Actual source code: mpisbaij.c

  1: #include <../src/mat/impls/baij/mpi/mpibaij.h>
  2: #include <../src/mat/impls/sbaij/mpi/mpisbaij.h>
  3: #include <../src/mat/impls/sbaij/seq/sbaij.h>
  4: #include <petscblaslapack.h>

  6: static PetscErrorCode MatDestroy_MPISBAIJ(Mat mat)
  7: {
  8:   Mat_MPISBAIJ *baij = (Mat_MPISBAIJ *)mat->data;

 10:   PetscFunctionBegin;
 11:   PetscCall(PetscLogObjectState((PetscObject)mat, "Rows=%" PetscInt_FMT ",Cols=%" PetscInt_FMT, mat->rmap->N, mat->cmap->N));
 12:   PetscCall(MatStashDestroy_Private(&mat->stash));
 13:   PetscCall(MatStashDestroy_Private(&mat->bstash));
 14:   PetscCall(MatDestroy(&baij->A));
 15:   PetscCall(MatDestroy(&baij->B));
 16: #if defined(PETSC_USE_CTABLE)
 17:   PetscCall(PetscHMapIDestroy(&baij->colmap));
 18: #else
 19:   PetscCall(PetscFree(baij->colmap));
 20: #endif
 21:   PetscCall(PetscFree(baij->garray));
 22:   PetscCall(VecDestroy(&baij->lvec));
 23:   PetscCall(VecScatterDestroy(&baij->Mvctx));
 24:   PetscCall(VecDestroy(&baij->slvec0));
 25:   PetscCall(VecDestroy(&baij->slvec0b));
 26:   PetscCall(VecDestroy(&baij->slvec1));
 27:   PetscCall(VecDestroy(&baij->slvec1a));
 28:   PetscCall(VecDestroy(&baij->slvec1b));
 29:   PetscCall(VecScatterDestroy(&baij->sMvctx));
 30:   PetscCall(PetscFree2(baij->rowvalues, baij->rowindices));
 31:   PetscCall(PetscFree(baij->barray));
 32:   PetscCall(PetscFree(baij->hd));
 33:   PetscCall(VecDestroy(&baij->diag));
 34:   PetscCall(VecDestroy(&baij->bb1));
 35:   PetscCall(VecDestroy(&baij->xx1));
 36: #if defined(PETSC_USE_REAL_MAT_SINGLE)
 37:   PetscCall(PetscFree(baij->setvaluescopy));
 38: #endif
 39:   PetscCall(PetscFree(baij->in_loc));
 40:   PetscCall(PetscFree(baij->v_loc));
 41:   PetscCall(PetscFree(baij->rangebs));
 42:   PetscCall(PetscFree(mat->data));

 44:   PetscCall(PetscObjectChangeTypeName((PetscObject)mat, NULL));
 45:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatStoreValues_C", NULL));
 46:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatRetrieveValues_C", NULL));
 47:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatMPISBAIJSetPreallocation_C", NULL));
 48:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatMPISBAIJSetPreallocationCSR_C", NULL));
 49: #if defined(PETSC_HAVE_ELEMENTAL)
 50:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConvert_mpisbaij_elemental_C", NULL));
 51: #endif
 52: #if defined(PETSC_HAVE_SCALAPACK) && (defined(PETSC_USE_REAL_SINGLE) || defined(PETSC_USE_REAL_DOUBLE))
 53:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConvert_mpisbaij_scalapack_C", NULL));
 54: #endif
 55:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConvert_mpisbaij_mpiaij_C", NULL));
 56:   PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConvert_mpisbaij_mpibaij_C", NULL));
 57:   PetscFunctionReturn(PETSC_SUCCESS);
 58: }

 60: /* defines MatSetValues_MPI_Hash(), MatAssemblyBegin_MPI_Hash(), MatAssemblyEnd_MPI_Hash(), MatSetUp_MPI_Hash() */
 61: #define TYPE SBAIJ
 62: #define TYPE_SBAIJ
 63: #include "../src/mat/impls/aij/mpi/mpihashmat.h"
 64: #undef TYPE
 65: #undef TYPE_SBAIJ

 67: #if defined(PETSC_HAVE_ELEMENTAL)
 68: PETSC_INTERN PetscErrorCode MatConvert_MPISBAIJ_Elemental(Mat, MatType, MatReuse, Mat *);
 69: #endif
 70: #if defined(PETSC_HAVE_SCALAPACK) && (defined(PETSC_USE_REAL_SINGLE) || defined(PETSC_USE_REAL_DOUBLE))
 71: PETSC_INTERN PetscErrorCode MatConvert_SBAIJ_ScaLAPACK(Mat, MatType, MatReuse, Mat *);
 72: #endif

 74: /* This could be moved to matimpl.h */
 75: static PetscErrorCode MatPreallocateWithMats_Private(Mat B, PetscInt nm, Mat X[], PetscBool symm[], PetscBool fill)
 76: {
 77:   Mat       preallocator;
 78:   PetscInt  r, rstart, rend;
 79:   PetscInt  bs, i, m, n, M, N;
 80:   PetscBool cong = PETSC_TRUE;

 82:   PetscFunctionBegin;
 85:   for (i = 0; i < nm; i++) {
 87:     PetscCall(PetscLayoutCompare(B->rmap, X[i]->rmap, &cong));
 88:     PetscCheck(cong, PetscObjectComm((PetscObject)B), PETSC_ERR_SUP, "Not for different layouts");
 89:   }
 91:   PetscCall(MatGetBlockSize(B, &bs));
 92:   PetscCall(MatGetSize(B, &M, &N));
 93:   PetscCall(MatGetLocalSize(B, &m, &n));
 94:   PetscCall(MatCreate(PetscObjectComm((PetscObject)B), &preallocator));
 95:   PetscCall(MatSetType(preallocator, MATPREALLOCATOR));
 96:   PetscCall(MatSetBlockSize(preallocator, bs));
 97:   PetscCall(MatSetSizes(preallocator, m, n, M, N));
 98:   PetscCall(MatSetUp(preallocator));
 99:   PetscCall(MatGetOwnershipRange(preallocator, &rstart, &rend));
100:   for (r = rstart; r < rend; ++r) {
101:     PetscInt           ncols;
102:     const PetscInt    *row;
103:     const PetscScalar *vals;

105:     for (i = 0; i < nm; i++) {
106:       PetscCall(MatGetRow(X[i], r, &ncols, &row, &vals));
107:       PetscCall(MatSetValues(preallocator, 1, &r, ncols, row, vals, INSERT_VALUES));
108:       if (symm && symm[i]) PetscCall(MatSetValues(preallocator, ncols, row, 1, &r, vals, INSERT_VALUES));
109:       PetscCall(MatRestoreRow(X[i], r, &ncols, &row, &vals));
110:     }
111:   }
112:   PetscCall(MatAssemblyBegin(preallocator, MAT_FINAL_ASSEMBLY));
113:   PetscCall(MatAssemblyEnd(preallocator, MAT_FINAL_ASSEMBLY));
114:   PetscCall(MatPreallocatorPreallocate(preallocator, fill, B));
115:   PetscCall(MatDestroy(&preallocator));
116:   PetscFunctionReturn(PETSC_SUCCESS);
117: }

119: PETSC_INTERN PetscErrorCode MatConvert_MPISBAIJ_Basic(Mat A, MatType newtype, MatReuse reuse, Mat *newmat)
120: {
121:   Mat      B;
122:   PetscInt r;

124:   PetscFunctionBegin;
125:   if (reuse != MAT_REUSE_MATRIX) {
126:     PetscBool symm = PETSC_TRUE, isdense;
127:     PetscInt  bs;

129:     PetscCall(MatCreate(PetscObjectComm((PetscObject)A), &B));
130:     PetscCall(MatSetSizes(B, A->rmap->n, A->cmap->n, A->rmap->N, A->cmap->N));
131:     PetscCall(MatSetType(B, newtype));
132:     PetscCall(MatGetBlockSize(A, &bs));
133:     PetscCall(MatSetBlockSize(B, bs));
134:     PetscCall(PetscLayoutSetUp(B->rmap));
135:     PetscCall(PetscLayoutSetUp(B->cmap));
136:     PetscCall(PetscObjectTypeCompareAny((PetscObject)B, &isdense, MATSEQDENSE, MATMPIDENSE, MATSEQDENSECUDA, ""));
137:     if (!isdense) {
138:       PetscCall(MatGetRowUpperTriangular(A));
139:       PetscCall(MatPreallocateWithMats_Private(B, 1, &A, &symm, PETSC_TRUE));
140:       PetscCall(MatRestoreRowUpperTriangular(A));
141:     } else {
142:       PetscCall(MatSetUp(B));
143:     }
144:   } else {
145:     B = *newmat;
146:     PetscCall(MatZeroEntries(B));
147:   }

149:   PetscCall(MatGetRowUpperTriangular(A));
150:   for (r = A->rmap->rstart; r < A->rmap->rend; r++) {
151:     PetscInt           ncols;
152:     const PetscInt    *row;
153:     const PetscScalar *vals;

155:     PetscCall(MatGetRow(A, r, &ncols, &row, &vals));
156:     PetscCall(MatSetValues(B, 1, &r, ncols, row, vals, INSERT_VALUES));
157: #if defined(PETSC_USE_COMPLEX)
158:     if (A->hermitian == PETSC_BOOL3_TRUE) {
159:       PetscInt i;
160:       for (i = 0; i < ncols; i++) PetscCall(MatSetValue(B, row[i], r, PetscConj(vals[i]), INSERT_VALUES));
161:     } else {
162:       PetscCall(MatSetValues(B, ncols, row, 1, &r, vals, INSERT_VALUES));
163:     }
164: #else
165:     PetscCall(MatSetValues(B, ncols, row, 1, &r, vals, INSERT_VALUES));
166: #endif
167:     PetscCall(MatRestoreRow(A, r, &ncols, &row, &vals));
168:   }
169:   PetscCall(MatRestoreRowUpperTriangular(A));
170:   PetscCall(MatAssemblyBegin(B, MAT_FINAL_ASSEMBLY));
171:   PetscCall(MatAssemblyEnd(B, MAT_FINAL_ASSEMBLY));

173:   if (reuse == MAT_INPLACE_MATRIX) {
174:     PetscCall(MatHeaderReplace(A, &B));
175:   } else {
176:     *newmat = B;
177:   }
178:   PetscFunctionReturn(PETSC_SUCCESS);
179: }

181: static PetscErrorCode MatStoreValues_MPISBAIJ(Mat mat)
182: {
183:   Mat_MPISBAIJ *aij = (Mat_MPISBAIJ *)mat->data;

185:   PetscFunctionBegin;
186:   PetscCall(MatStoreValues(aij->A));
187:   PetscCall(MatStoreValues(aij->B));
188:   PetscFunctionReturn(PETSC_SUCCESS);
189: }

191: static PetscErrorCode MatRetrieveValues_MPISBAIJ(Mat mat)
192: {
193:   Mat_MPISBAIJ *aij = (Mat_MPISBAIJ *)mat->data;

195:   PetscFunctionBegin;
196:   PetscCall(MatRetrieveValues(aij->A));
197:   PetscCall(MatRetrieveValues(aij->B));
198:   PetscFunctionReturn(PETSC_SUCCESS);
199: }

201: #define MatSetValues_SeqSBAIJ_A_Private(row, col, value, addv, orow, ocol) \
202:   do { \
203:     brow = row / bs; \
204:     rp   = aj + ai[brow]; \
205:     ap   = aa + bs2 * ai[brow]; \
206:     rmax = aimax[brow]; \
207:     nrow = ailen[brow]; \
208:     bcol = col / bs; \
209:     ridx = row % bs; \
210:     cidx = col % bs; \
211:     low  = 0; \
212:     high = nrow; \
213:     while (high - low > 3) { \
214:       t = (low + high) / 2; \
215:       if (rp[t] > bcol) high = t; \
216:       else low = t; \
217:     } \
218:     for (_i = low; _i < high; _i++) { \
219:       if (rp[_i] > bcol) break; \
220:       if (rp[_i] == bcol) { \
221:         bap = ap + bs2 * _i + bs * cidx + ridx; \
222:         if (addv == ADD_VALUES) *bap += value; \
223:         else *bap = value; \
224:         goto a_noinsert; \
225:       } \
226:     } \
227:     if (a->nonew == 1) goto a_noinsert; \
228:     PetscCheck(a->nonew != -1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Inserting a new nonzero at global row/column (%" PetscInt_FMT ", %" PetscInt_FMT ") into matrix", orow, ocol); \
229:     MatSeqXAIJReallocateAIJ(A, a->mbs, bs2, nrow, brow, bcol, rmax, aa, ai, aj, rp, ap, aimax, a->nonew, MatScalar); \
230:     N = nrow++ - 1; \
231:     /* shift up all the later entries in this row */ \
232:     PetscCall(PetscArraymove(rp + _i + 1, rp + _i, N - _i + 1)); \
233:     PetscCall(PetscArraymove(ap + bs2 * (_i + 1), ap + bs2 * _i, bs2 * (N - _i + 1))); \
234:     PetscCall(PetscArrayzero(ap + bs2 * _i, bs2)); \
235:     rp[_i]                          = bcol; \
236:     ap[bs2 * _i + bs * cidx + ridx] = value; \
237:   a_noinsert:; \
238:     ailen[brow] = nrow; \
239:   } while (0)

241: #define MatSetValues_SeqSBAIJ_B_Private(row, col, value, addv, orow, ocol) \
242:   do { \
243:     brow = row / bs; \
244:     rp   = bj + bi[brow]; \
245:     ap   = ba + bs2 * bi[brow]; \
246:     rmax = bimax[brow]; \
247:     nrow = bilen[brow]; \
248:     bcol = col / bs; \
249:     ridx = row % bs; \
250:     cidx = col % bs; \
251:     low  = 0; \
252:     high = nrow; \
253:     while (high - low > 3) { \
254:       t = (low + high) / 2; \
255:       if (rp[t] > bcol) high = t; \
256:       else low = t; \
257:     } \
258:     for (_i = low; _i < high; _i++) { \
259:       if (rp[_i] > bcol) break; \
260:       if (rp[_i] == bcol) { \
261:         bap = ap + bs2 * _i + bs * cidx + ridx; \
262:         if (addv == ADD_VALUES) *bap += value; \
263:         else *bap = value; \
264:         goto b_noinsert; \
265:       } \
266:     } \
267:     if (b->nonew == 1) goto b_noinsert; \
268:     PetscCheck(b->nonew != -1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Inserting a new nonzero at global row/column (%" PetscInt_FMT ", %" PetscInt_FMT ") into matrix", orow, ocol); \
269:     MatSeqXAIJReallocateAIJ(B, b->mbs, bs2, nrow, brow, bcol, rmax, ba, bi, bj, rp, ap, bimax, b->nonew, MatScalar); \
270:     N = nrow++ - 1; \
271:     /* shift up all the later entries in this row */ \
272:     PetscCall(PetscArraymove(rp + _i + 1, rp + _i, N - _i + 1)); \
273:     PetscCall(PetscArraymove(ap + bs2 * (_i + 1), ap + bs2 * _i, bs2 * (N - _i + 1))); \
274:     PetscCall(PetscArrayzero(ap + bs2 * _i, bs2)); \
275:     rp[_i]                          = bcol; \
276:     ap[bs2 * _i + bs * cidx + ridx] = value; \
277:   b_noinsert:; \
278:     bilen[brow] = nrow; \
279:   } while (0)

281: /* Only add/insert a(i,j) with i<=j (blocks).
282:    Any a(i,j) with i>j input by user is ignored or generates an error
283: */
284: static PetscErrorCode MatSetValues_MPISBAIJ(Mat mat, PetscInt m, const PetscInt im[], PetscInt n, const PetscInt in[], const PetscScalar v[], InsertMode addv)
285: {
286:   Mat_MPISBAIJ *baij = (Mat_MPISBAIJ *)mat->data;
287:   MatScalar     value;
288:   PetscBool     roworiented = baij->roworiented;
289:   PetscInt      i, j, row, col;
290:   PetscInt      rstart_orig = mat->rmap->rstart;
291:   PetscInt      rend_orig = mat->rmap->rend, cstart_orig = mat->cmap->rstart;
292:   PetscInt      cend_orig = mat->cmap->rend, bs = mat->rmap->bs;

294:   /* Some Variables required in the macro */
295:   Mat           A     = baij->A;
296:   Mat_SeqSBAIJ *a     = (Mat_SeqSBAIJ *)A->data;
297:   PetscInt     *aimax = a->imax, *ai = a->i, *ailen = a->ilen, *aj = a->j;
298:   MatScalar    *aa = a->a;

300:   Mat          B     = baij->B;
301:   Mat_SeqBAIJ *b     = (Mat_SeqBAIJ *)B->data;
302:   PetscInt    *bimax = b->imax, *bi = b->i, *bilen = b->ilen, *bj = b->j;
303:   MatScalar   *ba = b->a;

305:   PetscInt  *rp, ii, nrow, _i, rmax, N, brow, bcol;
306:   PetscInt   low, high, t, ridx, cidx, bs2 = a->bs2;
307:   MatScalar *ap, *bap;

309:   /* for stash */
310:   PetscInt   n_loc, *in_loc = NULL;
311:   MatScalar *v_loc = NULL;

313:   PetscFunctionBegin;
314:   if (!baij->donotstash) {
315:     if (n > baij->n_loc) {
316:       PetscCall(PetscFree(baij->in_loc));
317:       PetscCall(PetscFree(baij->v_loc));
318:       PetscCall(PetscMalloc1(n, &baij->in_loc));
319:       PetscCall(PetscMalloc1(n, &baij->v_loc));

321:       baij->n_loc = n;
322:     }
323:     in_loc = baij->in_loc;
324:     v_loc  = baij->v_loc;
325:   }

