data;
204: PetscFunctionBegin;
205: ctx->diag = PetscConj(ctx->diag);
206: PetscFunctionReturn(PETSC_SUCCESS);
207: }
209: static PetscErrorCode MatTranspose_ConstantDiagonal(Mat A, MatReuse reuse, Mat *matout)
210: {
211: Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)A->data;
213: PetscFunctionBegin;
214: if (reuse == MAT_INPLACE_MATRIX) {
215: PetscLayout tmplayout = A->rmap;
217: A->rmap = A->cmap;
218: A->cmap = tmplayout;
219: } else {
220: if (reuse == MAT_INITIAL_MATRIX) {
221: PetscCall(MatCreateConstantDiagonal(PetscObjectComm((PetscObject)A), A->cmap->n, A->rmap->n, A->cmap->N, A->rmap->N, ctx->diag, matout));
222: } else {
223: PetscCall(MatZeroEntries(*matout));
224: PetscCall(MatShift(*matout, ctx->diag));
225: }
226: }
227: PetscFunctionReturn(PETSC_SUCCESS);
228: }
230: static PetscErrorCode MatSetRandom_ConstantDiagonal(Mat A, PetscRandom rand)
231: {
232: PetscMPIInt rank;
233: MPI_Comm comm;
234: PetscScalar v = 0.0;
235: Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)A->data;
237: PetscFunctionBegin;
238: PetscCall(PetscObjectGetComm((PetscObject)A, &comm));
239: PetscCallMPI(MPI_Comm_rank(comm, &rank));
240: if (!rank) PetscCall(PetscRandomGetValue(rand, &v));
241: PetscCallMPI(MPI_Bcast(&v, 1, MPIU_SCALAR, 0, comm));
242: ctx->diag = v;
243: PetscFunctionReturn(PETSC_SUCCESS);
244: }
246: static PetscErrorCode MatSolve_ConstantDiagonal(Mat matin, Vec b, Vec x)
247: {
248: Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)matin->data;
250: PetscFunctionBegin;
251: if (ctx->diag == 0.0) matin->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
252: else matin->factorerrortype = MAT_FACTOR_NOERROR;
253: PetscCall(VecAXPBY(x, 1.0 / ctx->diag, 0.0, b));
254: PetscFunctionReturn(PETSC_SUCCESS);
255: }
257: static PetscErrorCode MatSOR_ConstantDiagonal(Mat matin, Vec x, PetscReal omega, MatSORType flag, PetscReal fshift, PetscInt its, PetscInt lits, Vec y)
258: {
259: PetscFunctionBegin;
260: PetscCall(MatSolve_ConstantDiagonal(matin, x, y));
261: PetscFunctionReturn(PETSC_SUCCESS);
262: }
264: static PetscErrorCode MatGetInfo_ConstantDiagonal(Mat A, MatInfoType flag, MatInfo *info)
265: {
266: PetscFunctionBegin;
267: info->block_size = 1.0;
268: info->nz_allocated = 1.0;
269: info->nz_used = 1.0;
270: info->nz_unneeded = 0.0;
271: info->assemblies = A->num_ass;
272: info->mallocs = 0.0;
273: info->memory = 0; /* REVIEW ME */
274: if (A->factortype) {
275: info->fill_ratio_given = 1.0;
276: info->fill_ratio_needed = 1.0;
277: info->factor_mallocs = 0.0;
278: } else {
279: info->fill_ratio_given = 0;
280: info->fill_ratio_needed = 0;
281: info->factor_mallocs = 0;
282: }
283: PetscFunctionReturn(PETSC_SUCCESS);
284: }
286: /*@
287: MatCreateConstantDiagonal - Creates a matrix with a uniform value along the diagonal
289: Collective
291: Input Parameters:
292: + comm - MPI communicator
293: . m - number of local rows (or `PETSC_DECIDE` to have calculated if `M` is given)
294: This value should be the same as the local size used in creating the
295: y vector for the matrix-vector product y = Ax.
296: . n - This value should be the same as the local size used in creating the
297: x vector for the matrix-vector product y = Ax. (or `PETSC_DECIDE` to have
298: calculated if `N` is given) For square matrices n is almost always `m`.
