Actual source code: mmdense.c

  1: /*
  2:    Support for the parallel dense matrix vector multiply
  3: */
  4: #include <../src/mat/impls/dense/mpi/mpidense.h>
  5: #include <petscblaslapack.h>

  7: PetscErrorCode MatSetUpMultiply_MPIDense(Mat mat)
  8: {
  9:   Mat_MPIDense *mdn = (Mat_MPIDense *)mat->data;

 11:   PetscFunctionBegin;
 12:   if (!mdn->Mvctx) {
 13:     /* Create local vector that is used to scatter into */
 14:     PetscCall(VecDestroy(&mdn->lvec));
 15:     if (mdn->A) { PetscCall(MatCreateVecs(mdn->A, &mdn->lvec, NULL)); }
 16:     PetscCall(PetscLayoutSetUp(mat->cmap));
 17:     PetscCall(PetscSFCreate(PetscObjectComm((PetscObject)mat), &mdn->Mvctx));
 18:     PetscCall(PetscSFSetGraphWithPattern(mdn->Mvctx, mat->cmap, PETSCSF_PATTERN_ALLGATHER));
 19:   }
 20:   PetscFunctionReturn(PETSC_SUCCESS);
 21: }

 23: static PetscErrorCode MatCreateSubMatrices_MPIDense_Local(Mat, PetscInt, const IS[], const IS[], MatReuse, Mat *);

 25: PetscErrorCode MatCreateSubMatrices_MPIDense(Mat C, PetscInt ismax, const IS isrow[], const IS iscol[], MatReuse scall, Mat *submat[])
 26: {
 27:   PetscInt nmax, nstages_local, nstages, i, pos, max_no;

 29:   PetscFunctionBegin;
 30:   /* Allocate memory to hold all the submatrices */
 31:   if (scall != MAT_REUSE_MATRIX) PetscCall(PetscCalloc1(ismax + 1, submat));
 32:   /* Determine the number of stages through which submatrices are done */
 33:   nmax = 20 * 1000000 / (C->cmap->N * sizeof(PetscInt));
 34:   if (!nmax) nmax = 1;
 35:   nstages_local = ismax / nmax + ((ismax % nmax) ? 1 : 0);

 37:   /* Make sure every processor loops through the nstages */
 38:   PetscCallMPI(MPIU_Allreduce(&nstages_local, &nstages, 1, MPIU_INT, MPI_MAX, PetscObjectComm((PetscObject)C)));

 40:   for (i = 0, pos = 0; i < nstages; i++) {
 41:     if (pos + nmax <= ismax) max_no = nmax;
 42:     else if (pos == ismax) max_no = 0;
 43:     else max_no = ismax - pos;
 44:     PetscCall(MatCreateSubMatrices_MPIDense_Local(C, max_no, isrow + pos, iscol + pos, scall, *submat + pos));
 45:     pos += max_no;
 46:   }
 47:   PetscFunctionReturn(PETSC_SUCCESS);
 48: }

 50: static PetscErrorCode MatCreateSubMatrices_MPIDense_Local(Mat C, PetscInt ismax, const IS isrow[], const IS iscol[], MatReuse scall, Mat *submats)
 51: {
 52:   Mat_MPIDense    *c = (Mat_MPIDense *)C->data;
 53:   Mat              A = c->A;
 54:   Mat_SeqDense    *a = (Mat_SeqDense *)A->data, *mat;
 55:   PetscMPIInt      rank, size, tag0, tag1, idex, end, i, proc, nrqs, *rtable, *pa, nrqr;
 56:   PetscInt         N = C->cmap->N, rstart = C->rmap->rstart, count;
 57:   const PetscInt **irow, **icol, *irow_i;
 58:   PetscInt        *nrow, *ncol, *w1, *w3, *w4, start, inrqr;
 59:   PetscInt       **sbuf1, m, ct1, **rbuf1, row;
 60:   PetscInt         msz, **ptr, *ctr, *tmp, bsz;
 61:   PetscInt         is_no, jmax, **rmap, *rmap_i;
 62:   PetscInt         ctr_j, *sbuf1_j, *rbuf1_i;
 63:   MPI_Request     *s_waits1, *r_waits1, *s_waits2, *r_waits2;
 64:   MPI_Status      *r_status1, *r_status2, *s_status1, *s_status2;
 65:   MPI_Comm         comm;
 66:   PetscScalar    **rbuf2, **sbuf2;
 67:   PetscBool        sorted;