327:   for (i = 0; i < m; i++) {
328:     if (im[i] < 0) continue;
329:     PetscCheck(im[i] < mat->rmap->N, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row too large: row %" PetscInt_FMT " max %" PetscInt_FMT, im[i], mat->rmap->N - 1);
330:     if (im[i] >= rstart_orig && im[i] < rend_orig) { /* this processor entry */
331:       row = im[i] - rstart_orig;                     /* local row index */
332:       for (j = 0; j < n; j++) {
333:         if (im[i] / bs > in[j] / bs) {
334:           PetscCheck(a->ignore_ltriangular, PETSC_COMM_SELF, PETSC_ERR_USER, "Lower triangular value cannot be set for sbaij format. Ignoring these values, run with -mat_ignore_lower_triangular or call MatSetOption(mat,MAT_IGNORE_LOWER_TRIANGULAR,PETSC_TRUE)");
335:           continue; /* ignore lower triangular blocks */
336:         }
337:         if (in[j] >= cstart_orig && in[j] < cend_orig) { /* diag entry (A) */
338:           col  = in[j] - cstart_orig;                    /* local col index */
339:           brow = row / bs;
340:           bcol = col / bs;
341:           if (brow > bcol) continue; /* ignore lower triangular blocks of A */
342:           if (roworiented) value = v[i * n + j];
343:           else value = v[i + j * m];
344:           MatSetValues_SeqSBAIJ_A_Private(row, col, value, addv, im[i], in[j]);
345:           /* PetscCall(MatSetValues_SeqBAIJ(baij->A,1,&row,1,&col,&value,addv)); */
346:         } else if (in[j] < 0) {
347:           continue;
348:         } else {
349:           PetscCheck(in[j] < mat->cmap->N, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column too large: col %" PetscInt_FMT " max %" PetscInt_FMT, in[j], mat->cmap->N - 1);
350:           /* off-diag entry (B) */
351:           if (mat->was_assembled) {
352:             if (!baij->colmap) PetscCall(MatCreateColmap_MPIBAIJ_Private(mat));
353: #if defined(PETSC_USE_CTABLE)
354:             PetscCall(PetscHMapIGetWithDefault(baij->colmap, in[j] / bs + 1, 0, &col));
355:             col = col - 1;
356: #else
357:             col = baij->colmap[in[j] / bs] - 1;
358: #endif
359:             if (col < 0 && !((Mat_SeqSBAIJ *)baij->A->data)->nonew) {
360:               PetscCall(MatDisAssemble_MPISBAIJ(mat));
361:               col = in[j];
362:               /* Reinitialize the variables required by MatSetValues_SeqBAIJ_B_Private() */
363:               B     = baij->B;
364:               b     = (Mat_SeqBAIJ *)B->data;
365:               bimax = b->imax;
366:               bi    = b->i;
367:               bilen = b->ilen;
368:               bj    = b->j;
369:               ba    = b->a;
370:             } else col += in[j] % bs;
371:           } else col = in[j];
372:           if (roworiented) value = v[i * n + j];
373:           else value = v[i + j * m];
374:           MatSetValues_SeqSBAIJ_B_Private(row, col, value, addv, im[i], in[j]);
375:           /* PetscCall(MatSetValues_SeqBAIJ(baij->B,1,&row,1,&col,&value,addv)); */
376:         }
377:       }
378:     } else { /* off processor entry */
379:       PetscCheck(!mat->nooffprocentries, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Setting off process row %" PetscInt_FMT " even though MatSetOption(,MAT_NO_OFF_PROC_ENTRIES,PETSC_TRUE) was set", im[i]);
380:       if (!baij->donotstash) {
381:         mat->assembled = PETSC_FALSE;
382:         n_loc          = 0;
383:         for (j = 0; j < n; j++) {
384:           if (im[i] / bs > in[j] / bs) continue; /* ignore lower triangular blocks */
385:           in_loc[n_loc] = in[j];
386:           if (roworiented) {
387:             v_loc[n_loc] = v[i * n + j];
388:           } else {
389:             v_loc[n_loc] = v[j * m + i];
390:           }
391:           n_loc++;
392:         }
393:         PetscCall(MatStashValuesRow_Private(&mat->stash, im[i], n_loc, in_loc, v_loc, PETSC_FALSE));
394:       }
395:     }
396:   }
397:   PetscFunctionReturn(PETSC_SUCCESS);
398: }

400: static inline PetscErrorCode MatSetValuesBlocked_SeqSBAIJ_Inlined(Mat A, PetscInt row, PetscInt col, const PetscScalar v[], InsertMode is, PetscInt orow, PetscInt ocol)
401: {
402:   Mat_SeqSBAIJ      *a = (Mat_SeqSBAIJ *)A->data;
403:   PetscInt          *rp, low, high, t, ii, jj, nrow, i, rmax, N;
404:   PetscInt          *imax = a->imax, *ai = a->i, *ailen = a->ilen;
405:   PetscInt          *aj = a->j, nonew = a->nonew, bs2 = a->bs2, bs = A->rmap->bs;
406:   PetscBool          roworiented = a->roworiented;
407:   const PetscScalar *value       = v;
408:   MatScalar         *ap, *aa = a->a, *bap;

410:   PetscFunctionBegin;
411:   if (col < row) {
412:     PetscCheck(a->ignore_ltriangular, PETSC_COMM_SELF, PETSC_ERR_USER, "Lower triangular value cannot be set for sbaij format. Ignoring these values, run with -mat_ignore_lower_triangular or call MatSetOption(mat,MAT_IGNORE_LOWER_TRIANGULAR,PETSC_TRUE)");
413:     PetscFunctionReturn(PETSC_SUCCESS); /* ignore lower triangular block */
414:   }
415:   rp    = aj + ai[row];
416:   ap    = aa + bs2 * ai[row];
417:   rmax  = imax[row];
418:   nrow  = ailen[row];
419:   value = v;
420:   low   = 0;
421:   high  = nrow;

423:   while (high - low > 7) {
424:     t = (low + high) / 2;
425:     if (rp[t] > col) high = t;
426:     else low = t;
427:   }
428:   for (i = low; i < high; i++) {
429:     if (rp[i] > col) break;
430:     if (rp[i] == col) {
431:       bap = ap + bs2 * i;
432:       if (roworiented) {
433:         if (is == ADD_VALUES) {
434:           for (ii = 0; ii < bs; ii++) {
435:             for (jj = ii; jj < bs2; jj += bs) bap[jj] += *value++;
436:           }
437:         } else {
438:           for (ii = 0; ii < bs; ii++) {
439:             for (jj = ii; jj < bs2; jj += bs) bap[jj] = *value++;
440:           }
441:         }
442:       } else {
443:         if (is == ADD_VALUES) {
444:           for (ii = 0; ii < bs; ii++) {
445:             for (jj = 0; jj < bs; jj++) *bap++ += *value++;
446:           }
447:         } else {
448:           for (ii = 0; ii < bs; ii++) {
449:             for (jj = 0; jj < bs; jj++) *bap++ = *value++;
450:           }
451:         }
452:       }
453:       goto noinsert2;
454:     }
455:   }
456:   if (nonew == 1) goto noinsert2;
457:   PetscCheck(nonew != -1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Inserting a new block index nonzero block (%" PetscInt_FMT ", %" PetscInt_FMT ") in the matrix", orow, ocol);
458:   MatSeqXAIJReallocateAIJ(A, a->mbs, bs2, nrow, row, col, rmax, aa, ai, aj, rp, ap, imax, nonew, MatScalar);
459:   N = nrow++ - 1;
460:   high++;
461:   /* shift up all the later entries in this row */
462:   PetscCall(PetscArraymove(rp + i + 1, rp + i, N - i + 1));
463:   PetscCall(PetscArraymove(ap + bs2 * (i + 1), ap + bs2 * i, bs2 * (N - i + 1)));
464:   rp[i] = col;
465:   bap   = ap + bs2 * i;
466:   if (roworiented) {
467:     for (ii = 0; ii < bs; ii++) {
468:       for (jj = ii; jj < bs2; jj += bs) bap[jj] = *value++;
469:     }
470:   } else {
471:     for (ii = 0; ii < bs; ii++) {
472:       for (jj = 0; jj < bs; jj++) *bap++ = *value++;
473:     }
474:   }
475: noinsert2:;
476:   ailen[row] = nrow;
477:   PetscFunctionReturn(PETSC_SUCCESS);
478: }

480: /*
481:    This routine is exactly duplicated in mpibaij.c
482: */
483: static inline PetscErrorCode MatSetValuesBlocked_SeqBAIJ_Inlined(Mat A, PetscInt row, PetscInt col, const PetscScalar v[], InsertMode is, PetscInt orow, PetscInt ocol)
484: {
485:   Mat_SeqBAIJ       *a = (Mat_SeqBAIJ *)A->data;
486:   PetscInt          *rp, low, high, t, ii, jj, nrow, i, rmax, N;
487:   PetscInt          *imax = a->imax, *ai = a->i, *ailen = a->ilen;
488:   PetscInt          *aj = a->j, nonew = a->nonew, bs2 = a->bs2, bs = A->rmap->bs;
489:   PetscBool          roworiented = a->roworiented;
490:   const PetscScalar *value       = v;
491:   MatScalar         *ap, *aa = a->a, *bap;

493:   PetscFunctionBegin;
494:   rp    = aj + ai[row];
495:   ap    = aa + bs2 * ai[row];
496:   rmax  = imax[row];
497:   nrow  = ailen[row];
498:   low   = 0;
499:   high  = nrow;
500:   value = v;
501:   while (high - low > 7) {
502:     t = (low + high) / 2;
503:     if (rp[t] > col) high = t;
504:     else low = t;
505:   }
506:   for (i = low; i < high; i++) {
507:     if (rp[i] > col) break;
508:     if (rp[i] == col) {
509:       bap = ap + bs2 * i;
510:       if (roworiented) {
511:         if (is == ADD_VALUES) {
512:           for (ii = 0; ii < bs; ii++) {
513:             for (jj = ii; jj < bs2; jj += bs) bap[jj] += *value++;
514:           }
515:         } else {
516:           for (ii = 0; ii < bs; ii++) {
517:             for (jj = ii; jj < bs2; jj += bs) bap[jj] = *value++;
518:           }
519:         }
520:       } else {
521:         if (is == ADD_VALUES) {
522:           for (ii = 0; ii < bs; ii++, value += bs) {
523:             for (jj = 0; jj < bs; jj++) bap[jj] += value[jj];
524:             bap += bs;
525:           }
526:         } else {
527:           for (ii = 0; ii < bs; ii++, value += bs) {
528:             for (jj = 0; jj < bs; jj++) bap[jj] = value[jj];
529:             bap += bs;
530:           }
531:         }
532:       }
533:       goto noinsert2;
534:     }
535:   }
536:   if (nonew == 1) goto noinsert2;
537:   PetscCheck(nonew != -1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Inserting a new global block indexed nonzero block (%" PetscInt_FMT ", %" PetscInt_FMT ") in the matrix", orow, ocol);
538:   MatSeqXAIJReallocateAIJ(A, a->mbs, bs2, nrow, row, col, rmax, aa, ai, aj, rp, ap, imax, nonew, MatScalar);
539:   N = nrow++ - 1;
540:   high++;
541:   /* shift up all the later entries in this row */
542:   PetscCall(PetscArraymove(rp + i + 1, rp + i, N - i + 1));
543:   PetscCall(PetscArraymove(ap + bs2 * (i + 1), ap + bs2 * i, bs2 * (N - i + 1)));
544:   rp[i] = col;
545:   bap   = ap + bs2 * i;
546:   if (roworiented) {
547:     for (ii = 0; ii < bs; ii++) {
548:       for (jj = ii; jj < bs2; jj += bs) bap[jj] = *value++;
549:     }
550:   } else {
551:     for (ii = 0; ii < bs; ii++) {
552:       for (jj = 0; jj < bs; jj++) *bap++ = *value++;
553:     }
554:   }
555: noinsert2:;
556:   ailen[row] = nrow;
557:   PetscFunctionReturn(PETSC_SUCCESS);
558: }

560: /*
561:     This routine could be optimized by removing the need for the block copy below and passing stride information
562:   to the above inline routines; similarly in MatSetValuesBlocked_MPIBAIJ()
563: */
564: static PetscErrorCode MatSetValuesBlocked_MPISBAIJ(Mat mat, PetscInt m, const PetscInt im[], PetscInt n, const PetscInt in[], const MatScalar v[], InsertMode addv)
565: {
566:   Mat_MPISBAIJ    *baij = (Mat_MPISBAIJ *)mat->data;
567:   const MatScalar *value;
568:   MatScalar       *barray      = baij->barray;
569:   PetscBool        roworiented = baij->roworiented, ignore_ltriangular = ((Mat_SeqSBAIJ *)baij->A->data)->ignore_ltriangular;
570:   PetscInt         i, j, ii, jj, row, col, rstart = baij->rstartbs;
571:   PetscInt         rend = baij->rendbs, cstart = baij->cstartbs, stepval;
572:   PetscInt         cend = baij->cendbs, bs = mat->rmap->bs, bs2 = baij->bs2;

574:   PetscFunctionBegin;
575:   if (!barray) {
576:     PetscCall(PetscMalloc1(bs2, &barray));
577:     baij->barray = barray;
578:   }

580:   if (roworiented) {
581:     stepval = (n - 1) * bs;
582:   } else {
583:     stepval = (m - 1) * bs;
584:   }
585:   for (i = 0; i < m; i++) {
586:     if (im[i] < 0) continue;
587:     PetscCheck(im[i] < baij->Mbs, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Block indexed row too large %" PetscInt_FMT " max %" PetscInt_FMT, im[i], baij->Mbs - 1);
588:     if (im[i] >= rstart && im[i] < rend) {
589:       row = im[i] - rstart;
590:       for (j = 0; j < n; j++) {
591:         if (im[i] > in[j]) {
592:           PetscCheck(ignore_ltriangular, PETSC_COMM_SELF, PETSC_ERR_USER, "Lower triangular value cannot be set for sbaij format. Ignoring these values, run with -mat_ignore_lower_triangular or call MatSetOption(mat,MAT_IGNORE_LOWER_TRIANGULAR,PETSC_TRUE)");
593:           continue; /* ignore lower triangular blocks */
594:         }
595:         /* If NumCol = 1 then a copy is not required */
596:         if (roworiented && n == 1) {
597:           barray = (MatScalar *)v + i * bs2;
598:         } else if ((!roworiented) && (m == 1)) {
599:           barray = (MatScalar *)v + j * bs2;
600:         } else { /* Here a copy is required */
601:           if (roworiented) {
602:             value = v + i * (stepval + bs) * bs + j * bs;
603:           } else {
604:             value = v + j * (stepval + bs) * bs + i * bs;
605:           }
606:           for (ii = 0; ii < bs; ii++, value += stepval) {
607:             for (jj = 0; jj < bs; jj++) *barray++ = *value++;
608:           }
609:           barray -= bs2;
610:         }

612:         if (in[j] >= cstart && in[j] < cend) {
613:           col = in[j] - cstart;
614:           PetscCall(MatSetValuesBlocked_SeqSBAIJ_Inlined(baij->A, row, col, barray, addv, im[i], in[j]));
615:         } else if (in[j] < 0) {
616:           continue;
617:         } else {
618:           PetscCheck(in[j] < baij->Nbs, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Block indexed column too large %" PetscInt_FMT " max %" PetscInt_FMT, in[j], baij->Nbs - 1);
619:           if (mat->was_assembled) {
620:             if (!baij->colmap) PetscCall(MatCreateColmap_MPIBAIJ_Private(mat));

622: #if defined(PETSC_USE_CTABLE)
623:             PetscCall(PetscHMapIGetWithDefault(baij->colmap, in[j] + 1, 0, &col));
624:             col = col < 1 ? -1 : (col - 1) / bs;
625: #else
626:             col = baij->colmap[in[j]] < 1 ? -1 : (baij->colmap[in[j]] - 1) / bs;
627: #endif
628:             if (col < 0 && !((Mat_SeqBAIJ *)baij->A->data)->nonew) {
629:               PetscCall(MatDisAssemble_MPISBAIJ(mat));
630:               col = in[j];
631:             }
632:           } else col = in[j];
633:           PetscCall(MatSetValuesBlocked_SeqBAIJ_Inlined(baij->B, row, col, barray, addv, im[i], in[j]));
634:         }
635:       }
636:     } else {
637:       PetscCheck(!mat->nooffprocentries, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Setting off process block indexed row %" PetscInt_FMT " even though MatSetOption(,MAT_NO_OFF_PROC_ENTRIES,PETSC_TRUE) was set", im[i]);
638:       if (!baij->donotstash) {
639:         if (roworiented) {
640:           PetscCall(MatStashValuesRowBlocked_Private(&mat->bstash, im[i], n, in, v, m, n, i));
641:         } else {
642:           PetscCall(MatStashValuesColBlocked_Private(&mat->bstash, im[i], n, in, v, m, n, i));
643:         }
644:       }
645:     }
646:   }
647:   PetscFunctionReturn(PETSC_SUCCESS);
648: }

650: static PetscErrorCode MatGetValues_MPISBAIJ(Mat mat, PetscInt m, const PetscInt idxm[], PetscInt n, const PetscInt idxn[], PetscScalar v[])
651: {
652:   Mat_MPISBAIJ *baij = (Mat_MPISBAIJ *)mat->data;
653:   PetscInt      bs = mat->rmap->bs, i, j, bsrstart = mat->rmap->rstart, bsrend = mat->rmap->rend;
654:   PetscInt      bscstart = mat->cmap->rstart, bscend = mat->cmap->rend, row, col, data;

656:   PetscFunctionBegin;
657:   for (i = 0; i < m; i++) {
658:     if (idxm[i] < 0) continue; /* negative row */
659:     PetscCheck(idxm[i] < mat->rmap->N, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row too large: row %" PetscInt_FMT " max %" PetscInt_FMT, idxm[i], mat->rmap->N - 1);
660:     PetscCheck(idxm[i] >= bsrstart && idxm[i] < bsrend, PETSC_COMM_SELF, PETSC_ERR_SUP, "Only local values currently supported");
661:     row = idxm[i] - bsrstart;
662:     for (j = 0; j < n; j++) {
663:       if (idxn[j] < 0) continue; /* negative column */
664:       PetscCheck(idxn[j] < mat->cmap->N, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column too large: col %" PetscInt_FMT " max %" PetscInt_FMT, idxn[j], mat->cmap->N - 1);
665:       if (idxn[j] >= bscstart && idxn[j] < bscend) {
666:         col = idxn[j] - bscstart;
667:         PetscCall(MatGetValues_SeqSBAIJ(baij->A, 1, &row, 1, &col, v + i * n + j));
668:       } else {
669:         if (!baij->colmap) PetscCall(MatCreateColmap_MPIBAIJ_Private(mat));
670: #if defined(PETSC_USE_CTABLE)
671:         PetscCall(PetscHMapIGetWithDefault(baij->colmap, idxn[j] / bs + 1, 0, &data));
672:         data--;
673: #else
674:         data = baij->colmap[idxn[j] / bs] - 1;
675: #endif
676:         if (data < 0 || baij->garray[data / bs] != idxn[j] / bs) *(v + i * n + j) = 0.0;
677:         else {
678:           col = data + idxn[j] % bs;
679:           PetscCall(MatGetValues_SeqBAIJ(baij->B, 1, &row, 1, &col, v + i * n + j));
680:         }
681:       }
682:     }
683:   }
684:   PetscFunctionReturn(PETSC_SUCCESS);
685: }

687: static PetscErrorCode MatNorm_MPISBAIJ(Mat mat, NormType type, PetscReal *norm)
688: {
689:   Mat_MPISBAIJ *baij = (Mat_MPISBAIJ *)mat->data;
690:   PetscReal     sum[2], *lnorm2;

692:   PetscFunctionBegin;
693:   if (baij->size == 1) {
694:     PetscCall(MatNorm(baij->A, type, norm));
695:   } else {
696:     if (type == NORM_FROBENIUS) {
697:       PetscCall(PetscMalloc1(2, &lnorm2));
698:       PetscCall(MatNorm(baij->A, type, lnorm2));
699:       *lnorm2 = (*lnorm2) * (*lnorm2);
700:       lnorm2++; /* square power of norm(A) */
701:       PetscCall(MatNorm(baij->B, type, lnorm2));
702:       *lnorm2 = (*lnorm2) * (*lnorm2);
703:       lnorm2--; /* square power of norm(B) */
704:       PetscCallMPI(MPIU_Allreduce(lnorm2, sum, 2, MPIU_REAL, MPIU_SUM, PetscObjectComm((PetscObject)mat)));
705:       *norm = PetscSqrtReal(sum[0] + 2 * sum[1]);
706:       PetscCall(PetscFree(lnorm2));
707:     } else if (type == NORM_INFINITY || type == NORM_1) { /* max row/column sum */
708:       Mat_SeqSBAIJ *amat = (Mat_SeqSBAIJ *)baij->A->data;
709:       Mat_SeqBAIJ  *bmat = (Mat_SeqBAIJ *)baij->B->data;
710:       PetscReal    *rsum, vabs;
711:       PetscInt     *jj, *garray = baij->garray, rstart = baij->rstartbs, nz;
712:       PetscInt      brow, bcol, col, bs = baij->A->rmap->bs, row, grow, gcol, mbs = amat->mbs;
713:       MatScalar    *v;