299: . M - number of global rows (or `PETSC_DETERMINE` to have calculated if m is given)
300: . N - number of global columns (or `PETSC_DETERMINE` to have calculated if n is given)
301: - diag - the diagonal value
303: Output Parameter:
304: . J - the diagonal matrix
306: Level: advanced
308: Notes:
309: Only supports square matrices with the same number of local rows and columns
311: .seealso: [](ch_matrices), `Mat`, `MatDestroy()`, `MATCONSTANTDIAGONAL`, `MatScale()`, `MatShift()`, `MatMult()`, `MatGetDiagonal()`, `MatGetFactor()`, `MatSolve()`
312: @*/
313: PetscErrorCode MatCreateConstantDiagonal(MPI_Comm comm, PetscInt m, PetscInt n, PetscInt M, PetscInt N, PetscScalar diag, Mat *J)
314: {
315: PetscFunctionBegin;
316: PetscCall(MatCreate(comm, J));
317: PetscCall(MatSetSizes(*J, m, n, M, N));
318: PetscCall(MatSetType(*J, MATCONSTANTDIAGONAL));
319: PetscCall(MatShift(*J, diag));
320: PetscCall(MatSetUp(*J));
321: PetscFunctionReturn(PETSC_SUCCESS);
322: }
324: /*@
325: MatConstantDiagonalGetConstant - Get the scalar constant of a constant diagonal matrix
327: Not collective
329: Input Parameter:
330: . mat - a `MATCONSTANTDIAGONAL`
332: Output Parameter:
333: . value - the scalar value
335: Level: developer
337: .seealso: [](ch_matrices), `Mat`, `MatDestroy()`, `MATCONSTANTDIAGONAL`
338: @*/
339: PetscErrorCode MatConstantDiagonalGetConstant(Mat mat, PetscScalar *value)
340: {
341: PetscFunctionBegin;
342: PetscUseMethod(mat, "MatConstantDiagonalGetConstant_C", (Mat, PetscScalar *), (mat, value));
343: PetscFunctionReturn(PETSC_SUCCESS);
344: }
346: static PetscErrorCode MatConstantDiagonalGetConstant_ConstantDiagonal(Mat mat, PetscScalar *value)
347: {
348: Mat_ConstantDiagonal *ctx = (Mat_ConstantDiagonal *)mat->data;
350: PetscFunctionBegin;
351: *value = ctx->diag;
352: PetscFunctionReturn(PETSC_SUCCESS);
353: }
355: /*MC
356: MATCONSTANTDIAGONAL - "constant-diagonal" - A diagonal matrix type with a uniform value
357: along the diagonal.
359: Level: advanced
361: .seealso: [](ch_matrices), `Mat`, `MatCreateConstantDiagonal()`
362: M*/
363: PETSC_EXTERN PetscErrorCode MatCreate_ConstantDiagonal(Mat A)
364: {
365: Mat_ConstantDiagonal *ctx;
367: PetscFunctionBegin;
368: PetscCall(PetscNew(&ctx));
369: ctx->diag = 0.0;
370: A->data = (void *)ctx;
372: A->assembled = PETSC_TRUE;
373: A->preallocated = PETSC_TRUE;
374: A->structurally_symmetric = PETSC_BOOL3_TRUE;
375: A->structural_symmetry_eternal = PETSC_TRUE;
376: A->symmetric = PETSC_BOOL3_TRUE;
377: if (!PetscDefined(USE_COMPLEX)) A->hermitian = PETSC_BOOL3_TRUE;
378: A->symmetry_eternal = PETSC_TRUE;
380: A->ops->mult = MatMult_ConstantDiagonal;
381: A->ops->multadd = MatMultAdd_ConstantDiagonal;
382: A->ops->multtranspose = MatMult_ConstantDiagonal;
383: A->ops->multtransposeadd = MatMultAdd_ConstantDiagonal;
384: A->ops->multhermitiantranspose = MatMultHermitianTranspose_ConstantDiagonal;
385: A->ops->multhermitiantransposeadd = MatMultHermitianTransposeAdd_ConstantDiagonal;
386: A->ops->solve = MatSolve_ConstantDiagonal;
387: A->ops->solvetranspose = MatSolve_ConstantDiagonal;
388: A->ops->norm = MatNorm_ConstantDiagonal;