 69:   PetscFunctionBegin;
 70:   PetscCall(PetscObjectGetComm((PetscObject)C, &comm));
 71:   tag0 = ((PetscObject)C)->tag;
 72:   PetscCallMPI(MPI_Comm_rank(comm, &rank));
 73:   PetscCallMPI(MPI_Comm_size(comm, &size));
 74:   m = C->rmap->N;

 76:   /* Get some new tags to keep the communication clean */
 77:   PetscCall(PetscObjectGetNewTag((PetscObject)C, &tag1));

 79:   /* Check if the col indices are sorted */
 80:   for (PetscInt i = 0; i < ismax; i++) {
 81:     PetscCall(ISSorted(isrow[i], &sorted));
 82:     PetscCheck(sorted, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "ISrow is not sorted");
 83:     PetscCall(ISSorted(iscol[i], &sorted));
 84:     PetscCheck(sorted, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "IScol is not sorted");
 85:   }

 87:   PetscCall(PetscMalloc5(ismax, (PetscInt ***)&irow, ismax, (PetscInt ***)&icol, ismax, &nrow, ismax, &ncol, m, &rtable));
 88:   for (PetscInt i = 0; i < ismax; i++) {
 89:     PetscCall(ISGetIndices(isrow[i], &irow[i]));
 90:     PetscCall(ISGetIndices(iscol[i], &icol[i]));
 91:     PetscCall(ISGetLocalSize(isrow[i], &nrow[i]));
 92:     PetscCall(ISGetLocalSize(iscol[i], &ncol[i]));
 93:   }

 95:   /* Create hash table for the mapping :row -> proc*/
 96:   for (PetscMPIInt i = 0, j = 0; i < size; i++) {
 97:     jmax = C->rmap->range[i + 1];
 98:     for (; j < jmax; j++) rtable[j] = i;
 99:   }

101:   /* evaluate communication - mesg to who,length of mesg, and buffer space
102:      required. Based on this, buffers are allocated, and data copied into them*/
103:   PetscCall(PetscMalloc3(2 * size, &w1, size, &w3, size, &w4));
104:   PetscCall(PetscArrayzero(w1, size * 2)); /* initialize work vector*/
105:   PetscCall(PetscArrayzero(w3, size));     /* initialize work vector*/
106:   for (PetscInt i = 0; i < ismax; i++) {
107:     PetscCall(PetscArrayzero(w4, size)); /* initialize work vector*/
108:     jmax   = nrow[i];
109:     irow_i = irow[i];
110:     for (PetscInt j = 0; j < jmax; j++) {
111:       row  = irow_i[j];
112:       proc = rtable[row];
113:       w4[proc]++;
114:     }
115:     for (PetscMPIInt j = 0; j < size; j++) {
116:       if (w4[j]) {
117:         w1[2 * j] += w4[j];
118:         w3[j]++;
119:       }
120:     }
121:   }

123:   nrqs         = 0; /* no of outgoing messages */
124:   msz          = 0; /* total mesg length (for all procs) */
125:   w1[2 * rank] = 0; /* no mesg sent to self */
126:   w3[rank]     = 0;
127:   for (PetscMPIInt i = 0; i < size; i++) {
128:     if (w1[2 * i]) {
129:       w1[2 * i + 1] = 1;
130:       nrqs++;
131:     } /* there exists a message to proc i */
132:   }
133:   PetscCall(PetscMalloc1(nrqs + 1, &pa)); /*(proc -array)*/
134:   for (PetscMPIInt i = 0, j = 0; i < size; i++) {
135:     if (w1[2 * i]) {
136:       pa[j] = i;
137:       j++;
138:     }
139:   }

141:   /* Each message would have a header = 1 + 2*(no of IS) + data */
142:   for (PetscMPIInt i = 0; i < nrqs; i++) {
143:     PetscMPIInt j = pa[i];
144:     w1[2 * j] += w1[2 * j + 1] + 2 * w3[j];
145:     msz += w1[2 * j];
146:   }
147:   /* Do a global reduction to determine how many messages to expect*/
148:   PetscCall(PetscMaxSum(comm, w1, &bsz, &inrqr));
149:   PetscCall(PetscMPIIntCast(inrqr, &nrqr));

151:   /* Allocate memory for recv buffers . Make sure rbuf1[0] exists by adding 1 to the buffer length */
152:   PetscCall(PetscMalloc1(nrqr + 1, &rbuf1));
153:   PetscCall(PetscMalloc1(nrqr * bsz, &rbuf1[0]));
154:   for (PetscInt i = 1; i < nrqr; ++i) rbuf1[i] = rbuf1[i - 1] + bsz;