715:       PetscCall(PetscCalloc1(mat->cmap->N, &rsum));
716:       /* Amat */
717:       v  = amat->a;
718:       jj = amat->j;
719:       for (brow = 0; brow < mbs; brow++) {
720:         grow = bs * (rstart + brow);
721:         nz   = amat->i[brow + 1] - amat->i[brow];
722:         for (bcol = 0; bcol < nz; bcol++) {
723:           gcol = bs * (rstart + *jj);
724:           jj++;
725:           for (col = 0; col < bs; col++) {
726:             for (row = 0; row < bs; row++) {
727:               vabs = PetscAbsScalar(*v);
728:               v++;
729:               rsum[gcol + col] += vabs;
730:               /* non-diagonal block */
731:               if (bcol > 0 && vabs > 0.0) rsum[grow + row] += vabs;
732:             }
733:           }
734:         }
735:         PetscCall(PetscLogFlops(nz * bs * bs));
736:       }
737:       /* Bmat */
738:       v  = bmat->a;
739:       jj = bmat->j;
740:       for (brow = 0; brow < mbs; brow++) {
741:         grow = bs * (rstart + brow);
742:         nz   = bmat->i[brow + 1] - bmat->i[brow];
743:         for (bcol = 0; bcol < nz; bcol++) {
744:           gcol = bs * garray[*jj];
745:           jj++;
746:           for (col = 0; col < bs; col++) {
747:             for (row = 0; row < bs; row++) {
748:               vabs = PetscAbsScalar(*v);
749:               v++;
750:               rsum[gcol + col] += vabs;
751:               rsum[grow + row] += vabs;
752:             }
753:           }
754:         }
755:         PetscCall(PetscLogFlops(nz * bs * bs));
756:       }
757:       PetscCallMPI(MPIU_Allreduce(MPI_IN_PLACE, rsum, mat->cmap->N, MPIU_REAL, MPIU_SUM, PetscObjectComm((PetscObject)mat)));
758:       *norm = 0.0;
759:       for (col = 0; col < mat->cmap->N; col++) {
760:         if (rsum[col] > *norm) *norm = rsum[col];
761:       }
762:       PetscCall(PetscFree(rsum));
763:     } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_SUP, "No support for this norm yet");
764:   }
765:   PetscFunctionReturn(PETSC_SUCCESS);
766: }

768: static PetscErrorCode MatAssemblyBegin_MPISBAIJ(Mat mat, MatAssemblyType mode)
769: {
770:   Mat_MPISBAIJ *baij = (Mat_MPISBAIJ *)mat->data;
771:   PetscInt      nstash, reallocs;

773:   PetscFunctionBegin;
774:   if (baij->donotstash || mat->nooffprocentries) PetscFunctionReturn(PETSC_SUCCESS);

776:   PetscCall(MatStashScatterBegin_Private(mat, &mat->stash, mat->rmap->range));
777:   PetscCall(MatStashScatterBegin_Private(mat, &mat->bstash, baij->rangebs));
778:   PetscCall(MatStashGetInfo_Private(&mat->stash, &nstash, &reallocs));
779:   PetscCall(PetscInfo(mat, "Stash has %" PetscInt_FMT " entries,uses %" PetscInt_FMT " mallocs.\n", nstash, reallocs));
780:   PetscCall(MatStashGetInfo_Private(&mat->stash, &nstash, &reallocs));
781:   PetscCall(PetscInfo(mat, "Block-Stash has %" PetscInt_FMT " entries, uses %" PetscInt_FMT " mallocs.\n", nstash, reallocs));
782:   PetscFunctionReturn(PETSC_SUCCESS);
783: }

785: static PetscErrorCode MatAssemblyEnd_MPISBAIJ(Mat mat, MatAssemblyType mode)
786: {
787:   Mat_MPISBAIJ *baij = (Mat_MPISBAIJ *)mat->data;
788:   Mat_SeqSBAIJ *a    = (Mat_SeqSBAIJ *)baij->A->data;
789:   PetscInt      i, j, rstart, ncols, flg, bs2 = baij->bs2;
790:   PetscInt     *row, *col;
791:   PetscBool     all_assembled;
792:   PetscMPIInt   n;
793:   PetscBool     r1, r2, r3;
794:   MatScalar    *val;

796:   /* do not use 'b=(Mat_SeqBAIJ*)baij->B->data' as B can be reset in disassembly */
797:   PetscFunctionBegin;
798:   if (!baij->donotstash && !mat->nooffprocentries) {
799:     while (1) {
800:       PetscCall(MatStashScatterGetMesg_Private(&mat->stash, &n, &row, &col, &val, &flg));
801:       if (!flg) break;

803:       for (i = 0; i < n;) {
804:         /* Now identify the consecutive vals belonging to the same row */
805:         for (j = i, rstart = row[j]; j < n; j++) {
806:           if (row[j] != rstart) break;
807:         }
808:         if (j < n) ncols = j - i;
809:         else ncols = n - i;
810:         /* Now assemble all these values with a single function call */
811:         PetscCall(MatSetValues_MPISBAIJ(mat, 1, row + i, ncols, col + i, val + i, mat->insertmode));
812:         i = j;
813:       }
814:     }
815:     PetscCall(MatStashScatterEnd_Private(&mat->stash));
816:     /* Now process the block-stash. Since the values are stashed column-oriented,
817:        set the row-oriented flag to column-oriented, and after MatSetValues()
818:        restore the original flags */
819:     r1 = baij->roworiented;
820:     r2 = a->roworiented;
821:     r3 = ((Mat_SeqBAIJ *)baij->B->data)->roworiented;

823:     baij->roworiented = PETSC_FALSE;
824:     a->roworiented    = PETSC_FALSE;

826:     ((Mat_SeqBAIJ *)baij->B->data)->roworiented = PETSC_FALSE; /* b->roworiented */
827:     while (1) {
828:       PetscCall(MatStashScatterGetMesg_Private(&mat->bstash, &n, &row, &col, &val, &flg));
829:       if (!flg) break;

831:       for (i = 0; i < n;) {
832:         /* Now identify the consecutive vals belonging to the same row */
833:         for (j = i, rstart = row[j]; j < n; j++) {
834:           if (row[j] != rstart) break;
835:         }
836:         if (j < n) ncols = j - i;
837:         else ncols = n - i;
838:         PetscCall(MatSetValuesBlocked_MPISBAIJ(mat, 1, row + i, ncols, col + i, val + i * bs2, mat->insertmode));
839:         i = j;
840:       }
841:     }
842:     PetscCall(MatStashScatterEnd_Private(&mat->bstash));

844:     baij->roworiented = r1;
845:     a->roworiented    = r2;

847:     ((Mat_SeqBAIJ *)baij->B->data)->roworiented = r3; /* b->roworiented */
848:   }

850:   PetscCall(MatAssemblyBegin(baij->A, mode));
851:   PetscCall(MatAssemblyEnd(baij->A, mode));

853:   /* determine if any process has disassembled, if so we must
854:      also disassemble ourselves, in order that we may reassemble. */
855:   /*
856:      if nonzero structure of submatrix B cannot change then we know that
857:      no process disassembled thus we can skip this stuff
858:   */
859:   if (!((Mat_SeqBAIJ *)baij->B->data)->nonew) {
860:     PetscCallMPI(MPIU_Allreduce(&mat->was_assembled, &all_assembled, 1, MPI_C_BOOL, MPI_LAND, PetscObjectComm((PetscObject)mat)));
861:     if (mat->was_assembled && !all_assembled) PetscCall(MatDisAssemble_MPISBAIJ(mat));
862:   }

864:   if (!mat->was_assembled && mode == MAT_FINAL_ASSEMBLY) PetscCall(MatSetUpMultiply_MPISBAIJ(mat)); /* setup Mvctx and sMvctx */
865:   PetscCall(MatAssemblyBegin(baij->B, mode));
866:   PetscCall(MatAssemblyEnd(baij->B, mode));

868:   PetscCall(PetscFree2(baij->rowvalues, baij->rowindices));

870:   baij->rowvalues = NULL;

872:   /* if no new nonzero locations are allowed in matrix then only set the matrix state the first time through */
873:   if ((!mat->was_assembled && mode == MAT_FINAL_ASSEMBLY) || !((Mat_SeqBAIJ *)baij->A->data)->nonew) {
874:     PetscObjectState state = baij->A->nonzerostate + baij->B->nonzerostate;
875:     PetscCallMPI(MPIU_Allreduce(&state, &mat->nonzerostate, 1, MPIU_INT64, MPI_SUM, PetscObjectComm((PetscObject)mat)));
876:   }
877:   PetscFunctionReturn(PETSC_SUCCESS);
878: }

880: extern PetscErrorCode MatSetValues_MPIBAIJ(Mat, PetscInt, const PetscInt[], PetscInt, const PetscInt[], const PetscScalar[], InsertMode);
881: #include <petscdraw.h>
882: static PetscErrorCode MatView_MPISBAIJ_ASCIIorDraworSocket(Mat mat, PetscViewer viewer)
883: {
884:   Mat_MPISBAIJ     *baij = (Mat_MPISBAIJ *)mat->data;
885:   PetscInt          bs   = mat->rmap->bs;
886:   PetscMPIInt       rank = baij->rank;
887:   PetscBool         isascii, isdraw;
888:   PetscViewer       sviewer;
889:   PetscViewerFormat format;

891:   PetscFunctionBegin;
892:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &isascii));
893:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERDRAW, &isdraw));
894:   if (isascii) {
895:     PetscCall(PetscViewerGetFormat(viewer, &format));
896:     if (format == PETSC_VIEWER_ASCII_INFO_DETAIL) {
897:       MatInfo info;
898:       PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)mat), &rank));
899:       PetscCall(MatGetInfo(mat, MAT_LOCAL, &info));
900:       PetscCall(PetscViewerASCIIPushSynchronized(viewer));
901:       PetscCall(PetscViewerASCIISynchronizedPrintf(viewer, "[%d] Local rows %" PetscInt_FMT " nz %" PetscInt_FMT " nz alloced %" PetscInt_FMT " bs %" PetscInt_FMT " mem %g\n", rank, mat->rmap->n, (PetscInt)info.nz_used, (PetscInt)info.nz_allocated,
902:                                                    mat->rmap->bs, info.memory));
903:       PetscCall(MatGetInfo(baij->A, MAT_LOCAL, &info));
904:       PetscCall(PetscViewerASCIISynchronizedPrintf(viewer, "[%d] on-diagonal part: nz %" PetscInt_FMT " \n", rank, (PetscInt)info.nz_used));
905:       PetscCall(MatGetInfo(baij->B, MAT_LOCAL, &info));
906:       PetscCall(PetscViewerASCIISynchronizedPrintf(viewer, "[%d] off-diagonal part: nz %" PetscInt_FMT " \n", rank, (PetscInt)info.nz_used));
907:       PetscCall(PetscViewerFlush(viewer));
908:       PetscCall(PetscViewerASCIIPopSynchronized(viewer));
909:       PetscCall(PetscViewerASCIIPrintf(viewer, "Information on VecScatter used in matrix-vector product: \n"));
910:       PetscCall(VecScatterView(baij->Mvctx, viewer));
911:       PetscFunctionReturn(PETSC_SUCCESS);
912:     } else if (format == PETSC_VIEWER_ASCII_INFO) {
913:       PetscCall(PetscViewerASCIIPrintf(viewer, "  block size is %" PetscInt_FMT "\n", bs));
914:       PetscFunctionReturn(PETSC_SUCCESS);
915:     } else if (format == PETSC_VIEWER_ASCII_FACTOR_INFO) {
916:       PetscFunctionReturn(PETSC_SUCCESS);
917:     }
918:   }

920:   if (isdraw) {
921:     PetscDraw draw;
922:     PetscBool isnull;
923:     PetscCall(PetscViewerDrawGetDraw(viewer, 0, &draw));
924:     PetscCall(PetscDrawIsNull(draw, &isnull));
925:     if (isnull) PetscFunctionReturn(PETSC_SUCCESS);
926:   }

928:   {
929:     /* assemble the entire matrix onto first processor. */
930:     Mat           A;
931:     Mat_SeqSBAIJ *Aloc;
932:     Mat_SeqBAIJ  *Bloc;
933:     PetscInt      M = mat->rmap->N, N = mat->cmap->N, *ai, *aj, col, i, j, k, *rvals, mbs = baij->mbs;
934:     MatScalar    *a;
935:     const char   *matname;

937:     /* Should this be the same type as mat? */
938:     PetscCall(MatCreate(PetscObjectComm((PetscObject)mat), &A));
939:     if (rank == 0) {
940:       PetscCall(MatSetSizes(A, M, N, M, N));
941:     } else {
942:       PetscCall(MatSetSizes(A, 0, 0, M, N));
943:     }
944:     PetscCall(MatSetType(A, MATMPISBAIJ));
945:     PetscCall(MatMPISBAIJSetPreallocation(A, mat->rmap->bs, 0, NULL, 0, NULL));
946:     PetscCall(MatSetOption(A, MAT_NEW_NONZERO_LOCATION_ERR, PETSC_FALSE));

948:     /* copy over the A part */
949:     Aloc = (Mat_SeqSBAIJ *)baij->A->data;
950:     ai   = Aloc->i;
951:     aj   = Aloc->j;
952:     a    = Aloc->a;
953:     PetscCall(PetscMalloc1(bs, &rvals));

955:     for (i = 0; i < mbs; i++) {
956:       rvals[0] = bs * (baij->rstartbs + i);
957:       for (j = 1; j < bs; j++) rvals[j] = rvals[j - 1] + 1;
958:       for (j = ai[i]; j < ai[i + 1]; j++) {
959:         col = (baij->cstartbs + aj[j]) * bs;
960:         for (k = 0; k < bs; k++) {
961:           PetscCall(MatSetValues_MPISBAIJ(A, bs, rvals, 1, &col, a, INSERT_VALUES));
962:           col++;
963:           a += bs;
964:         }
965:       }
966:     }
967:     /* copy over the B part */
968:     Bloc = (Mat_SeqBAIJ *)baij->B->data;
969:     ai   = Bloc->i;
970:     aj   = Bloc->j;
971:     a    = Bloc->a;
972:     for (i = 0; i < mbs; i++) {
973:       rvals[0] = bs * (baij->rstartbs + i);
974:       for (j = 1; j < bs; j++) rvals[j] = rvals[j - 1] + 1;
975:       for (j = ai[i]; j < ai[i + 1]; j++) {
976:         col = baij->garray[aj[j]] * bs;
977:         for (k = 0; k < bs; k++) {
978:           PetscCall(MatSetValues_MPIBAIJ(A, bs, rvals, 1, &col, a, INSERT_VALUES));
979:           col++;
980:           a += bs;
981:         }
982:       }
983:     }
984:     PetscCall(PetscFree(rvals));
985:     PetscCall(MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY));
986:     PetscCall(MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY));
987:     /*
988:        Everyone has to call to draw the matrix since the graphics waits are
989:        synchronized across all processors that share the PetscDraw object
990:     */
991:     PetscCall(PetscViewerGetSubViewer(viewer, PETSC_COMM_SELF, &sviewer));
992:     if (((PetscObject)mat)->name) PetscCall(PetscObjectGetName((PetscObject)mat, &matname));
993:     if (rank == 0) {
994:       if (((PetscObject)mat)->name) PetscCall(PetscObjectSetName((PetscObject)((Mat_MPISBAIJ *)A->data)->A, matname));
995:       PetscCall(MatView_SeqSBAIJ(((Mat_MPISBAIJ *)A->data)->A, sviewer));
996:     }
997:     PetscCall(PetscViewerRestoreSubViewer(viewer, PETSC_COMM_SELF, &sviewer));
998:     PetscCall(MatDestroy(&A));
999:   }
1000:   PetscFunctionReturn(PETSC_SUCCESS);
1001: }

1003: /* Used for both MPIBAIJ and MPISBAIJ matrices */
1004: #define MatView_MPISBAIJ_Binary MatView_MPIBAIJ_Binary

1006: static PetscErrorCode MatView_MPISBAIJ(Mat mat, PetscViewer viewer)
1007: {
1008:   PetscBool isascii, isdraw, issocket, isbinary;

1010:   PetscFunctionBegin;
1011:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &isascii));
1012:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERDRAW, &isdraw));
1013:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERSOCKET, &issocket));
1014:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERBINARY, &isbinary));
1015:   if (isascii || isdraw || issocket) PetscCall(MatView_MPISBAIJ_ASCIIorDraworSocket(mat, viewer));
1016:   else if (isbinary) PetscCall(MatView_MPISBAIJ_Binary(mat, viewer));
1017:   PetscFunctionReturn(PETSC_SUCCESS);
1018: }

1020: #if defined(PETSC_USE_COMPLEX)
1021: static PetscErrorCode MatMult_MPISBAIJ_Hermitian(Mat A, Vec xx, Vec yy)
1022: {
1023:   Mat_MPISBAIJ      *a   = (Mat_MPISBAIJ *)A->data;
1024:   PetscInt           mbs = a->mbs, bs = A->rmap->bs;
1025:   PetscScalar       *from;
1026:   const PetscScalar *x;

1028:   PetscFunctionBegin;
1029:   /* diagonal part */
1030:   PetscCall((*a->A->ops->mult)(a->A, xx, a->slvec1a));
1031:   /* since a->slvec1b shares memory (dangerously) with a->slec1 changes to a->slec1 will affect it */
1032:   PetscCall(PetscObjectStateIncrease((PetscObject)a->slvec1b));
1033:   PetscCall(VecZeroEntries(a->slvec1b));

1035:   /* subdiagonal part */
1036:   PetscCheck(a->B->ops->multhermitiantranspose, PetscObjectComm((PetscObject)a->B), PETSC_ERR_SUP, "Not for type %s", ((PetscObject)a->B)->type_name);
1037:   PetscCall((*a->B->ops->multhermitiantranspose)(a->B, xx, a->slvec0b));

1039:   /* copy x into the vec slvec0 */
1040:   PetscCall(VecGetArray(a->slvec0, &from));
1041:   PetscCall(VecGetArrayRead(xx, &x));

1043:   PetscCall(PetscArraycpy(from, x, bs * mbs));
1044:   PetscCall(VecRestoreArray(a->slvec0, &from));
1045:   PetscCall(VecRestoreArrayRead(xx, &x));

1047:   PetscCall(VecScatterBegin(a->sMvctx, a->slvec0, a->slvec1, ADD_VALUES, SCATTER_FORWARD));
1048:   PetscCall(VecScatterEnd(a->sMvctx, a->slvec0, a->slvec1, ADD_VALUES, SCATTER_FORWARD));
1049:   /* supperdiagonal part */
1050:   PetscCall((*a->B->ops->multadd)(a->B, a->slvec1b, a->slvec1a, yy));
1051:   PetscFunctionReturn(PETSC_SUCCESS);
1052: }
1053: #endif

1055: static PetscErrorCode MatMult_MPISBAIJ(Mat A, Vec xx, Vec yy)
1056: {
1057:   Mat_MPISBAIJ      *a   = (Mat_MPISBAIJ *)A->data;
1058:   PetscInt           mbs = a->mbs, bs = A->rmap->bs;
1059:   PetscScalar       *from;
1060:   const PetscScalar *x;