389: A->ops->createsubmatrices = MatCreateSubMatrices_ConstantDiagonal;
390: A->ops->duplicate = MatDuplicate_ConstantDiagonal;
391: A->ops->getrow = MatGetRow_ConstantDiagonal;
392: A->ops->restorerow = MatRestoreRow_ConstantDiagonal;
393: A->ops->sor = MatSOR_ConstantDiagonal;
394: A->ops->shift = MatShift_ConstantDiagonal;
395: A->ops->scale = MatScale_ConstantDiagonal;
396: A->ops->getdiagonal = MatGetDiagonal_ConstantDiagonal;
397: A->ops->view = MatView_ConstantDiagonal;
398: A->ops->zeroentries = MatZeroEntries_ConstantDiagonal;
399: A->ops->destroy = MatDestroy_ConstantDiagonal;
400: A->ops->getinfo = MatGetInfo_ConstantDiagonal;
401: A->ops->equal = MatEqual_ConstantDiagonal;
402: A->ops->axpy = MatAXPY_ConstantDiagonal;
403: A->ops->setrandom = MatSetRandom_ConstantDiagonal;
404: A->ops->conjugate = MatConjugate_ConstantDiagonal;
405: A->ops->transpose = MatTranspose_ConstantDiagonal;
407: PetscCall(PetscObjectChangeTypeName((PetscObject)A, MATCONSTANTDIAGONAL));
408: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatConstantDiagonalGetConstant_C", MatConstantDiagonalGetConstant_ConstantDiagonal));
409: PetscFunctionReturn(PETSC_SUCCESS);
410: }
412: static PetscErrorCode MatFactorNumeric_ConstantDiagonal(Mat fact, Mat A, const MatFactorInfo *info)
413: {
414: Mat_ConstantDiagonal *actx = (Mat_ConstantDiagonal *)A->data, *fctx = (Mat_ConstantDiagonal *)fact->data;
416: PetscFunctionBegin;
417: if (actx->diag == 0.0) fact->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
418: else fact->factorerrortype = MAT_FACTOR_NOERROR;
419: fctx->diag = 1.0 / actx->diag;
420: fact->ops->solve = MatMult_ConstantDiagonal;
421: PetscFunctionReturn(PETSC_SUCCESS);
422: }
424: static PetscErrorCode MatFactorSymbolic_LU_ConstantDiagonal(Mat fact, Mat A, IS isrow, IS iscol, const MatFactorInfo *info)
425: {
426: PetscFunctionBegin;
427: fact->ops->lufactornumeric = MatFactorNumeric_ConstantDiagonal;
428: PetscFunctionReturn(PETSC_SUCCESS);
429: }
431: static PetscErrorCode MatFactorSymbolic_Cholesky_ConstantDiagonal(Mat fact, Mat A, IS isrow, const MatFactorInfo *info)
432: {
433: PetscFunctionBegin;
434: fact->ops->choleskyfactornumeric = MatFactorNumeric_ConstantDiagonal;
435: PetscFunctionReturn(PETSC_SUCCESS);
436: }
438: PETSC_INTERN PetscErrorCode MatGetFactor_constantdiagonal_petsc(Mat A, MatFactorType ftype, Mat *B)
439: {
440: PetscInt n = A->rmap->n, N = A->rmap->N;
442: PetscFunctionBegin;
443: PetscCall(MatCreateConstantDiagonal(PetscObjectComm((PetscObject)A), n, n, N, N, 0, B));
445: (*B)->factortype = ftype;
446: (*B)->ops->ilufactorsymbolic = MatFactorSymbolic_LU_ConstantDiagonal;
447: (*B)->ops->lufactorsymbolic = MatFactorSymbolic_LU_ConstantDiagonal;
448: (*B)->ops->iccfactorsymbolic = MatFactorSymbolic_Cholesky_ConstantDiagonal;
449: (*B)->ops->choleskyfactorsymbolic = MatFactorSymbolic_Cholesky_ConstantDiagonal;
451: (*B)->ops->shift = NULL;
452: (*B)->ops->scale = NULL;
453: (*B)->ops->mult = NULL;
454: (*B)->ops->sor = NULL;
455: (*B)->ops->zeroentries = NULL;
457: PetscCall(PetscFree((*B)->solvertype));
458: PetscCall(PetscStrallocpy(MATSOLVERPETSC, &(*B)->solvertype));
459: PetscFunctionReturn(PETSC_SUCCESS);
460: }