156:   /* Post the receives */
157:   PetscCall(PetscMalloc1(nrqr + 1, &r_waits1));
158:   for (PetscInt i = 0; i < nrqr; ++i) PetscCallMPI(MPIU_Irecv(rbuf1[i], bsz, MPIU_INT, MPI_ANY_SOURCE, tag0, comm, r_waits1 + i));

160:   /* Allocate Memory for outgoing messages */
161:   PetscCall(PetscMalloc4(size, &sbuf1, size, &ptr, 2 * msz, &tmp, size, &ctr));
162:   PetscCall(PetscArrayzero(sbuf1, size));
163:   PetscCall(PetscArrayzero(ptr, size));
164:   {
165:     PetscInt *iptr = tmp, ict = 0;
166:     for (PetscMPIInt i = 0; i < nrqs; i++) {
167:       PetscMPIInt j = pa[i];
168:       iptr += ict;
169:       sbuf1[j] = iptr;
170:       ict      = w1[2 * j];
171:     }
172:   }

174:   /* Form the outgoing messages */
175:   /* Initialize the header space */
176:   for (PetscMPIInt i = 0; i < nrqs; i++) {
177:     PetscInt j  = pa[i];
178:     sbuf1[j][0] = 0;
179:     PetscCall(PetscArrayzero(sbuf1[j] + 1, 2 * w3[j]));
180:     ptr[j] = sbuf1[j] + 2 * w3[j] + 1;
181:   }

183:   /* Parse the isrow and copy data into outbuf */
184:   for (PetscInt i = 0; i < ismax; i++) {
185:     PetscCall(PetscArrayzero(ctr, size));
186:     irow_i = irow[i];
187:     jmax   = nrow[i];
188:     for (PetscInt j = 0; j < jmax; j++) { /* parse the indices of each IS */
189:       row  = irow_i[j];
190:       proc = rtable[row];
191:       if (proc != rank) { /* copy to the outgoing buf*/
192:         ctr[proc]++;
193:         *ptr[proc] = row;
194:         ptr[proc]++;
195:       }
196:     }
197:     /* Update the headers for the current IS */
198:     for (PetscMPIInt j = 0; j < size; j++) { /* Can Optimise this loop too */
199:       if ((ctr_j = ctr[j])) {
200:         PetscInt k;
201:         sbuf1_j            = sbuf1[j];
202:         k                  = ++sbuf1_j[0];
203:         sbuf1_j[2 * k]     = ctr_j;
204:         sbuf1_j[2 * k - 1] = i;
205:       }
206:     }
207:   }

209:   /*  Now  post the sends */
210:   PetscCall(PetscMalloc1(nrqs + 1, &s_waits1));
211:   for (PetscMPIInt i = 0; i < nrqs; ++i) {
212:     PetscMPIInt j = pa[i];
213:     PetscCallMPI(MPIU_Isend(sbuf1[j], w1[2 * j], MPIU_INT, j, tag0, comm, s_waits1 + i));
214:   }

216:   /* Post receives to capture the row_data from other procs */
217:   PetscCall(PetscMalloc1(nrqs + 1, &r_waits2));
218:   PetscCall(PetscMalloc1(nrqs + 1, &rbuf2));
219:   for (PetscMPIInt i = 0; i < nrqs; i++) {
220:     PetscMPIInt j = pa[i];
221:     count         = (w1[2 * j] - (2 * sbuf1[j][0] + 1)) * N;
222:     PetscCall(PetscMalloc1(count + 1, &rbuf2[i]));
223:     PetscCallMPI(MPIU_Irecv(rbuf2[i], count, MPIU_SCALAR, j, tag1, comm, r_waits2 + i));
224:   }

226:   /* Receive messages(row_nos) and then, pack and send off the rowvalues
227:      to the correct processors */

229:   PetscCall(PetscMalloc1(nrqr + 1, &s_waits2));
230:   PetscCall(PetscMalloc1(nrqr + 1, &r_status1));
231:   PetscCall(PetscMalloc1(nrqr + 1, &sbuf2));

233:   {
234:     PetscScalar       *sbuf2_i;
235:     const PetscScalar *v_start, *v;
236:     PetscMPIInt        s_proc;