1062:   PetscFunctionBegin;
1063:   /* diagonal part */
1064:   PetscCall((*a->A->ops->mult)(a->A, xx, a->slvec1a));
1065:   /* since a->slvec1b shares memory (dangerously) with a->slec1 changes to a->slec1 will affect it */
1066:   PetscCall(PetscObjectStateIncrease((PetscObject)a->slvec1b));
1067:   PetscCall(VecZeroEntries(a->slvec1b));

1069:   /* subdiagonal part */
1070:   PetscCall((*a->B->ops->multtranspose)(a->B, xx, a->slvec0b));

1072:   /* copy x into the vec slvec0 */
1073:   PetscCall(VecGetArray(a->slvec0, &from));
1074:   PetscCall(VecGetArrayRead(xx, &x));

1076:   PetscCall(PetscArraycpy(from, x, bs * mbs));
1077:   PetscCall(VecRestoreArray(a->slvec0, &from));
1078:   PetscCall(VecRestoreArrayRead(xx, &x));

1080:   PetscCall(VecScatterBegin(a->sMvctx, a->slvec0, a->slvec1, ADD_VALUES, SCATTER_FORWARD));
1081:   PetscCall(VecScatterEnd(a->sMvctx, a->slvec0, a->slvec1, ADD_VALUES, SCATTER_FORWARD));
1082:   /* supperdiagonal part */
1083:   PetscCall((*a->B->ops->multadd)(a->B, a->slvec1b, a->slvec1a, yy));
1084:   PetscFunctionReturn(PETSC_SUCCESS);
1085: }

1087: #if PetscDefined(USE_COMPLEX)
1088: static PetscErrorCode MatMultAdd_MPISBAIJ_Hermitian(Mat A, Vec xx, Vec yy, Vec zz)
1089: {
1090:   Mat_MPISBAIJ      *a   = (Mat_MPISBAIJ *)A->data;
1091:   PetscInt           mbs = a->mbs, bs = A->rmap->bs;
1092:   PetscScalar       *from;
1093:   const PetscScalar *x;

1095:   PetscFunctionBegin;
1096:   /* diagonal part */
1097:   PetscCall((*a->A->ops->multadd)(a->A, xx, yy, a->slvec1a));
1098:   PetscCall(PetscObjectStateIncrease((PetscObject)a->slvec1b));
1099:   PetscCall(VecZeroEntries(a->slvec1b));

1101:   /* subdiagonal part */
1102:   PetscCheck(a->B->ops->multhermitiantranspose, PetscObjectComm((PetscObject)a->B), PETSC_ERR_SUP, "Not for type %s", ((PetscObject)a->B)->type_name);
1103:   PetscCall((*a->B->ops->multhermitiantranspose)(a->B, xx, a->slvec0b));

1105:   /* copy x into the vec slvec0 */
1106:   PetscCall(VecGetArray(a->slvec0, &from));
1107:   PetscCall(VecGetArrayRead(xx, &x));
1108:   PetscCall(PetscArraycpy(from, x, bs * mbs));
1109:   PetscCall(VecRestoreArray(a->slvec0, &from));

1111:   PetscCall(VecScatterBegin(a->sMvctx, a->slvec0, a->slvec1, ADD_VALUES, SCATTER_FORWARD));
1112:   PetscCall(VecRestoreArrayRead(xx, &x));
1113:   PetscCall(VecScatterEnd(a->sMvctx, a->slvec0, a->slvec1, ADD_VALUES, SCATTER_FORWARD));

1115:   /* supperdiagonal part */
1116:   PetscCall((*a->B->ops->multadd)(a->B, a->slvec1b, a->slvec1a, zz));
1117:   PetscFunctionReturn(PETSC_SUCCESS);
1118: }
1119: #endif

1121: static PetscErrorCode MatMultAdd_MPISBAIJ(Mat A, Vec xx, Vec yy, Vec zz)
1122: {
1123:   Mat_MPISBAIJ      *a   = (Mat_MPISBAIJ *)A->data;
1124:   PetscInt           mbs = a->mbs, bs = A->rmap->bs;
1125:   PetscScalar       *from;
1126:   const PetscScalar *x;

1128:   PetscFunctionBegin;
1129:   /* diagonal part */
1130:   PetscCall((*a->A->ops->multadd)(a->A, xx, yy, a->slvec1a));
1131:   PetscCall(PetscObjectStateIncrease((PetscObject)a->slvec1b));
1132:   PetscCall(VecZeroEntries(a->slvec1b));

1134:   /* subdiagonal part */
1135:   PetscCall((*a->B->ops->multtranspose)(a->B, xx, a->slvec0b));

1137:   /* copy x into the vec slvec0 */
1138:   PetscCall(VecGetArray(a->slvec0, &from));
1139:   PetscCall(VecGetArrayRead(xx, &x));
1140:   PetscCall(PetscArraycpy(from, x, bs * mbs));
1141:   PetscCall(VecRestoreArray(a->slvec0, &from));

1143:   PetscCall(VecScatterBegin(a->sMvctx, a->slvec0, a->slvec1, ADD_VALUES, SCATTER_FORWARD));
1144:   PetscCall(VecRestoreArrayRead(xx, &x));
1145:   PetscCall(VecScatterEnd(a->sMvctx, a->slvec0, a->slvec1, ADD_VALUES, SCATTER_FORWARD));

1147:   /* supperdiagonal part */
1148:   PetscCall((*a->B->ops->multadd)(a->B, a->slvec1b, a->slvec1a, zz));
1149:   PetscFunctionReturn(PETSC_SUCCESS);
1150: }

1152: /*
1153:   This only works correctly for square matrices where the subblock A->A is the
1154:    diagonal block
1155: */
1156: static PetscErrorCode MatGetDiagonal_MPISBAIJ(Mat A, Vec v)
1157: {
1158:   Mat_MPISBAIJ *a = (Mat_MPISBAIJ *)A->data;

1160:   PetscFunctionBegin;
1161:   /* PetscCheck(a->rmap->N == a->cmap->N,PETSC_COMM_SELF,PETSC_ERR_SUP,"Supports only square matrix where A->A is diag block"); */
1162:   PetscCall(MatGetDiagonal(a->A, v));
1163:   PetscFunctionReturn(PETSC_SUCCESS);
1164: }

1166: static PetscErrorCode MatScale_MPISBAIJ(Mat A, PetscScalar aa)
1167: {
1168:   Mat_MPISBAIJ *a = (Mat_MPISBAIJ *)A->data;

1170:   PetscFunctionBegin;
1171:   PetscCall(MatScale(a->A, aa));
1172:   PetscCall(MatScale(a->B, aa));
1173:   PetscFunctionReturn(PETSC_SUCCESS);
1174: }

1176: static PetscErrorCode MatGetRow_MPISBAIJ(Mat matin, PetscInt row, PetscInt *nz, PetscInt **idx, PetscScalar **v)
1177: {
1178:   Mat_MPISBAIJ *mat = (Mat_MPISBAIJ *)matin->data;
1179:   PetscScalar  *vworkA, *vworkB, **pvA, **pvB, *v_p;
1180:   PetscInt      bs = matin->rmap->bs, bs2 = mat->bs2, i, *cworkA, *cworkB, **pcA, **pcB;
1181:   PetscInt      nztot, nzA, nzB, lrow, brstart = matin->rmap->rstart, brend = matin->rmap->rend;
1182:   PetscInt     *cmap, *idx_p, cstart = mat->rstartbs;

1184:   PetscFunctionBegin;
1185:   PetscCheck(!mat->getrowactive, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Already active");
1186:   mat->getrowactive = PETSC_TRUE;

1188:   if (!mat->rowvalues && (idx || v)) {
1189:     /*
1190:         allocate enough space to hold information from the longest row.
1191:     */
1192:     Mat_SeqSBAIJ *Aa  = (Mat_SeqSBAIJ *)mat->A->data;
1193:     Mat_SeqBAIJ  *Ba  = (Mat_SeqBAIJ *)mat->B->data;
1194:     PetscInt      max = 1, mbs = mat->mbs, tmp;
1195:     for (i = 0; i < mbs; i++) {
1196:       tmp = Aa->i[i + 1] - Aa->i[i] + Ba->i[i + 1] - Ba->i[i]; /* row length */
1197:       if (max < tmp) max = tmp;
1198:     }
1199:     PetscCall(PetscMalloc2(max * bs2, &mat->rowvalues, max * bs2, &mat->rowindices));
1200:   }

1202:   PetscCheck(row >= brstart && row < brend, PETSC_COMM_SELF, PETSC_ERR_SUP, "Only local rows");
1203:   lrow = row - brstart; /* local row index */

1205:   pvA = &vworkA;
1206:   pcA = &cworkA;
1207:   pvB = &vworkB;
1208:   pcB = &cworkB;
1209:   if (!v) {
1210:     pvA = NULL;
1211:     pvB = NULL;
1212:   }
1213:   if (!idx) {
1214:     pcA = NULL;
1215:     if (!v) pcB = NULL;
1216:   }
1217:   PetscCall((*mat->A->ops->getrow)(mat->A, lrow, &nzA, pcA, pvA));
1218:   PetscCall((*mat->B->ops->getrow)(mat->B, lrow, &nzB, pcB, pvB));
1219:   nztot = nzA + nzB;

1221:   cmap = mat->garray;
1222:   if (v || idx) {
1223:     if (nztot) {
1224:       /* Sort by increasing column numbers, assuming A and B already sorted */
1225:       PetscInt imark = -1;
1226:       if (v) {
1227:         *v = v_p = mat->rowvalues;
1228:         for (i = 0; i < nzB; i++) {
1229:           if (cmap[cworkB[i] / bs] < cstart) v_p[i] = vworkB[i];
1230:           else break;
1231:         }
1232:         imark = i;
1233:         for (i = 0; i < nzA; i++) v_p[imark + i] = vworkA[i];
1234:         for (i = imark; i < nzB; i++) v_p[nzA + i] = vworkB[i];
1235:       }
1236:       if (idx) {
1237:         *idx = idx_p = mat->rowindices;
1238:         if (imark > -1) {
1239:           for (i = 0; i < imark; i++) idx_p[i] = cmap[cworkB[i] / bs] * bs + cworkB[i] % bs;
1240:         } else {
1241:           for (i = 0; i < nzB; i++) {
1242:             if (cmap[cworkB[i] / bs] < cstart) idx_p[i] = cmap[cworkB[i] / bs] * bs + cworkB[i] % bs;
1243:             else break;
1244:           }
1245:           imark = i;
1246:         }
1247:         for (i = 0; i < nzA; i++) idx_p[imark + i] = cstart * bs + cworkA[i];
1248:         for (i = imark; i < nzB; i++) idx_p[nzA + i] = cmap[cworkB[i] / bs] * bs + cworkB[i] % bs;
1249:       }
1250:     } else {
1251:       if (idx) *idx = NULL;
1252:       if (v) *v = NULL;
1253:     }
1254:   }
1255:   *nz = nztot;
1256:   PetscCall((*mat->A->ops->restorerow)(mat->A, lrow, &nzA, pcA, pvA));
1257:   PetscCall((*mat->B->ops->restorerow)(mat->B, lrow, &nzB, pcB, pvB));
1258:   PetscFunctionReturn(PETSC_SUCCESS);
1259: }

1261: static PetscErrorCode MatRestoreRow_MPISBAIJ(Mat mat, PetscInt row, PetscInt *nz, PetscInt **idx, PetscScalar **v)
1262: {
1263:   Mat_MPISBAIJ *baij = (Mat_MPISBAIJ *)mat->data;

1265:   PetscFunctionBegin;
1266:   PetscCheck(baij->getrowactive, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "MatGetRow() must be called first");
1267:   baij->getrowactive = PETSC_FALSE;
1268:   PetscFunctionReturn(PETSC_SUCCESS);
1269: }

1271: static PetscErrorCode MatGetRowUpperTriangular_MPISBAIJ(Mat A)
1272: {
1273:   Mat_MPISBAIJ *a  = (Mat_MPISBAIJ *)A->data;
1274:   Mat_SeqSBAIJ *aA = (Mat_SeqSBAIJ *)a->A->data;

1276:   PetscFunctionBegin;
1277:   aA->getrow_utriangular = PETSC_TRUE;
1278:   PetscFunctionReturn(PETSC_SUCCESS);
1279: }
1280: static PetscErrorCode MatRestoreRowUpperTriangular_MPISBAIJ(Mat A)
1281: {
1282:   Mat_MPISBAIJ *a  = (Mat_MPISBAIJ *)A->data;
1283:   Mat_SeqSBAIJ *aA = (Mat_SeqSBAIJ *)a->A->data;

1285:   PetscFunctionBegin;
1286:   aA->getrow_utriangular = PETSC_FALSE;
1287:   PetscFunctionReturn(PETSC_SUCCESS);
1288: }

1290: static PetscErrorCode MatConjugate_MPISBAIJ(Mat mat)
1291: {
1292:   PetscFunctionBegin;
1293:   if (PetscDefined(USE_COMPLEX)) {
1294:     Mat_MPISBAIJ *a = (Mat_MPISBAIJ *)mat->data;

1296:     PetscCall(MatConjugate(a->A));
1297:     PetscCall(MatConjugate(a->B));
1298:   }
1299:   PetscFunctionReturn(PETSC_SUCCESS);
1300: }

1302: static PetscErrorCode MatRealPart_MPISBAIJ(Mat A)
1303: {
1304:   Mat_MPISBAIJ *a = (Mat_MPISBAIJ *)A->data;

1306:   PetscFunctionBegin;
1307:   PetscCall(MatRealPart(a->A));
1308:   PetscCall(MatRealPart(a->B));
1309:   PetscFunctionReturn(PETSC_SUCCESS);
1310: }

1312: static PetscErrorCode MatImaginaryPart_MPISBAIJ(Mat A)
1313: {
1314:   Mat_MPISBAIJ *a = (Mat_MPISBAIJ *)A->data;

1316:   PetscFunctionBegin;
1317:   PetscCall(MatImaginaryPart(a->A));
1318:   PetscCall(MatImaginaryPart(a->B));
1319:   PetscFunctionReturn(PETSC_SUCCESS);
1320: }

1322: /* Check if isrow is a subset of iscol_local, called by MatCreateSubMatrix_MPISBAIJ()
1323:    Input: isrow       - distributed(parallel),
1324:           iscol_local - locally owned (seq)
1325: */
1326: static PetscErrorCode ISEqual_private(IS isrow, IS iscol_local, PetscBool *flg)
1327: {
1328:   PetscInt        sz1, sz2, *a1, *a2, i, j, k, nmatch;
1329:   const PetscInt *ptr1, *ptr2;

1331:   PetscFunctionBegin;
1332:   *flg = PETSC_FALSE;
1333:   PetscCall(ISGetLocalSize(isrow, &sz1));
1334:   PetscCall(ISGetLocalSize(iscol_local, &sz2));
1335:   if (sz1 > sz2) PetscFunctionReturn(PETSC_SUCCESS);

1337:   PetscCall(ISGetIndices(isrow, &ptr1));
1338:   PetscCall(ISGetIndices(iscol_local, &ptr2));

1340:   PetscCall(PetscMalloc1(sz1, &a1));
1341:   PetscCall(PetscMalloc1(sz2, &a2));
1342:   PetscCall(PetscArraycpy(a1, ptr1, sz1));
1343:   PetscCall(PetscArraycpy(a2, ptr2, sz2));
1344:   PetscCall(PetscSortInt(sz1, a1));
1345:   PetscCall(PetscSortInt(sz2, a2));

1347:   nmatch = 0;
1348:   k      = 0;
1349:   for (i = 0; i < sz1; i++) {
1350:     for (j = k; j < sz2; j++) {
1351:       if (a1[i] == a2[j]) {
1352:         k = j;
1353:         nmatch++;
1354:         break;
1355:       }
1356:     }
1357:   }
1358:   PetscCall(ISRestoreIndices(isrow, &ptr1));
1359:   PetscCall(ISRestoreIndices(iscol_local, &ptr2));
1360:   PetscCall(PetscFree(a1));
1361:   PetscCall(PetscFree(a2));
1362:   if (nmatch < sz1) {
1363:     *flg = PETSC_FALSE;
1364:   } else {
1365:     *flg = PETSC_TRUE;
1366:   }
1367:   PetscFunctionReturn(PETSC_SUCCESS);
1368: }

1370: static PetscErrorCode MatCreateSubMatrix_MPISBAIJ(Mat mat, IS isrow, IS iscol, MatReuse call, Mat *newmat)
1371: {
1372:   Mat       C[2];
1373:   IS        iscol_local, isrow_local;
1374:   PetscInt  csize, csize_local, rsize;
1375:   PetscBool isequal, issorted, isidentity = PETSC_FALSE;

1377:   PetscFunctionBegin;
1378:   PetscCall(ISGetLocalSize(iscol, &csize));
1379:   PetscCall(ISGetLocalSize(isrow, &rsize));
1380:   if (call == MAT_REUSE_MATRIX) {
1381:     PetscCall(PetscObjectQuery((PetscObject)*newmat, "ISAllGather", (PetscObject *)&iscol_local));
1382:     PetscCheck(iscol_local, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Submatrix passed in was not used before, cannot reuse");
1383:   } else {
1384:     PetscCall(ISAllGather(iscol, &iscol_local));
1385:     PetscCall(ISSorted(iscol_local, &issorted));
1386:     PetscCheck(issorted, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "For symmetric format, iscol must be sorted");
1387:   }
1388:   PetscCall(ISEqual_private(isrow, iscol_local, &isequal));
1389:   if (!isequal) {
1390:     PetscCall(ISGetLocalSize(iscol_local, &csize_local));
1391:     isidentity = (PetscBool)(mat->cmap->N == csize_local);
1392:     if (!isidentity) {
1393:       if (call == MAT_REUSE_MATRIX) {
1394:         PetscCall(PetscObjectQuery((PetscObject)*newmat, "ISAllGather_other", (PetscObject *)&isrow_local));
1395:         PetscCheck(isrow_local, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Submatrix passed in was not used before, cannot reuse");
1396:       } else {
1397:         PetscCall(ISAllGather(isrow, &isrow_local));
1398:         PetscCall(ISSorted(isrow_local, &issorted));
1399:         PetscCheck(issorted, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "For symmetric format, isrow must be sorted");
1400:       }
1401:     }
1402:   }
1403:   /* now call MatCreateSubMatrix_MPIBAIJ() */
1404:   PetscCall(MatCreateSubMatrix_MPIBAIJ_Private(mat, isrow, iscol_local, csize, isequal || isidentity ? call : MAT_INITIAL_MATRIX, isequal || isidentity ? newmat : C, (PetscBool)(isequal || isidentity)));
1405:   if (!isequal && !isidentity) {
1406:     if (call == MAT_INITIAL_MATRIX) {
1407:       IS       intersect;
1408:       PetscInt ni;

1410:       PetscCall(ISIntersect(isrow_local, iscol_local, &intersect));
1411:       PetscCall(ISGetLocalSize(intersect, &ni));
1412:       PetscCall(ISDestroy(&intersect));
1413:       PetscCheck(ni == 0, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Cannot create such a submatrix: for symmetric format, when requesting an off-diagonal submatrix, isrow and iscol should have an empty intersection (number of common indices is %" PetscInt_FMT ")", ni);
1414:     }
1415:     PetscCall(MatCreateSubMatrix_MPIBAIJ_Private(mat, iscol, isrow_local, rsize, MAT_INITIAL_MATRIX, C + 1, PETSC_FALSE));
1416:     PetscCall(MatTranspose(C[1], MAT_INPLACE_MATRIX, C + 1));
1417:     PetscCall(MatAXPY(C[0], 1.0, C[1], DIFFERENT_NONZERO_PATTERN));
1418:     if (call == MAT_REUSE_MATRIX) PetscCall(MatCopy(C[0], *newmat, SAME_NONZERO_PATTERN));
1419:     else if (mat->rmap->bs == 1) PetscCall(MatConvert(C[0], MATAIJ, MAT_INITIAL_MATRIX, newmat));
1420:     else PetscCall(MatCopy(C[0], *newmat, SAME_NONZERO_PATTERN));
1421:     PetscCall(MatDestroy(C));
1422:     PetscCall(MatDestroy(C + 1));
1423:   }
1424:   if (call == MAT_INITIAL_MATRIX) {
1425:     if (!isequal && !isidentity) {
1426:       PetscCall(PetscObjectCompose((PetscObject)*newmat, "ISAllGather_other", (PetscObject)isrow_local));
1427:       PetscCall(ISDestroy(&isrow_local));
1428:     }
1429:     PetscCall(PetscObjectCompose((PetscObject)*newmat, "ISAllGather", (PetscObject)iscol_local));
1430:     PetscCall(ISDestroy(&iscol_local));
1431:   }
1432:   PetscFunctionReturn(PETSC_SUCCESS);
1433: }

1435: static PetscErrorCode MatZeroEntries_MPISBAIJ(Mat A)
1436: {
1437:   Mat_MPISBAIJ *l = (Mat_MPISBAIJ *)A->data;

1439:   PetscFunctionBegin;
1440:   PetscCall(MatZeroEntries(l->A));
1441:   PetscCall(MatZeroEntries(l->B));
1442:   PetscFunctionReturn(PETSC_SUCCESS);
1443: }

1445: static PetscErrorCode MatGetInfo_MPISBAIJ(Mat matin, MatInfoType flag, MatInfo *info)
1446: {
1447:   Mat_MPISBAIJ  *a = (Mat_MPISBAIJ *)matin->data;
1448:   Mat            A = a->A, B = a->B;
1449:   PetscLogDouble isend[5], irecv[5];

1451:   PetscFunctionBegin;
1452:   info->block_size = (PetscReal)matin->rmap->bs;

1454:   PetscCall(MatGetInfo(A, MAT_LOCAL, info));

1456:   isend[0] = info->nz_used;
1457:   isend[1] = info->nz_allocated;
1458:   isend[2] = info->nz_unneeded;
1459:   isend[3] = info->memory;
1460:   isend[4] = info->mallocs;

1462:   PetscCall(MatGetInfo(B, MAT_LOCAL, info));

1464:   isend[0] += info->nz_used;
1465:   isend[1] += info->nz_allocated;
1466:   isend[2] += info->nz_unneeded;
1467:   isend[3] += info->memory;
1468:   isend[4] += info->mallocs;
1469:   if (flag == MAT_LOCAL) {
1470:     info->nz_used      = isend[0];
1471:     info->nz_allocated = isend[1];
1472:     info->nz_unneeded  = isend[2];
1473:     info->memory       = isend[3];
1474:     info->mallocs      = isend[4];
1475:   } else if (flag == MAT_GLOBAL_MAX) {
1476:     PetscCallMPI(MPIU_Allreduce(isend, irecv, 5, MPIU_PETSCLOGDOUBLE, MPI_MAX, PetscObjectComm((PetscObject)matin)));

1478:     info->nz_used      = irecv[0];
1479:     info->nz_allocated = irecv[1];
1480:     info->nz_unneeded  = irecv[2];
1481:     info->memory       = irecv[3];
1482:     info->mallocs      = irecv[4];
1483:   } else if (flag == MAT_GLOBAL_SUM) {
1484:     PetscCallMPI(MPIU_Allreduce(isend, irecv, 5, MPIU_PETSCLOGDOUBLE, MPI_SUM, PetscObjectComm((PetscObject)matin)));

1486:     info->nz_used      = irecv[0];
1487:     info->nz_allocated = irecv[1];
1488:     info->nz_unneeded  = irecv[2];
1489:     info->memory       = irecv[3];
1490:     info->mallocs      = irecv[4];
1491:   } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Unknown MatInfoType argument %d", (int)flag);
1492:   info->fill_ratio_given  = 0; /* no parallel LU/ILU/Cholesky */
1493:   info->fill_ratio_needed = 0;
1494:   info->factor_mallocs    = 0;
1495:   PetscFunctionReturn(PETSC_SUCCESS);
1496: }

1498: static PetscErrorCode MatSetOption_MPISBAIJ(Mat A, MatOption op, PetscBool flg)
1499: {
1500:   Mat_MPISBAIJ *a  = (Mat_MPISBAIJ *)A->data;
1501:   Mat_SeqSBAIJ *aA = (Mat_SeqSBAIJ *)a->A->data;

1503:   PetscFunctionBegin;
1504:   switch (op) {
1505:   case MAT_NEW_NONZERO_LOCATIONS:
1506:   case MAT_NEW_NONZERO_ALLOCATION_ERR:
1507:   case MAT_UNUSED_NONZERO_LOCATION_ERR:
1508:   case MAT_KEEP_NONZERO_PATTERN:
1509:   case MAT_NEW_NONZERO_LOCATION_ERR:
1510:     MatCheckPreallocated(A, 1);
1511:     PetscCall(MatSetOption(a->A, op, flg));
1512:     PetscCall(MatSetOption(a->B, op, flg));
1513:     break;
1514:   case MAT_ROW_ORIENTED:
1515:     MatCheckPreallocated(A, 1);
1516:     a->roworiented = flg;

1518:     PetscCall(MatSetOption(a->A, op, flg));
1519:     PetscCall(MatSetOption(a->B, op, flg));
1520:     break;
1521:   case MAT_IGNORE_OFF_PROC_ENTRIES:
1522:     a->donotstash = flg;
1523:     break;
1524:   case MAT_USE_HASH_TABLE:
1525:     a->ht_flag = flg;
1526:     break;
1527:   case MAT_HERMITIAN:
1528:     if (a->A && A->rmap->n == A->cmap->n) PetscCall(MatSetOption(a->A, op, flg));
1529: #if defined(PETSC_USE_COMPLEX)
1530:     if (flg) { /* need different mat-vec ops */
1531:       A->ops->mult             = MatMult_MPISBAIJ_Hermitian;
1532:       A->ops->multadd          = MatMultAdd_MPISBAIJ_Hermitian;
1533:       A->ops->multtranspose    = NULL;
1534:       A->ops->multtransposeadd = NULL;
1535:     }
1536: #endif
1537:     break;
1538:   case MAT_SPD:
1539:   case MAT_SYMMETRIC:
1540:     if (a->A && A->rmap->n == A->cmap->n) PetscCall(MatSetOption(a->A, op, flg));
1541: #if defined(PETSC_USE_COMPLEX)
1542:     if (flg) { /* restore to use default mat-vec ops */
1543:       A->ops->mult             = MatMult_MPISBAIJ;
1544:       A->ops->multadd          = MatMultAdd_MPISBAIJ;
1545:       A->ops->multtranspose    = MatMult_MPISBAIJ;
1546:       A->ops->multtransposeadd = MatMultAdd_MPISBAIJ;
1547:     }
1548: #endif
1549:     break;
1550:   case MAT_STRUCTURALLY_SYMMETRIC:
1551:     if (a->A && A->rmap->n == A->cmap->n) PetscCall(MatSetOption(a->A, op, flg));
1552:     break;
1553:   case MAT_IGNORE_LOWER_TRIANGULAR:
1554:   case MAT_ERROR_LOWER_TRIANGULAR:
1555:     aA->ignore_ltriangular = flg;
1556:     break;
1557:   case MAT_GETROW_UPPERTRIANGULAR:
1558:     aA->getrow_utriangular = flg;
1559:     break;
1560:   default:
1561:     break;
1562:   }
1563:   PetscFunctionReturn(PETSC_SUCCESS);
1564: }

1566: static PetscErrorCode MatTranspose_MPISBAIJ(Mat A, MatReuse reuse, Mat *B)
1567: {
1568:   PetscFunctionBegin;
1569:   if (reuse == MAT_REUSE_MATRIX) PetscCall(MatTransposeCheckNonzeroState_Private(A, *B));
1570:   if (reuse == MAT_INITIAL_MATRIX) {
1571:     PetscCall(MatDuplicate(A, MAT_COPY_VALUES, B));
1572:   } else if (reuse == MAT_REUSE_MATRIX) {
1573:     PetscCall(MatCopy(A, *B, SAME_NONZERO_PATTERN));
1574:   }
1575:   PetscFunctionReturn(PETSC_SUCCESS);
1576: }

1578: static PetscErrorCode MatDiagonalScale_MPISBAIJ(Mat mat, Vec ll, Vec rr)
1579: {
1580:   Mat_MPISBAIJ *baij = (Mat_MPISBAIJ *)mat->data;
1581:   Mat           a = baij->A, b = baij->B;
1582:   PetscInt      nv, m, n;

1584:   PetscFunctionBegin;
1585:   if (!ll) PetscFunctionReturn(PETSC_SUCCESS);

1587:   PetscCall(MatGetLocalSize(mat, &m, &n));
1588:   PetscCheck(m == n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "For symmetric format, local size %" PetscInt_FMT " %" PetscInt_FMT " must be same", m, n);

1590:   PetscCall(VecGetLocalSize(rr, &nv));
1591:   PetscCheck(nv == n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Left and right vector non-conforming local size");

1593:   PetscCall(VecScatterBegin(baij->Mvctx, rr, baij->lvec, INSERT_VALUES, SCATTER_FORWARD));

1595:   /* left diagonalscale the off-diagonal part */
1596:   PetscUseTypeMethod(b, diagonalscale, ll, NULL);

1598:   /* scale the diagonal part */
1599:   PetscUseTypeMethod(a, diagonalscale, ll, rr);

1601:   /* right diagonalscale the off-diagonal part */
1602:   PetscCall(VecScatterEnd(baij->Mvctx, rr, baij->lvec, INSERT_VALUES, SCATTER_FORWARD));
1603:   PetscUseTypeMethod(b, diagonalscale, NULL, baij->lvec);
1604:   PetscFunctionReturn(PETSC_SUCCESS);
1605: }

1607: static PetscErrorCode MatSetUnfactored_MPISBAIJ(Mat A)
1608: {
1609:   Mat_MPISBAIJ *a = (Mat_MPISBAIJ *)A->data;

1611:   PetscFunctionBegin;
1612:   PetscCall(MatSetUnfactored(a->A));
1613:   PetscFunctionReturn(PETSC_SUCCESS);
1614: }

1616: static PetscErrorCode MatDuplicate_MPISBAIJ(Mat, MatDuplicateOption, Mat *);

1618: static PetscErrorCode MatEqual_MPISBAIJ(Mat A, Mat B, PetscBool *flag)
1619: {
1620:   Mat_MPISBAIJ *matB = (Mat_MPISBAIJ *)B->data, *matA = (Mat_MPISBAIJ *)A->data;
1621:   Mat           a, b, c, d;
1622:   PetscBool     flg;

1624:   PetscFunctionBegin;
1625:   a = matA->A;
1626:   b = matA->B;
1627:   c = matB->A;
1628:   d = matB->B;

1630:   PetscCall(MatEqual(a, c, &flg));
1631:   if (flg) PetscCall(MatEqual(b, d, &flg));
1632:   PetscCallMPI(MPIU_Allreduce(&flg, flag, 1, MPI_C_BOOL, MPI_LAND, PetscObjectComm((PetscObject)A)));
1633:   PetscFunctionReturn(PETSC_SUCCESS);
1634: }

1636: static PetscErrorCode MatCopy_MPISBAIJ(Mat A, Mat B, MatStructure str)
1637: {
1638:   PetscBool isbaij;

1640:   PetscFunctionBegin;
1641:   PetscCall(PetscObjectTypeCompareAny((PetscObject)B, &isbaij, MATSEQSBAIJ, MATMPISBAIJ, ""));
1642:   PetscCheck(isbaij, PetscObjectComm((PetscObject)B), PETSC_ERR_SUP, "Not for matrix type %s", ((PetscObject)B)->type_name);
1643:   /* If the two matrices don't have the same copy implementation, they aren't compatible for fast copy. */
1644:   if ((str != SAME_NONZERO_PATTERN) || (A->ops->copy != B->ops->copy)) {
1645:     PetscCall(MatGetRowUpperTriangular(A));
1646:     PetscCall(MatCopy_Basic(A, B, str));
1647:     PetscCall(MatRestoreRowUpperTriangular(A));
1648:   } else {
1649:     Mat_MPISBAIJ *a = (Mat_MPISBAIJ *)A->data;
1650:     Mat_MPISBAIJ *b = (Mat_MPISBAIJ *)B->data;

1652:     PetscCall(MatCopy(a->A, b->A, str));
1653:     PetscCall(MatCopy(a->B, b->B, str));
1654:   }
1655:   PetscCall(PetscObjectStateIncrease((PetscObject)B));
1656:   PetscFunctionReturn(PETSC_SUCCESS);
1657: }

1659: static PetscErrorCode MatAXPY_MPISBAIJ(Mat Y, PetscScalar a, Mat X, MatStructure str)
1660: {
1661:   Mat_MPISBAIJ *xx = (Mat_MPISBAIJ *)X->data, *yy = (Mat_MPISBAIJ *)Y->data;
1662:   PetscBLASInt  bnz, one                          = 1;
1663:   Mat_SeqSBAIJ *xa, *ya;
1664:   Mat_SeqBAIJ  *xb, *yb;

1666:   PetscFunctionBegin;
1667:   if (str == SAME_NONZERO_PATTERN) {
1668:     PetscScalar alpha = a;
1669:     xa                = (Mat_SeqSBAIJ *)xx->A->data;
1670:     ya                = (Mat_SeqSBAIJ *)yy->A->data;
1671:     PetscCall(PetscBLASIntCast(xa->nz, &bnz));
1672:     PetscCallBLAS("BLASaxpy", BLASaxpy_(&bnz, &alpha, xa->a, &one, ya->a, &one));
1673:     xb = (Mat_SeqBAIJ *)xx->B->data;
1674:     yb = (Mat_SeqBAIJ *)yy->B->data;
1675:     PetscCall(PetscBLASIntCast(xb->nz, &bnz));
1676:     PetscCallBLAS("BLASaxpy", BLASaxpy_(&bnz, &alpha, xb->a, &one, yb->a, &one));
1677:     PetscCall(PetscObjectStateIncrease((PetscObject)Y));
1678:   } else if (str == SUBSET_NONZERO_PATTERN) { /* nonzeros of X is a subset of Y's */
1679:     PetscCall(MatSetOption(X, MAT_GETROW_UPPERTRIANGULAR, PETSC_TRUE));
1680:     PetscCall(MatAXPY_Basic(Y, a, X, str));
1681:     PetscCall(MatSetOption(X, MAT_GETROW_UPPERTRIANGULAR, PETSC_FALSE));
1682:   } else {
1683:     Mat       B;
1684:     PetscInt *nnz_d, *nnz_o, bs = Y->rmap->bs;
1685:     PetscCheck(bs == X->rmap->bs, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Matrices must have same block size");
1686:     PetscCall(MatGetRowUpperTriangular(X));
1687:     PetscCall(MatGetRowUpperTriangular(Y));
1688:     PetscCall(PetscMalloc1(yy->A->rmap->N, &nnz_d));
1689:     PetscCall(PetscMalloc1(yy->B->rmap->N, &nnz_o));
1690:     PetscCall(MatCreate(PetscObjectComm((PetscObject)Y), &B));
1691:     PetscCall(PetscObjectSetName((PetscObject)B, ((PetscObject)Y)->name));
1692:     PetscCall(MatSetSizes(B, Y->rmap->n, Y->cmap->n, Y->rmap->N, Y->cmap->N));
1693:     PetscCall(MatSetBlockSizesFromMats(B, Y, Y));
1694:     PetscCall(MatSetType(B, MATMPISBAIJ));
1695:     PetscCall(MatAXPYGetPreallocation_SeqSBAIJ(yy->A, xx->A, nnz_d));
1696:     PetscCall(MatAXPYGetPreallocation_MPIBAIJ(yy->B, yy->garray, xx->B, xx->garray, nnz_o));
1697:     PetscCall(MatMPISBAIJSetPreallocation(B, bs, 0, nnz_d, 0, nnz_o));
1698:     PetscCall(MatAXPY_BasicWithPreallocation(B, Y, a, X, str));
1699:     PetscCall(MatHeaderMerge(Y, &B));
1700:     PetscCall(PetscFree(nnz_d));
1701:     PetscCall(PetscFree(nnz_o));
1702:     PetscCall(MatRestoreRowUpperTriangular(X));
1703:     PetscCall(MatRestoreRowUpperTriangular(Y));
1704:   }
1705:   PetscFunctionReturn(PETSC_SUCCESS);
1706: }

1708: static PetscErrorCode MatCreateSubMatrices_MPISBAIJ(Mat A, PetscInt n, const IS irow[], const IS icol[], MatReuse scall, Mat *B[])
1709: {
1710:   PetscInt  i;
1711:   PetscBool flg;

1713:   PetscFunctionBegin;
1714:   PetscCall(MatCreateSubMatrices_MPIBAIJ(A, n, irow, icol, scall, B)); /* B[] are sbaij matrices */
1715:   for (i = 0; i < n; i++) {
1716:     PetscCall(ISEqual(irow[i], icol[i], &flg));
1717:     if (!flg) PetscCall(MatSeqSBAIJZeroOps_Private(*B[i]));
1718:   }
1719:   PetscFunctionReturn(PETSC_SUCCESS);
1720: }

1722: static PetscErrorCode MatShift_MPISBAIJ(Mat Y, PetscScalar a)
1723: {
1724:   Mat_MPISBAIJ *maij = (Mat_MPISBAIJ *)Y->data;
1725:   Mat_SeqSBAIJ *aij  = (Mat_SeqSBAIJ *)maij->A->data;

1727:   PetscFunctionBegin;
1728:   if (!Y->preallocated) {
1729:     PetscCall(MatMPISBAIJSetPreallocation(Y, Y->rmap->bs, 1, NULL, 0, NULL));
1730:   } else if (!aij->nz) {
1731:     PetscInt nonew = aij->nonew;
1732:     PetscCall(MatSeqSBAIJSetPreallocation(maij->A, Y->rmap->bs, 1, NULL));
1733:     aij->nonew = nonew;
1734:   }
1735:   PetscCall(MatShift_Basic(Y, a));
1736:   PetscFunctionReturn(PETSC_SUCCESS);
1737: }

1739: static PetscErrorCode MatGetDiagonalBlock_MPISBAIJ(Mat A, Mat *a)
1740: {
1741:   PetscFunctionBegin;
1742:   *a = ((Mat_MPISBAIJ *)A->data)->A;
1743:   PetscFunctionReturn(PETSC_SUCCESS);
1744: }

1746: static PetscErrorCode MatEliminateZeros_MPISBAIJ(Mat A, PetscBool keep)
1747: {
1748:   Mat_MPISBAIJ *a = (Mat_MPISBAIJ *)A->data;

1750:   PetscFunctionBegin;
1751:   PetscCall(MatEliminateZeros_SeqSBAIJ(a->A, keep));       // possibly keep zero diagonal coefficients
1752:   PetscCall(MatEliminateZeros_SeqBAIJ(a->B, PETSC_FALSE)); // never keep zero diagonal coefficients
1753:   PetscFunctionReturn(PETSC_SUCCESS);
1754: }