238:     PetscCall(MatDenseGetArrayRead(A, &v));
239:     for (PetscMPIInt i = 0; i < nrqr; ++i) {
240:       PetscCallMPI(MPI_Waitany(nrqr, r_waits1, &idex, r_status1 + i));
241:       s_proc  = r_status1[i].MPI_SOURCE; /* send processor */
242:       rbuf1_i = rbuf1[idex];             /* Actual message from s_proc */
243:       /* no of rows = end - start; since start is array idex[], 0idex, whel end
244:          is length of the buffer - which is 1idex */
245:       start = 2 * rbuf1_i[0] + 1;
246:       PetscCallMPI(MPI_Get_count(r_status1 + i, MPIU_INT, &end));
247:       /* allocate memory sufficinet to hold all the row values */
248:       PetscCall(PetscMalloc1((end - start) * N, &sbuf2[idex]));
249:       sbuf2_i = sbuf2[idex];
250:       /* Now pack the data */
251:       for (PetscInt j = start; j < end; j++) {
252:         row     = rbuf1_i[j] - rstart;
253:         v_start = v + row;
254:         for (PetscInt k = 0; k < N; k++) {
255:           sbuf2_i[0] = v_start[0];
256:           sbuf2_i++;
257:           v_start += a->lda;
258:         }
259:       }
260:       /* Now send off the data */
261:       PetscCallMPI(MPIU_Isend(sbuf2[idex], (end - start) * N, MPIU_SCALAR, s_proc, tag1, comm, s_waits2 + i));
262:     }
263:     PetscCall(MatDenseRestoreArrayRead(A, &v));
264:   }
265:   /* End Send-Recv of IS + row_numbers */
266:   PetscCall(PetscFree(r_status1));
267:   PetscCall(PetscFree(r_waits1));
268:   PetscCall(PetscMalloc1(nrqs + 1, &s_status1));
269:   if (nrqs) PetscCallMPI(MPI_Waitall(nrqs, s_waits1, s_status1));
270:   PetscCall(PetscFree(s_status1));
271:   PetscCall(PetscFree(s_waits1));

273:   /* Create the submatrices */
274:   if (scall == MAT_REUSE_MATRIX) {
275:     for (PetscInt i = 0; i < ismax; i++) {
276:       mat = (Mat_SeqDense *)submats[i]->data;
277:       PetscCheck(!(submats[i]->rmap->n != nrow[i]) && !(submats[i]->cmap->n != ncol[i]), PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Cannot reuse matrix. wrong size");
278:       PetscCall(PetscArrayzero(mat->v, submats[i]->rmap->n * submats[i]->cmap->n));

280:       submats[i]->factortype = C->factortype;
281:     }
282:   } else {
283:     for (PetscInt i = 0; i < ismax; i++) {
284:       PetscCall(MatCreate(PETSC_COMM_SELF, submats + i));
285:       PetscCall(MatSetSizes(submats[i], nrow[i], ncol[i], nrow[i], ncol[i]));
286:       PetscCall(MatSetType(submats[i], ((PetscObject)A)->type_name));
287:       PetscCall(MatSeqDenseSetPreallocation(submats[i], NULL));
288:     }
289:   }

291:   /* Assemble the matrices */
292:   {
293:     PetscInt     col;
294:     PetscScalar *imat_v, *mat_v, *imat_vi, *mat_vi;

296:     for (PetscInt i = 0; i < ismax; i++) {
297:       mat    = (Mat_SeqDense *)submats[i]->data;
298:       mat_v  = a->v;
299:       imat_v = mat->v;
300:       irow_i = irow[i];
301:       m      = nrow[i];
302:       for (PetscInt j = 0; j < m; j++) {
303:         row  = irow_i[j];
304:         proc = rtable[row];
305:         if (proc == rank) {
306:           row     = row - rstart;
307:           mat_vi  = mat_v + row;
308:           imat_vi = imat_v + j;
309:           for (PetscInt k = 0; k < ncol[i]; k++) {
310:             col            = icol[i][k];
311:             imat_vi[k * m] = mat_vi[col * a->lda];
312:           }
313:         }
314:       }
315:     }
316:   }

318:   /* Create row map-> This maps c->row to submat->row for each submat*/
319:   /* this is a very expensive operation wrt memory usage */
320:   PetscCall(PetscMalloc1(ismax, &rmap));
321:   PetscCall(PetscCalloc1(ismax * C->rmap->N, &rmap[0]));
322:   for (PetscInt i = 1; i < ismax; i++) rmap[i] = rmap[i - 1] + C->rmap->N;
323:   for (PetscInt i = 0; i < ismax; i++) {
324:     rmap_i = rmap[i];
325:     irow_i = irow[i];
326:     jmax   = nrow[i];
327:     for (PetscInt j = 0; j < jmax; j++) rmap_i[irow_i[j]] = j;
328:   }