1756: static PetscErrorCode MatLoad_MPISBAIJ(Mat, PetscViewer);
1757: static PetscErrorCode MatGetRowMaxAbs_MPISBAIJ(Mat, Vec, PetscInt[]);
1758: static PetscErrorCode MatSOR_MPISBAIJ(Mat, Vec, PetscReal, MatSORType, PetscReal, PetscInt, PetscInt, Vec);

1760: static struct _MatOps MatOps_Values = {MatSetValues_MPISBAIJ,
1761:                                        MatGetRow_MPISBAIJ,
1762:                                        MatRestoreRow_MPISBAIJ,
1763:                                        MatMult_MPISBAIJ,
1764:                                        /*  4*/ MatMultAdd_MPISBAIJ,
1765:                                        MatMult_MPISBAIJ, /* transpose versions are same as non-transpose */
1766:                                        MatMultAdd_MPISBAIJ,
1767:                                        NULL,
1768:                                        NULL,
1769:                                        NULL,
1770:                                        /* 10*/ NULL,
1771:                                        NULL,
1772:                                        NULL,
1773:                                        MatSOR_MPISBAIJ,
1774:                                        MatTranspose_MPISBAIJ,
1775:                                        /* 15*/ MatGetInfo_MPISBAIJ,
1776:                                        MatEqual_MPISBAIJ,
1777:                                        MatGetDiagonal_MPISBAIJ,
1778:                                        MatDiagonalScale_MPISBAIJ,
1779:                                        MatNorm_MPISBAIJ,
1780:                                        /* 20*/ MatAssemblyBegin_MPISBAIJ,
1781:                                        MatAssemblyEnd_MPISBAIJ,
1782:                                        MatSetOption_MPISBAIJ,
1783:                                        MatZeroEntries_MPISBAIJ,
1784:                                        /* 24*/ NULL,
1785:                                        NULL,
1786:                                        NULL,
1787:                                        NULL,
1788:                                        NULL,
1789:                                        /* 29*/ MatSetUp_MPI_Hash,
1790:                                        NULL,
1791:                                        NULL,
1792:                                        MatGetDiagonalBlock_MPISBAIJ,
1793:                                        NULL,
1794:                                        /* 34*/ MatDuplicate_MPISBAIJ,
1795:                                        NULL,
1796:                                        NULL,
1797:                                        NULL,
1798:                                        NULL,
1799:                                        /* 39*/ MatAXPY_MPISBAIJ,
1800:                                        MatCreateSubMatrices_MPISBAIJ,
1801:                                        MatIncreaseOverlap_MPISBAIJ,
1802:                                        MatGetValues_MPISBAIJ,
1803:                                        MatCopy_MPISBAIJ,
1804:                                        /* 44*/ NULL,
1805:                                        MatScale_MPISBAIJ,
1806:                                        MatShift_MPISBAIJ,
1807:                                        NULL,
1808:                                        NULL,
1809:                                        /* 49*/ NULL,
1810:                                        NULL,
1811:                                        NULL,
1812:                                        NULL,
1813:                                        NULL,
1814:                                        /* 54*/ NULL,
1815:                                        NULL,
1816:                                        MatSetUnfactored_MPISBAIJ,
1817:                                        NULL,
1818:                                        MatSetValuesBlocked_MPISBAIJ,
1819:                                        /* 59*/ MatCreateSubMatrix_MPISBAIJ,
1820:                                        NULL,
1821:                                        NULL,
1822:                                        NULL,
1823:                                        NULL,
1824:                                        /* 64*/ NULL,
1825:                                        NULL,
1826:                                        NULL,
1827:                                        NULL,
1828:                                        MatGetRowMaxAbs_MPISBAIJ,
1829:                                        /* 69*/ NULL,
1830:                                        MatConvert_MPISBAIJ_Basic,
1831:                                        NULL,
1832:                                        NULL,
1833:                                        NULL,
1834:                                        NULL,
1835:                                        NULL,
1836:                                        NULL,
1837:                                        NULL,
1838:                                        MatLoad_MPISBAIJ,
1839:                                        /* 79*/ NULL,
1840:                                        NULL,
1841:                                        NULL,
1842:                                        NULL,
1843:                                        NULL,
1844:                                        /* 84*/ NULL,
1845:                                        NULL,
1846:                                        NULL,
1847:                                        NULL,
1848:                                        NULL,
1849:                                        /* 89*/ NULL,
1850:                                        NULL,
1851:                                        NULL,
1852:                                        NULL,
1853:                                        MatConjugate_MPISBAIJ,
1854:                                        /* 94*/ NULL,
1855:                                        NULL,
1856:                                        MatRealPart_MPISBAIJ,
1857:                                        MatImaginaryPart_MPISBAIJ,
1858:                                        MatGetRowUpperTriangular_MPISBAIJ,
1859:                                        /* 99*/ MatRestoreRowUpperTriangular_MPISBAIJ,
1860:                                        NULL,
1861:                                        NULL,
1862:                                        NULL,
1863:                                        NULL,
1864:                                        /*104*/ NULL,
1865:                                        NULL,
1866:                                        NULL,
1867:                                        NULL,
1868:                                        NULL,
1869:                                        /*109*/ NULL,
1870:                                        NULL,
1871:                                        NULL,
1872:                                        NULL,
1873:                                        NULL,
1874:                                        /*114*/ NULL,
1875:                                        NULL,
1876:                                        NULL,
1877:                                        NULL,
1878:                                        NULL,
1879:                                        /*119*/ NULL,
1880:                                        NULL,
1881:                                        NULL,
1882:                                        NULL,
1883:                                        NULL,
1884:                                        /*124*/ NULL,
1885:                                        NULL,
1886:                                        MatSetBlockSizes_Default,
1887:                                        NULL,
1888:                                        NULL,
1889:                                        /*129*/ NULL,
1890:                                        MatCreateMPIMatConcatenateSeqMat_MPISBAIJ,
1891:                                        NULL,
1892:                                        NULL,
1893:                                        NULL,
1894:                                        /*134*/ NULL,
1895:                                        NULL,
1896:                                        MatEliminateZeros_MPISBAIJ,
1897:                                        NULL,
1898:                                        NULL,
1899:                                        /*139*/ NULL,
1900:                                        NULL,
1901:                                        MatCopyHashToXAIJ_MPI_Hash,
1902:                                        NULL,
1903:                                        NULL};

1905: static PetscErrorCode MatMPISBAIJSetPreallocation_MPISBAIJ(Mat B, PetscInt bs, PetscInt d_nz, const PetscInt *d_nnz, PetscInt o_nz, const PetscInt *o_nnz)
1906: {
1907:   Mat_MPISBAIJ *b = (Mat_MPISBAIJ *)B->data;
1908:   PetscInt      i, mbs, Mbs;
1909:   PetscMPIInt   size;

1911:   PetscFunctionBegin;
1912:   if (B->hash_active) {
1913:     B->ops[0]      = b->cops;
1914:     B->hash_active = PETSC_FALSE;
1915:   }
1916:   if (!B->preallocated) PetscCall(MatStashCreate_Private(PetscObjectComm((PetscObject)B), bs, &B->bstash));
1917:   PetscCall(MatSetBlockSize(B, bs));
1918:   PetscCall(PetscLayoutSetUp(B->rmap));
1919:   PetscCall(PetscLayoutSetUp(B->cmap));
1920:   PetscCall(PetscLayoutGetBlockSize(B->rmap, &bs));
1921:   PetscCheck(B->rmap->N <= B->cmap->N, PetscObjectComm((PetscObject)B), PETSC_ERR_SUP, "MPISBAIJ matrix cannot have more rows %" PetscInt_FMT " than columns %" PetscInt_FMT, B->rmap->N, B->cmap->N);
1922:   PetscCheck(B->rmap->n <= B->cmap->n, PETSC_COMM_SELF, PETSC_ERR_SUP, "MPISBAIJ matrix cannot have more local rows %" PetscInt_FMT " than columns %" PetscInt_FMT, B->rmap->n, B->cmap->n);

1924:   mbs = B->rmap->n / bs;
1925:   Mbs = B->rmap->N / bs;
1926:   PetscCheck(mbs * bs == B->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "No of local rows %" PetscInt_FMT " must be divisible by blocksize %" PetscInt_FMT, B->rmap->N, bs);

1928:   B->rmap->bs = bs;
1929:   b->bs2      = bs * bs;
1930:   b->mbs      = mbs;
1931:   b->Mbs      = Mbs;
1932:   b->nbs      = B->cmap->n / bs;
1933:   b->Nbs      = B->cmap->N / bs;

1935:   for (i = 0; i <= b->size; i++) b->rangebs[i] = B->rmap->range[i] / bs;
1936:   b->rstartbs = B->rmap->rstart / bs;
1937:   b->rendbs   = B->rmap->rend / bs;

1939:   b->cstartbs = B->cmap->rstart / bs;
1940:   b->cendbs   = B->cmap->rend / bs;

1942: #if defined(PETSC_USE_CTABLE)
1943:   PetscCall(PetscHMapIDestroy(&b->colmap));
1944: #else
1945:   PetscCall(PetscFree(b->colmap));
1946: #endif
1947:   PetscCall(PetscFree(b->garray));
1948:   PetscCall(VecDestroy(&b->lvec));
1949:   PetscCall(VecScatterDestroy(&b->Mvctx));
1950:   PetscCall(VecDestroy(&b->slvec0));
1951:   PetscCall(VecDestroy(&b->slvec0b));
1952:   PetscCall(VecDestroy(&b->slvec1));
1953:   PetscCall(VecDestroy(&b->slvec1a));
1954:   PetscCall(VecDestroy(&b->slvec1b));
1955:   PetscCall(VecScatterDestroy(&b->sMvctx));

1957:   PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)B), &size));

1959:   MatSeqXAIJGetOptions_Private(b->B);
1960:   PetscCall(MatDestroy(&b->B));
1961:   PetscCall(MatCreate(PETSC_COMM_SELF, &b->B));
1962:   PetscCall(MatSetSizes(b->B, B->rmap->n, size > 1 ? B->cmap->N : 0, B->rmap->n, size > 1 ? B->cmap->N : 0));
1963:   PetscCall(MatSetType(b->B, MATSEQBAIJ));
1964:   MatSeqXAIJRestoreOptions_Private(b->B);

1966:   MatSeqXAIJGetOptions_Private(b->A);
1967:   PetscCall(MatDestroy(&b->A));
1968:   PetscCall(MatCreate(PETSC_COMM_SELF, &b->A));
1969:   PetscCall(MatSetSizes(b->A, B->rmap->n, B->cmap->n, B->rmap->n, B->cmap->n));
1970:   PetscCall(MatSetType(b->A, MATSEQSBAIJ));
1971:   MatSeqXAIJRestoreOptions_Private(b->A);

1973:   PetscCall(MatSeqSBAIJSetPreallocation(b->A, bs, d_nz, d_nnz));
1974:   PetscCall(MatSeqBAIJSetPreallocation(b->B, bs, o_nz, o_nnz));

1976:   B->preallocated  = PETSC_TRUE;
1977:   B->was_assembled = PETSC_FALSE;
1978:   B->assembled     = PETSC_FALSE;
1979:   PetscFunctionReturn(PETSC_SUCCESS);
1980: }

1982: static PetscErrorCode MatMPISBAIJSetPreallocationCSR_MPISBAIJ(Mat B, PetscInt bs, const PetscInt ii[], const PetscInt jj[], const PetscScalar V[])
1983: {
1984:   PetscInt        m, rstart, cend;
1985:   PetscInt        i, j, d, nz, bd, nz_max = 0, *d_nnz = NULL, *o_nnz = NULL;
1986:   const PetscInt *JJ          = NULL;
1987:   PetscScalar    *values      = NULL;
1988:   PetscBool       roworiented = ((Mat_MPISBAIJ *)B->data)->roworiented;
1989:   PetscBool       nooffprocentries;

1991:   PetscFunctionBegin;
1992:   PetscCheck(bs >= 1, PetscObjectComm((PetscObject)B), PETSC_ERR_ARG_OUTOFRANGE, "Invalid block size specified, must be positive but it is %" PetscInt_FMT, bs);
1993:   PetscCall(PetscLayoutSetBlockSize(B->rmap, bs));
1994:   PetscCall(PetscLayoutSetBlockSize(B->cmap, bs));
1995:   PetscCall(PetscLayoutSetUp(B->rmap));
1996:   PetscCall(PetscLayoutSetUp(B->cmap));
1997:   PetscCall(PetscLayoutGetBlockSize(B->rmap, &bs));
1998:   m      = B->rmap->n / bs;
1999:   rstart = B->rmap->rstart / bs;
2000:   cend   = B->cmap->rend / bs;

2002:   PetscCheck(!ii[0], PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "ii[0] must be 0 but it is %" PetscInt_FMT, ii[0]);
2003:   PetscCall(PetscMalloc2(m, &d_nnz, m, &o_nnz));
2004:   for (i = 0; i < m; i++) {
2005:     nz = ii[i + 1] - ii[i];
2006:     PetscCheck(nz >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Local row %" PetscInt_FMT " has a negative number of columns %" PetscInt_FMT, i, nz);
2007:     /* count the ones on the diagonal and above, split into diagonal and off-diagonal portions. */
2008:     JJ = jj + ii[i];
2009:     bd = 0;
2010:     for (j = 0; j < nz; j++) {
2011:       if (*JJ >= i + rstart) break;
2012:       JJ++;
2013:       bd++;
2014:     }
2015:     d = 0;
2016:     for (; j < nz; j++) {
2017:       if (*JJ++ >= cend) break;
2018:       d++;
2019:     }
2020:     d_nnz[i] = d;
2021:     o_nnz[i] = nz - d - bd;
2022:     nz       = nz - bd;
2023:     nz_max   = PetscMax(nz_max, nz);
2024:   }
2025:   PetscCall(MatMPISBAIJSetPreallocation(B, bs, 0, d_nnz, 0, o_nnz));
2026:   PetscCall(MatSetOption(B, MAT_IGNORE_LOWER_TRIANGULAR, PETSC_TRUE));
2027:   PetscCall(PetscFree2(d_nnz, o_nnz));

2029:   values = (PetscScalar *)V;
2030:   if (!values) PetscCall(PetscCalloc1(bs * bs * nz_max, &values));
2031:   for (i = 0; i < m; i++) {
2032:     PetscInt        row   = i + rstart;
2033:     PetscInt        ncols = ii[i + 1] - ii[i];
2034:     const PetscInt *icols = jj + ii[i];
2035:     if (bs == 1 || !roworiented) { /* block ordering matches the non-nested layout of MatSetValues so we can insert entire rows */
2036:       const PetscScalar *svals = values + (V ? (bs * bs * ii[i]) : 0);
2037:       PetscCall(MatSetValuesBlocked_MPISBAIJ(B, 1, &row, ncols, icols, svals, INSERT_VALUES));
2038:     } else { /* block ordering does not match so we can only insert one block at a time. */
2039:       PetscInt j;
2040:       for (j = 0; j < ncols; j++) {
2041:         const PetscScalar *svals = values + (V ? (bs * bs * (ii[i] + j)) : 0);
2042:         PetscCall(MatSetValuesBlocked_MPISBAIJ(B, 1, &row, 1, &icols[j], svals, INSERT_VALUES));
2043:       }
2044:     }
2045:   }

2047:   if (!V) PetscCall(PetscFree(values));
2048:   nooffprocentries    = B->nooffprocentries;
2049:   B->nooffprocentries = PETSC_TRUE;
2050:   PetscCall(MatAssemblyBegin(B, MAT_FINAL_ASSEMBLY));
2051:   PetscCall(MatAssemblyEnd(B, MAT_FINAL_ASSEMBLY));
2052:   B->nooffprocentries = nooffprocentries;

2054:   PetscCall(MatSetOption(B, MAT_NEW_NONZERO_LOCATION_ERR, PETSC_TRUE));
2055:   PetscFunctionReturn(PETSC_SUCCESS);
2056: }

2058: /*MC
2059:    MATMPISBAIJ - MATMPISBAIJ = "mpisbaij" - A matrix type to be used for distributed symmetric sparse block matrices,
2060:    based on block compressed sparse row format.  Only the upper triangular portion of the "diagonal" portion of
2061:    the matrix is stored.

2063:    For complex numbers by default this matrix is symmetric, NOT Hermitian symmetric. To make it Hermitian symmetric you
2064:    can call `MatSetOption`(`Mat`, `MAT_HERMITIAN`);

2066:    Options Database Key:
2067: . -mat_type mpisbaij - sets the matrix type to "mpisbaij" during a call to `MatSetFromOptions()`

2069:    Level: beginner

2071:    Note:
2072:      The number of rows in the matrix must be less than or equal to the number of columns. Similarly the number of rows in the
2073:      diagonal portion of the matrix of each process has to less than or equal the number of columns.

2075: .seealso: [](ch_matrices), `Mat`, `MATSBAIJ`, `MATBAIJ`, `MatCreateBAIJ()`, `MATSEQSBAIJ`, `MatType`
2076: M*/

2078: PETSC_EXTERN PetscErrorCode MatCreate_MPISBAIJ(Mat B)
2079: {
2080:   Mat_MPISBAIJ *b;
2081:   PetscBool     flg = PETSC_FALSE;

2083:   PetscFunctionBegin;
2084:   PetscCall(PetscNew(&b));
2085:   B->data   = (void *)b;
2086:   B->ops[0] = MatOps_Values;

2088:   B->ops->destroy = MatDestroy_MPISBAIJ;
2089:   B->ops->view    = MatView_MPISBAIJ;
2090:   B->assembled    = PETSC_FALSE;
2091:   B->insertmode   = NOT_SET_VALUES;

2093:   PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)B), &b->rank));
2094:   PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)B), &b->size));

2096:   /* build local table of row and column ownerships */
2097:   PetscCall(PetscMalloc1(b->size + 2, &b->rangebs));

2099:   /* build cache for off array entries formed */
2100:   PetscCall(MatStashCreate_Private(PetscObjectComm((PetscObject)B), 1, &B->stash));

2102:   b->donotstash  = PETSC_FALSE;
2103:   b->colmap      = NULL;
2104:   b->garray      = NULL;
2105:   b->roworiented = PETSC_TRUE;

2107:   /* stuff used in block assembly */
2108:   b->barray = NULL;

2110:   /* stuff used for matrix vector multiply */
2111:   b->lvec    = NULL;
2112:   b->Mvctx   = NULL;
2113:   b->slvec0  = NULL;
2114:   b->slvec0b = NULL;
2115:   b->slvec1  = NULL;
2116:   b->slvec1a = NULL;
2117:   b->slvec1b = NULL;
2118:   b->sMvctx  = NULL;

2120:   /* stuff for MatGetRow() */
2121:   b->rowindices   = NULL;
2122:   b->rowvalues    = NULL;
2123:   b->getrowactive = PETSC_FALSE;

2125:   /* hash table stuff */
2126:   b->ht           = NULL;
2127:   b->hd           = NULL;
2128:   b->ht_size      = 0;
2129:   b->ht_flag      = PETSC_FALSE;
2130:   b->ht_fact      = 0;
2131:   b->ht_total_ct  = 0;
2132:   b->ht_insert_ct = 0;

2134:   /* stuff for MatCreateSubMatrices_MPIBAIJ_local() */
2135:   b->ijonly = PETSC_FALSE;

2137:   b->in_loc = NULL;
2138:   b->v_loc  = NULL;
2139:   b->n_loc  = 0;

2141:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatStoreValues_C", MatStoreValues_MPISBAIJ));
2142:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatRetrieveValues_C", MatRetrieveValues_MPISBAIJ));
2143:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatMPISBAIJSetPreallocation_C", MatMPISBAIJSetPreallocation_MPISBAIJ));
2144:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatMPISBAIJSetPreallocationCSR_C", MatMPISBAIJSetPreallocationCSR_MPISBAIJ));
2145: #if defined(PETSC_HAVE_ELEMENTAL)
2146:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_mpisbaij_elemental_C", MatConvert_MPISBAIJ_Elemental));
2147: #endif
2148: #if defined(PETSC_HAVE_SCALAPACK) && (defined(PETSC_USE_REAL_SINGLE) || defined(PETSC_USE_REAL_DOUBLE))
2149:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_mpisbaij_scalapack_C", MatConvert_SBAIJ_ScaLAPACK));
2150: #endif
2151:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_mpisbaij_mpiaij_C", MatConvert_MPISBAIJ_Basic));
2152:   PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_mpisbaij_mpibaij_C", MatConvert_MPISBAIJ_Basic));

2154:   B->symmetric                   = PETSC_BOOL3_TRUE;
2155:   B->structurally_symmetric      = PETSC_BOOL3_TRUE;
2156:   B->symmetry_eternal            = PETSC_TRUE;
2157:   B->structural_symmetry_eternal = PETSC_TRUE;
2158: #if !defined(PETSC_USE_COMPLEX)
2159:   B->hermitian = PETSC_BOOL3_TRUE;
2160: #endif

2162:   PetscCall(PetscObjectChangeTypeName((PetscObject)B, MATMPISBAIJ));
2163:   PetscOptionsBegin(PetscObjectComm((PetscObject)B), NULL, "Options for loading MPISBAIJ matrix 1", "Mat");
2164:   PetscCall(PetscOptionsBool("-mat_use_hash_table", "Use hash table to save memory in constructing matrix", "MatSetOption", flg, &flg, NULL));
2165:   if (flg) {
2166:     PetscReal fact = 1.39;
2167:     PetscCall(MatSetOption(B, MAT_USE_HASH_TABLE, PETSC_TRUE));
2168:     PetscCall(PetscOptionsReal("-mat_use_hash_table", "Use hash table factor", "MatMPIBAIJSetHashTableFactor", fact, &fact, NULL));
2169:     if (fact <= 1.0) fact = 1.39;
2170:     PetscCall(MatMPIBAIJSetHashTableFactor(B, fact));
2171:     PetscCall(PetscInfo(B, "Hash table Factor used %5.2g\n", (double)fact));
2172:   }
2173:   PetscOptionsEnd();
2174:   PetscFunctionReturn(PETSC_SUCCESS);
2175: }

2177: // PetscClangLinter pragma disable: -fdoc-section-header-unknown
2178: /*MC
2179:    MATSBAIJ - MATSBAIJ = "sbaij" - A matrix type to be used for symmetric block sparse matrices.

2181:    This matrix type is identical to `MATSEQSBAIJ` when constructed with a single process communicator,
2182:    and `MATMPISBAIJ` otherwise.

2184:    Options Database Key:
2185: . -mat_type sbaij - sets the matrix type to `MATSBAIJ` during a call to `MatSetFromOptions()`

2187:   Level: beginner

2189: .seealso: [](ch_matrices), `Mat`, `MATSEQSBAIJ`, `MATMPISBAIJ`, `MatCreateSBAIJ()`, `MATSEQSBAIJ`, `MATMPISBAIJ`
2190: M*/

2192: /*@
2193:   MatMPISBAIJSetPreallocation - For good matrix assembly performance
2194:   the user should preallocate the matrix storage by setting the parameters
2195:   d_nz (or d_nnz) and o_nz (or o_nnz).  By setting these parameters accurately,
2196:   performance can be increased by more than a factor of 50.

2198:   Collective

2200:   Input Parameters:
2201: + B     - the matrix
2202: . bs    - size of block, the blocks are ALWAYS square. One can use MatSetBlockSizes() to set a different row and column blocksize but the row
2203:           blocksize always defines the size of the blocks. The column blocksize sets the blocksize of the vectors obtained with MatCreateVecs()
2204: . d_nz  - number of block nonzeros per block row in diagonal portion of local
2205:           submatrix  (same for all local rows)
2206: . d_nnz - array containing the number of block nonzeros in the various block rows
2207:           in the upper triangular and diagonal part of the in diagonal portion of the local
2208:           (possibly different for each block row) or `NULL`.  If you plan to factor the matrix you must leave room
2209:           for the diagonal entry and set a value even if it is zero.
2210: . o_nz  - number of block nonzeros per block row in the off-diagonal portion of local
2211:           submatrix (same for all local rows).
2212: - o_nnz - array containing the number of nonzeros in the various block rows of the
2213:           off-diagonal portion of the local submatrix that is right of the diagonal
2214:           (possibly different for each block row) or `NULL`.

2216:   Options Database Keys:
2217: + -mat_no_unroll  - uses code that does not unroll the loops in the
2218:                     block calculations (much slower)
2219: - -mat_block_size - size of the blocks to use

2221:   Level: intermediate

2223:   Notes:

2225:   If `PETSC_DECIDE` or `PETSC_DETERMINE` is used for a particular argument on one processor
2226:   than it must be used on all processors that share the object for that argument.

2228:   If the *_nnz parameter is given then the *_nz parameter is ignored

2230:   Storage Information:
2231:   For a square global matrix we define each processor's diagonal portion
2232:   to be its local rows and the corresponding columns (a square submatrix);
2233:   each processor's off-diagonal portion encompasses the remainder of the
2234:   local matrix (a rectangular submatrix).

2236:   The user can specify preallocated storage for the diagonal part of
2237:   the local submatrix with either `d_nz` or `d_nnz` (not both).  Set
2238:   `d_nz` = `PETSC_DEFAULT` and `d_nnz` = `NULL` for PETSc to control dynamic
2239:   memory allocation.  Likewise, specify preallocated storage for the
2240:   off-diagonal part of the local submatrix with `o_nz` or `o_nnz` (not both).

2242:   You can call `MatGetInfo()` to get information on how effective the preallocation was;
2243:   for example the fields mallocs,nz_allocated,nz_used,nz_unneeded;
2244:   You can also run with the option `-info` and look for messages with the string
2245:   malloc in them to see if additional memory allocation was needed.

2247:   Consider a processor that owns rows 3, 4 and 5 of a parallel matrix. In
2248:   the figure below we depict these three local rows and all columns (0-11).

2250: .vb
2251:            0 1 2 3 4 5 6 7 8 9 10 11
2252:           --------------------------
2253:    row 3  |. . . d d d o o o o  o  o
2254:    row 4  |. . . d d d o o o o  o  o
2255:    row 5  |. . . d d d o o o o  o  o
2256:           --------------------------
2257: .ve

2259:   Thus, any entries in the d locations are stored in the d (diagonal)
2260:   submatrix, and any entries in the o locations are stored in the
2261:   o (off-diagonal) submatrix.  Note that the d matrix is stored in
2262:   `MATSEQSBAIJ` format and the o submatrix in `MATSEQBAIJ` format.

2264:   Now `d_nz` should indicate the number of block nonzeros per row in the upper triangular
2265:   plus the diagonal part of the d matrix,
2266:   and `o_nz` should indicate the number of block nonzeros per row in the o matrix

2268:   In general, for PDE problems in which most nonzeros are near the diagonal,
2269:   one expects `d_nz` >> `o_nz`.

2271: .seealso: [](ch_matrices), `Mat`, `MATMPISBAIJ`, `MATSBAIJ`, `MatCreate()`, `MatCreateSeqSBAIJ()`, `MatSetValues()`, `MatCreateBAIJ()`, `PetscSplitOwnership()`
2272: @*/
2273: PetscErrorCode MatMPISBAIJSetPreallocation(Mat B, PetscInt bs, PetscInt d_nz, const PetscInt d_nnz[], PetscInt o_nz, const PetscInt o_nnz[])
2274: {
2275:   PetscFunctionBegin;
2279:   PetscTryMethod(B, "MatMPISBAIJSetPreallocation_C", (Mat, PetscInt, PetscInt, const PetscInt[], PetscInt, const PetscInt[]), (B, bs, d_nz, d_nnz, o_nz, o_nnz));
2280:   PetscFunctionReturn(PETSC_SUCCESS);
2281: }

2283: // PetscClangLinter pragma disable: -fdoc-section-header-unknown
2284: /*@
2285:   MatCreateSBAIJ - Creates a sparse parallel matrix in symmetric block AIJ format, `MATSBAIJ`,
2286:   (block compressed row).  For good matrix assembly performance
2287:   the user should preallocate the matrix storage by setting the parameters
2288:   `d_nz` (or `d_nnz`) and `o_nz` (or `o_nnz`).

2290:   Collective

2292:   Input Parameters:
2293: + comm  - MPI communicator
2294: . bs    - size of block, the blocks are ALWAYS square. One can use `MatSetBlockSizes()` to set a different row and column blocksize but the row
2295:           blocksize always defines the size of the blocks. The column blocksize sets the blocksize of the vectors obtained with `MatCreateVecs()`
2296: . m     - number of local rows (or `PETSC_DECIDE` to have calculated if `M` is given)
2297:           This value should be the same as the local size used in creating the
2298:           y vector for the matrix-vector product y = Ax.
2299: . n     - number of local columns (or `PETSC_DECIDE` to have calculated if `N` is given)
2300:           This value should be the same as the local size used in creating the
2301:           x vector for the matrix-vector product y = Ax.
2302: . M     - number of global rows (or `PETSC_DETERMINE` to have calculated if `m` is given)
2303: . N     - number of global columns (or `PETSC_DETERMINE` to have calculated if `n` is given)
2304: . d_nz  - number of block nonzeros per block row in diagonal portion of local
2305:           submatrix (same for all local rows)
2306: . d_nnz - array containing the number of block nonzeros in the various block rows
2307:           in the upper triangular portion of the in diagonal portion of the local
2308:           (possibly different for each block block row) or `NULL`.
2309:           If you plan to factor the matrix you must leave room for the diagonal entry and
2310:           set its value even if it is zero.
2311: . o_nz  - number of block nonzeros per block row in the off-diagonal portion of local
2312:           submatrix (same for all local rows).
2313: - o_nnz - array containing the number of nonzeros in the various block rows of the
2314:           off-diagonal portion of the local submatrix (possibly different for
2315:           each block row) or `NULL`.

2317:   Output Parameter:
2318: . A - the matrix

2320:   Options Database Keys:
2321: + -mat_no_unroll  - uses code that does not unroll the loops in the
2322:                     block calculations (much slower)
2323: . -mat_block_size - size of the blocks to use
2324: - -mat_mpi        - use the parallel matrix data structures even on one processor
2325:                     (defaults to using SeqBAIJ format on one processor)

2327:   Level: intermediate

2329:   Notes:
2330:   It is recommended that one use `MatCreateFromOptions()` or the `MatCreate()`, `MatSetType()` and/or `MatSetFromOptions()`,
2331:   MatXXXXSetPreallocation() paradigm instead of this routine directly.
2332:   [MatXXXXSetPreallocation() is, for example, `MatSeqAIJSetPreallocation()`]

2334:   The number of rows and columns must be divisible by blocksize.
2335:   This matrix type does not support complex Hermitian operation.

2337:   The user MUST specify either the local or global matrix dimensions
2338:   (possibly both).

2340:   If `PETSC_DECIDE` or `PETSC_DETERMINE` is used for a particular argument on one processor
2341:   than it must be used on all processors that share the object for that argument.

2343:   If `m` and `n` are not `PETSC_DECIDE`, then the values determines the `PetscLayout` of the matrix and the ranges returned by
2344:   `MatGetOwnershipRange()`,  `MatGetOwnershipRanges()`, `MatGetOwnershipRangeColumn()`, and `MatGetOwnershipRangesColumn()`.

2346:   If the *_nnz parameter is given then the *_nz parameter is ignored

2348:   Storage Information:
2349:   For a square global matrix we define each processor's diagonal portion
2350:   to be its local rows and the corresponding columns (a square submatrix);
2351:   each processor's off-diagonal portion encompasses the remainder of the
2352:   local matrix (a rectangular submatrix).

2354:   The user can specify preallocated storage for the diagonal part of
2355:   the local submatrix with either `d_nz` or `d_nnz` (not both). Set
2356:   `d_nz` = `PETSC_DEFAULT` and `d_nnz` = `NULL` for PETSc to control dynamic
2357:   memory allocation. Likewise, specify preallocated storage for the
2358:   off-diagonal part of the local submatrix with `o_nz` or `o_nnz` (not both).

2360:   Consider a processor that owns rows 3, 4 and 5 of a parallel matrix. In
2361:   the figure below we depict these three local rows and all columns (0-11).

2363: .vb
2364:            0 1 2 3 4 5 6 7 8 9 10 11
2365:           --------------------------
2366:    row 3  |. . . d d d o o o o  o  o
2367:    row 4  |. . . d d d o o o o  o  o
2368:    row 5  |. . . d d d o o o o  o  o
2369:           --------------------------
2370: .ve

2372:   Thus, any entries in the d locations are stored in the d (diagonal)
2373:   submatrix, and any entries in the o locations are stored in the
2374:   o (off-diagonal) submatrix. Note that the d matrix is stored in
2375:   `MATSEQSBAIJ` format and the o submatrix in `MATSEQBAIJ` format.

2377:   Now `d_nz` should indicate the number of block nonzeros per row in the upper triangular
2378:   plus the diagonal part of the d matrix,
2379:   and `o_nz` should indicate the number of block nonzeros per row in the o matrix.
2380:   In general, for PDE problems in which most nonzeros are near the diagonal,
2381:   one expects `d_nz` >> `o_nz`.

2383: .seealso: [](ch_matrices), `Mat`, `MATSBAIJ`, `MatCreate()`, `MatCreateSeqSBAIJ()`, `MatSetValues()`, `MatCreateBAIJ()`,
2384:           `MatGetOwnershipRange()`,  `MatGetOwnershipRanges()`, `MatGetOwnershipRangeColumn()`, `MatGetOwnershipRangesColumn()`, `PetscLayout`
2385: @*/
2386: PetscErrorCode MatCreateSBAIJ(MPI_Comm comm, PetscInt bs, PetscInt m, PetscInt n, PetscInt M, PetscInt N, PetscInt d_nz, const PetscInt d_nnz[], PetscInt o_nz, const PetscInt o_nnz[], Mat *A)
2387: {
2388:   PetscMPIInt size;

2390:   PetscFunctionBegin;
2391:   PetscCall(MatCreate(comm, A));
2392:   PetscCall(MatSetSizes(*A, m, n, M, N));
2393:   PetscCallMPI(MPI_Comm_size(comm, &size));
2394:   if (size > 1) {
2395:     PetscCall(MatSetType(*A, MATMPISBAIJ));
2396:     PetscCall(MatMPISBAIJSetPreallocation(*A, bs, d_nz, d_nnz, o_nz, o_nnz));
2397:   } else {
2398:     PetscCall(MatSetType(*A, MATSEQSBAIJ));
2399:     PetscCall(MatSeqSBAIJSetPreallocation(*A, bs, d_nz, d_nnz));
2400:   }
2401:   PetscFunctionReturn(PETSC_SUCCESS);
2402: }

2404: static PetscErrorCode MatDuplicate_MPISBAIJ(Mat matin, MatDuplicateOption cpvalues, Mat *newmat)
2405: {
2406:   Mat           mat;
2407:   Mat_MPISBAIJ *a, *oldmat = (Mat_MPISBAIJ *)matin->data;
2408:   PetscInt      len = 0, nt, bs = matin->rmap->bs, mbs = oldmat->mbs;
2409:   PetscScalar  *array;

2411:   PetscFunctionBegin;
2412:   *newmat = NULL;

2414:   PetscCall(MatCreate(PetscObjectComm((PetscObject)matin), &mat));
2415:   PetscCall(MatSetSizes(mat, matin->rmap->n, matin->cmap->n, matin->rmap->N, matin->cmap->N));
2416:   PetscCall(MatSetType(mat, ((PetscObject)matin)->type_name));
2417:   PetscCall(PetscLayoutReference(matin->rmap, &mat->rmap));
2418:   PetscCall(PetscLayoutReference(matin->cmap, &mat->cmap));

2420:   if (matin->hash_active) {
2421:     PetscCall(MatSetUp(mat));
2422:   } else {
2423:     mat->factortype   = matin->factortype;
2424:     mat->preallocated = PETSC_TRUE;
2425:     mat->assembled    = PETSC_TRUE;
2426:     mat->insertmode   = NOT_SET_VALUES;

2428:     a      = (Mat_MPISBAIJ *)mat->data;
2429:     a->bs2 = oldmat->bs2;
2430:     a->mbs = oldmat->mbs;
2431:     a->nbs = oldmat->nbs;
2432:     a->Mbs = oldmat->Mbs;
2433:     a->Nbs = oldmat->Nbs;

2435:     a->size         = oldmat->size;
2436:     a->rank         = oldmat->rank;
2437:     a->donotstash   = oldmat->donotstash;
2438:     a->roworiented  = oldmat->roworiented;
2439:     a->rowindices   = NULL;
2440:     a->rowvalues    = NULL;
2441:     a->getrowactive = PETSC_FALSE;
2442:     a->barray       = NULL;
2443:     a->rstartbs     = oldmat->rstartbs;
2444:     a->rendbs       = oldmat->rendbs;
2445:     a->cstartbs     = oldmat->cstartbs;
2446:     a->cendbs       = oldmat->cendbs;

2448:     /* hash table stuff */
2449:     a->ht           = NULL;
2450:     a->hd           = NULL;
2451:     a->ht_size      = 0;
2452:     a->ht_flag      = oldmat->ht_flag;
2453:     a->ht_fact      = oldmat->ht_fact;
2454:     a->ht_total_ct  = 0;
2455:     a->ht_insert_ct = 0;

2457:     PetscCall(PetscArraycpy(a->rangebs, oldmat->rangebs, a->size + 2));
2458:     if (oldmat->colmap) {
2459: #if defined(PETSC_USE_CTABLE)
2460:       PetscCall(PetscHMapIDuplicate(oldmat->colmap, &a->colmap));
2461: #else
2462:       PetscCall(PetscMalloc1(a->Nbs, &a->colmap));
2463:       PetscCall(PetscArraycpy(a->colmap, oldmat->colmap, a->Nbs));
2464: #endif
2465:     } else a->colmap = NULL;

2467:     if (oldmat->garray && (len = ((Mat_SeqBAIJ *)oldmat->B->data)->nbs)) {
2468:       PetscCall(PetscMalloc1(len, &a->garray));
2469:       PetscCall(PetscArraycpy(a->garray, oldmat->garray, len));
2470:     } else a->garray = NULL;

2472:     PetscCall(MatStashCreate_Private(PetscObjectComm((PetscObject)matin), matin->rmap->bs, &mat->bstash));
2473:     PetscCall(VecDuplicate(oldmat->lvec, &a->lvec));
2474:     PetscCall(VecScatterCopy(oldmat->Mvctx, &a->Mvctx));

2476:     PetscCall(VecDuplicate(oldmat->slvec0, &a->slvec0));
2477:     PetscCall(VecDuplicate(oldmat->slvec1, &a->slvec1));