330:   /* Now Receive the row_values and assemble the rest of the matrix */
331:   PetscCall(PetscMalloc1(nrqs + 1, &r_status2));
332:   {
333:     PetscInt     is_max, tmp1, col, *sbuf1_i, is_sz;
334:     PetscScalar *rbuf2_i, *imat_v, *imat_vi;

336:     for (tmp1 = 0; tmp1 < nrqs; tmp1++) { /* For each message */
337:       PetscCallMPI(MPI_Waitany(nrqs, r_waits2, &i, r_status2 + tmp1));
338:       /* Now dig out the corresponding sbuf1, which contains the IS data_structure */
339:       sbuf1_i = sbuf1[pa[i]];
340:       is_max  = sbuf1_i[0];
341:       ct1     = 2 * is_max + 1;
342:       rbuf2_i = rbuf2[i];
343:       for (PetscInt j = 1; j <= is_max; j++) { /* For each IS belonging to the message */
344:         is_no  = sbuf1_i[2 * j - 1];
345:         is_sz  = sbuf1_i[2 * j];
346:         mat    = (Mat_SeqDense *)submats[is_no]->data;
347:         imat_v = mat->v;
348:         rmap_i = rmap[is_no];
349:         m      = nrow[is_no];
350:         for (PetscInt k = 0; k < is_sz; k++, rbuf2_i += N) { /* For each row */
351:           row = sbuf1_i[ct1];
352:           ct1++;
353:           row     = rmap_i[row];
354:           imat_vi = imat_v + row;
355:           for (PetscInt l = 0; l < ncol[is_no]; l++) { /* For each col */
356:             col            = icol[is_no][l];
357:             imat_vi[l * m] = rbuf2_i[col];
358:           }
359:         }
360:       }
361:     }
362:   }
363:   /* End Send-Recv of row_values */
364:   PetscCall(PetscFree(r_status2));
365:   PetscCall(PetscFree(r_waits2));
366:   PetscCall(PetscMalloc1(nrqr + 1, &s_status2));
367:   if (nrqr) PetscCallMPI(MPI_Waitall(nrqr, s_waits2, s_status2));
368:   PetscCall(PetscFree(s_status2));
369:   PetscCall(PetscFree(s_waits2));

371:   /* Restore the indices */
372:   for (PetscMPIInt i = 0; i < ismax; i++) {
373:     PetscCall(ISRestoreIndices(isrow[i], irow + i));
374:     PetscCall(ISRestoreIndices(iscol[i], icol + i));
375:   }

377:   PetscCall(PetscFree5(*(PetscInt ***)&irow, *(PetscInt ***)&icol, nrow, ncol, rtable));
378:   PetscCall(PetscFree3(w1, w3, w4));
379:   PetscCall(PetscFree(pa));

381:   for (PetscMPIInt i = 0; i < nrqs; ++i) PetscCall(PetscFree(rbuf2[i]));
382:   PetscCall(PetscFree(rbuf2));
383:   PetscCall(PetscFree4(sbuf1, ptr, tmp, ctr));
384:   PetscCall(PetscFree(rbuf1[0]));
385:   PetscCall(PetscFree(rbuf1));

387:   for (PetscMPIInt i = 0; i < nrqr; ++i) PetscCall(PetscFree(sbuf2[i]));

389:   PetscCall(PetscFree(sbuf2));
390:   PetscCall(PetscFree(rmap[0]));
391:   PetscCall(PetscFree(rmap));

393:   for (PetscInt i = 0; i < ismax; i++) {
394:     PetscCall(MatAssemblyBegin(submats[i], MAT_FINAL_ASSEMBLY));
395:     PetscCall(MatAssemblyEnd(submats[i], MAT_FINAL_ASSEMBLY));
396:   }
397:   PetscFunctionReturn(PETSC_SUCCESS);
398: }

400: PETSC_INTERN PetscErrorCode MatScale_MPIDense(Mat inA, PetscScalar alpha)
401: {
402:   Mat_MPIDense *A = (Mat_MPIDense *)inA->data;

404:   PetscFunctionBegin;
405:   PetscCall(MatScale(A->A, alpha));
406:   PetscFunctionReturn(PETSC_SUCCESS);
407: }