2479:     PetscCall(VecGetLocalSize(a->slvec1, &nt));
2480:     PetscCall(VecGetArray(a->slvec1, &array));
2481:     PetscCall(VecCreateSeqWithArray(PETSC_COMM_SELF, 1, bs * mbs, array, &a->slvec1a));
2482:     PetscCall(VecCreateSeqWithArray(PETSC_COMM_SELF, 1, nt - bs * mbs, array + bs * mbs, &a->slvec1b));
2483:     PetscCall(VecRestoreArray(a->slvec1, &array));
2484:     PetscCall(VecGetArray(a->slvec0, &array));
2485:     PetscCall(VecCreateSeqWithArray(PETSC_COMM_SELF, 1, nt - bs * mbs, array + bs * mbs, &a->slvec0b));
2486:     PetscCall(VecRestoreArray(a->slvec0, &array));

2488:     /* ierr =  VecScatterCopy(oldmat->sMvctx,&a->sMvctx); - not written yet, replaced by the lazy trick: */
2489:     PetscCall(PetscObjectReference((PetscObject)oldmat->sMvctx));
2490:     a->sMvctx = oldmat->sMvctx;

2492:     PetscCall(MatDuplicate(oldmat->A, cpvalues, &a->A));
2493:     PetscCall(MatDuplicate(oldmat->B, cpvalues, &a->B));
2494:   }
2495:   PetscCall(PetscFunctionListDuplicate(((PetscObject)matin)->qlist, &((PetscObject)mat)->qlist));
2496:   *newmat = mat;
2497:   PetscFunctionReturn(PETSC_SUCCESS);
2498: }

2500: /* Used for both MPIBAIJ and MPISBAIJ matrices */
2501: #define MatLoad_MPISBAIJ_Binary MatLoad_MPIBAIJ_Binary

2503: static PetscErrorCode MatLoad_MPISBAIJ(Mat mat, PetscViewer viewer)
2504: {
2505:   PetscBool isbinary;

2507:   PetscFunctionBegin;
2508:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERBINARY, &isbinary));
2509:   PetscCheck(isbinary, PetscObjectComm((PetscObject)viewer), PETSC_ERR_SUP, "Viewer type %s not yet supported for reading %s matrices", ((PetscObject)viewer)->type_name, ((PetscObject)mat)->type_name);
2510:   PetscCall(MatLoad_MPISBAIJ_Binary(mat, viewer));
2511:   PetscFunctionReturn(PETSC_SUCCESS);
2512: }

2514: static PetscErrorCode MatGetRowMaxAbs_MPISBAIJ(Mat A, Vec v, PetscInt idx[])
2515: {
2516:   Mat_MPISBAIJ *a = (Mat_MPISBAIJ *)A->data;
2517:   Mat_SeqBAIJ  *b = (Mat_SeqBAIJ *)a->B->data;
2518:   PetscReal     atmp;
2519:   PetscReal    *work, *svalues, *rvalues;
2520:   PetscInt      i, bs, mbs, *bi, *bj, brow, j, ncols, krow, kcol, col, row, Mbs, bcol;
2521:   PetscMPIInt   rank, size;
2522:   PetscInt     *rowners_bs, count, source;
2523:   PetscScalar  *va;
2524:   MatScalar    *ba;
2525:   MPI_Status    stat;

2527:   PetscFunctionBegin;
2528:   PetscCheck(!idx, PETSC_COMM_SELF, PETSC_ERR_SUP, "Send email to petsc-maint@mcs.anl.gov");
2529:   PetscCall(MatGetRowMaxAbs(a->A, v, NULL));
2530:   PetscCall(VecGetArray(v, &va));

2532:   PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)A), &size));
2533:   PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)A), &rank));

2535:   bs  = A->rmap->bs;
2536:   mbs = a->mbs;
2537:   Mbs = a->Mbs;
2538:   ba  = b->a;
2539:   bi  = b->i;
2540:   bj  = b->j;

2542:   /* find ownerships */
2543:   rowners_bs = A->rmap->range;

2545:   /* each proc creates an array to be distributed */
2546:   PetscCall(PetscCalloc1(bs * Mbs, &work));

2548:   /* row_max for B */
2549:   if (rank != size - 1) {
2550:     for (i = 0; i < mbs; i++) {
2551:       ncols = bi[1] - bi[0];
2552:       bi++;
2553:       brow = bs * i;
2554:       for (j = 0; j < ncols; j++) {
2555:         bcol = bs * (*bj);
2556:         for (kcol = 0; kcol < bs; kcol++) {
2557:           col = bcol + kcol;           /* local col index */
2558:           col += rowners_bs[rank + 1]; /* global col index */
2559:           for (krow = 0; krow < bs; krow++) {
2560:             atmp = PetscAbsScalar(*ba);
2561:             ba++;
2562:             row = brow + krow; /* local row index */
2563:             if (PetscRealPart(va[row]) < atmp) va[row] = atmp;
2564:             if (work[col] < atmp) work[col] = atmp;
2565:           }
2566:         }
2567:         bj++;
2568:       }
2569:     }

2571:     /* send values to its owners */
2572:     for (PetscMPIInt dest = rank + 1; dest < size; dest++) {
2573:       svalues = work + rowners_bs[dest];
2574:       count   = rowners_bs[dest + 1] - rowners_bs[dest];
2575:       PetscCallMPI(MPIU_Send(svalues, count, MPIU_REAL, dest, rank, PetscObjectComm((PetscObject)A)));
2576:     }
2577:   }

2579:   /* receive values */
2580:   if (rank) {
2581:     rvalues = work;
2582:     count   = rowners_bs[rank + 1] - rowners_bs[rank];
2583:     for (source = 0; source < rank; source++) {
2584:       PetscCallMPI(MPIU_Recv(rvalues, count, MPIU_REAL, MPI_ANY_SOURCE, MPI_ANY_TAG, PetscObjectComm((PetscObject)A), &stat));
2585:       /* process values */
2586:       for (i = 0; i < count; i++) {
2587:         if (PetscRealPart(va[i]) < rvalues[i]) va[i] = rvalues[i];
2588:       }
2589:     }
2590:   }

2592:   PetscCall(VecRestoreArray(v, &va));
2593:   PetscCall(PetscFree(work));
2594:   PetscFunctionReturn(PETSC_SUCCESS);
2595: }

2597: static PetscErrorCode MatSOR_MPISBAIJ(Mat matin, Vec bb, PetscReal omega, MatSORType flag, PetscReal fshift, PetscInt its, PetscInt lits, Vec xx)
2598: {
2599:   Mat_MPISBAIJ      *mat = (Mat_MPISBAIJ *)matin->data;
2600:   PetscInt           mbs = mat->mbs, bs = matin->rmap->bs;
2601:   PetscScalar       *x, *ptr, *from;
2602:   Vec                bb1;
2603:   const PetscScalar *b;

2605:   PetscFunctionBegin;
2606:   PetscCheck(its > 0 && lits > 0, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Relaxation requires global its %" PetscInt_FMT " and local its %" PetscInt_FMT " both positive", its, lits);
2607:   PetscCheck(bs <= 1, PETSC_COMM_SELF, PETSC_ERR_SUP, "SSOR for block size > 1 is not yet implemented");

2609:   if (flag == SOR_APPLY_UPPER) {
2610:     PetscCall((*mat->A->ops->sor)(mat->A, bb, omega, flag, fshift, lits, 1, xx));
2611:     PetscFunctionReturn(PETSC_SUCCESS);
2612:   }

2614:   if ((flag & SOR_LOCAL_SYMMETRIC_SWEEP) == SOR_LOCAL_SYMMETRIC_SWEEP) {
2615:     if (flag & SOR_ZERO_INITIAL_GUESS) {
2616:       PetscCall((*mat->A->ops->sor)(mat->A, bb, omega, flag, fshift, lits, lits, xx));
2617:       its--;
2618:     }

2620:     PetscCall(VecDuplicate(bb, &bb1));
2621:     while (its--) {
2622:       /* lower triangular part: slvec0b = - B^T*xx */
2623:       PetscCall((*mat->B->ops->multtranspose)(mat->B, xx, mat->slvec0b));

2625:       /* copy xx into slvec0a */
2626:       PetscCall(VecGetArray(mat->slvec0, &ptr));
2627:       PetscCall(VecGetArray(xx, &x));
2628:       PetscCall(PetscArraycpy(ptr, x, bs * mbs));
2629:       PetscCall(VecRestoreArray(mat->slvec0, &ptr));

2631:       PetscCall(VecScale(mat->slvec0, -1.0));

2633:       /* copy bb into slvec1a */
2634:       PetscCall(VecGetArray(mat->slvec1, &ptr));
2635:       PetscCall(VecGetArrayRead(bb, &b));
2636:       PetscCall(PetscArraycpy(ptr, b, bs * mbs));
2637:       PetscCall(VecRestoreArray(mat->slvec1, &ptr));

2639:       /* set slvec1b = 0 */
2640:       PetscCall(PetscObjectStateIncrease((PetscObject)mat->slvec1b));
2641:       PetscCall(VecZeroEntries(mat->slvec1b));

2643:       PetscCall(VecScatterBegin(mat->sMvctx, mat->slvec0, mat->slvec1, ADD_VALUES, SCATTER_FORWARD));
2644:       PetscCall(VecRestoreArray(xx, &x));
2645:       PetscCall(VecRestoreArrayRead(bb, &b));
2646:       PetscCall(VecScatterEnd(mat->sMvctx, mat->slvec0, mat->slvec1, ADD_VALUES, SCATTER_FORWARD));

2648:       /* upper triangular part: bb1 = bb1 - B*x */
2649:       PetscCall((*mat->B->ops->multadd)(mat->B, mat->slvec1b, mat->slvec1a, bb1));

2651:       /* local diagonal sweep */
2652:       PetscCall((*mat->A->ops->sor)(mat->A, bb1, omega, SOR_SYMMETRIC_SWEEP, fshift, lits, lits, xx));
2653:     }
2654:     PetscCall(VecDestroy(&bb1));
2655:   } else if ((flag & SOR_LOCAL_FORWARD_SWEEP) && (its == 1) && (flag & SOR_ZERO_INITIAL_GUESS)) {
2656:     PetscCall((*mat->A->ops->sor)(mat->A, bb, omega, flag, fshift, lits, 1, xx));
2657:   } else if ((flag & SOR_LOCAL_BACKWARD_SWEEP) && (its == 1) && (flag & SOR_ZERO_INITIAL_GUESS)) {
2658:     PetscCall((*mat->A->ops->sor)(mat->A, bb, omega, flag, fshift, lits, 1, xx));
2659:   } else if (flag & SOR_EISENSTAT) {
2660:     Vec                xx1;
2661:     PetscBool          hasop;
2662:     const PetscScalar *diag;
2663:     PetscScalar       *sl, scale = (omega - 2.0) / omega;
2664:     PetscInt           i, n;

2666:     if (!mat->xx1) {
2667:       PetscCall(VecDuplicate(bb, &mat->xx1));
2668:       PetscCall(VecDuplicate(bb, &mat->bb1));
2669:     }
2670:     xx1 = mat->xx1;
2671:     bb1 = mat->bb1;

2673:     PetscCall((*mat->A->ops->sor)(mat->A, bb, omega, (MatSORType)(SOR_ZERO_INITIAL_GUESS | SOR_LOCAL_BACKWARD_SWEEP), fshift, lits, 1, xx));

2675:     if (!mat->diag) {
2676:       /* this is wrong for same matrix with new nonzero values */
2677:       PetscCall(MatCreateVecs(matin, &mat->diag, NULL));
2678:       PetscCall(MatGetDiagonal(matin, mat->diag));
2679:     }
2680:     PetscCall(MatHasOperation(matin, MATOP_MULT_DIAGONAL_BLOCK, &hasop));

2682:     if (hasop) {
2683:       PetscCall(MatMultDiagonalBlock(matin, xx, bb1));
2684:       PetscCall(VecAYPX(mat->slvec1a, scale, bb));
2685:     } else {
2686:       /*
2687:           These two lines are replaced by code that may be a bit faster for a good compiler
2688:       PetscCall(VecPointwiseMult(mat->slvec1a,mat->diag,xx));
2689:       PetscCall(VecAYPX(mat->slvec1a,scale,bb));
2690:       */
2691:       PetscCall(VecGetArray(mat->slvec1a, &sl));
2692:       PetscCall(VecGetArrayRead(mat->diag, &diag));
2693:       PetscCall(VecGetArrayRead(bb, &b));
2694:       PetscCall(VecGetArray(xx, &x));
2695:       PetscCall(VecGetLocalSize(xx, &n));
2696:       if (omega == 1.0) {
2697:         for (i = 0; i < n; i++) sl[i] = b[i] - diag[i] * x[i];
2698:         PetscCall(PetscLogFlops(2.0 * n));
2699:       } else {
2700:         for (i = 0; i < n; i++) sl[i] = b[i] + scale * diag[i] * x[i];
2701:         PetscCall(PetscLogFlops(3.0 * n));
2702:       }
2703:       PetscCall(VecRestoreArray(mat->slvec1a, &sl));
2704:       PetscCall(VecRestoreArrayRead(mat->diag, &diag));
2705:       PetscCall(VecRestoreArrayRead(bb, &b));
2706:       PetscCall(VecRestoreArray(xx, &x));
2707:     }

2709:     /* multiply off-diagonal portion of matrix */
2710:     PetscCall(PetscObjectStateIncrease((PetscObject)mat->slvec1b));
2711:     PetscCall(VecZeroEntries(mat->slvec1b));
2712:     PetscCall((*mat->B->ops->multtranspose)(mat->B, xx, mat->slvec0b));
2713:     PetscCall(VecGetArray(mat->slvec0, &from));
2714:     PetscCall(VecGetArray(xx, &x));
2715:     PetscCall(PetscArraycpy(from, x, bs * mbs));
2716:     PetscCall(VecRestoreArray(mat->slvec0, &from));
2717:     PetscCall(VecRestoreArray(xx, &x));
2718:     PetscCall(VecScatterBegin(mat->sMvctx, mat->slvec0, mat->slvec1, ADD_VALUES, SCATTER_FORWARD));
2719:     PetscCall(VecScatterEnd(mat->sMvctx, mat->slvec0, mat->slvec1, ADD_VALUES, SCATTER_FORWARD));
2720:     PetscCall((*mat->B->ops->multadd)(mat->B, mat->slvec1b, mat->slvec1a, mat->slvec1a));

2722:     /* local sweep */
2723:     PetscCall((*mat->A->ops->sor)(mat->A, mat->slvec1a, omega, (MatSORType)(SOR_ZERO_INITIAL_GUESS | SOR_LOCAL_FORWARD_SWEEP), fshift, lits, 1, xx1));
2724:     PetscCall(VecAXPY(xx, 1.0, xx1));
2725:   } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_SUP, "MatSORType is not supported for SBAIJ matrix format");
2726:   PetscFunctionReturn(PETSC_SUCCESS);
2727: }

2729: /*@
2730:   MatCreateMPISBAIJWithArrays - creates a `MATMPISBAIJ` matrix using arrays that contain in standard CSR format for the local rows.

2732:   Collective

2734:   Input Parameters:
2735: + comm - MPI communicator
2736: . bs   - the block size, only a block size of 1 is supported
2737: . m    - number of local rows (Cannot be `PETSC_DECIDE`)
2738: . n    - This value should be the same as the local size used in creating the
2739:          x vector for the matrix-vector product $ y = Ax $. (or `PETSC_DECIDE` to have
2740:          calculated if `N` is given) For square matrices `n` is almost always `m`.
2741: . M    - number of global rows (or `PETSC_DETERMINE` to have calculated if `m` is given)
2742: . N    - number of global columns (or `PETSC_DETERMINE` to have calculated if `n` is given)
2743: . i    - row indices; that is i[0] = 0, i[row] = i[row-1] + number of block elements in that row block row of the matrix
2744: . j    - column indices
2745: - a    - matrix values

2747:   Output Parameter:
2748: . mat - the matrix

2750:   Level: intermediate

2752:   Notes:
2753:   The `i`, `j`, and `a` arrays ARE copied by this routine into the internal format used by PETSc;
2754:   thus you CANNOT change the matrix entries by changing the values of `a` after you have
2755:   called this routine. Use `MatCreateMPIAIJWithSplitArrays()` to avoid needing to copy the arrays.

2757:   The `i` and `j` indices are 0 based, and `i` indices are indices corresponding to the local `j` array.

2759: .seealso: [](ch_matrices), `Mat`, `MATMPISBAIJ`, `MatCreate()`, `MatCreateSeqAIJ()`, `MatSetValues()`, `MatMPIAIJSetPreallocation()`, `MatMPIAIJSetPreallocationCSR()`,
2760:           `MATMPIAIJ`, `MatCreateAIJ()`, `MatCreateMPIAIJWithSplitArrays()`, `MatMPISBAIJSetPreallocationCSR()`
2761: @*/
2762: PetscErrorCode MatCreateMPISBAIJWithArrays(MPI_Comm comm, PetscInt bs, PetscInt m, PetscInt n, PetscInt M, PetscInt N, const PetscInt i[], const PetscInt j[], const PetscScalar a[], Mat *mat)
2763: {
2764:   PetscFunctionBegin;
2765:   PetscCheck(!i[0], PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "i (row indices) must start with 0");
2766:   PetscCheck(m >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "local number of rows (m) cannot be PETSC_DECIDE, or negative");
2767:   PetscCall(MatCreate(comm, mat));
2768:   PetscCall(MatSetSizes(*mat, m, n, M, N));
2769:   PetscCall(MatSetType(*mat, MATMPISBAIJ));
2770:   PetscCall(MatMPISBAIJSetPreallocationCSR(*mat, bs, i, j, a));
2771:   PetscFunctionReturn(PETSC_SUCCESS);
2772: }

2774: /*@
2775:   MatMPISBAIJSetPreallocationCSR - Creates a sparse parallel matrix in `MATMPISBAIJ` format using the given nonzero structure and (optional) numerical values

2777:   Collective

2779:   Input Parameters:
2780: + B  - the matrix
2781: . bs - the block size
2782: . i  - the indices into `j` for the start of each local row (indices start with zero)
2783: . j  - the column indices for each local row (indices start with zero) these must be sorted for each row
2784: - v  - optional values in the matrix, pass `NULL` if not provided

2786:   Level: advanced

2788:   Notes:
2789:   The `i`, `j`, and `v` arrays ARE copied by this routine into the internal format used by PETSc;
2790:   thus you CANNOT change the matrix entries by changing the values of `v` after you have
2791:   called this routine.

2793:   Though this routine has Preallocation() in the name it also sets the exact nonzero locations of the matrix entries
2794:   and usually the numerical values as well

2796:   Any entries passed in that are below the diagonal are ignored

2798: .seealso: [](ch_matrices), `Mat`, `MATMPISBAIJ`, `MatCreate()`, `MatCreateSeqAIJ()`, `MatSetValues()`, `MatMPIBAIJSetPreallocation()`, `MatCreateAIJ()`, `MATMPIAIJ`,
2799:           `MatCreateMPISBAIJWithArrays()`
2800: @*/
2801: PetscErrorCode MatMPISBAIJSetPreallocationCSR(Mat B, PetscInt bs, const PetscInt i[], const PetscInt j[], const PetscScalar v[])
2802: {
2803:   PetscFunctionBegin;
2804:   PetscTryMethod(B, "MatMPISBAIJSetPreallocationCSR_C", (Mat, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[]), (B, bs, i, j, v));
2805:   PetscFunctionReturn(PETSC_SUCCESS);
2806: }

2808: PetscErrorCode MatCreateMPIMatConcatenateSeqMat_MPISBAIJ(MPI_Comm comm, Mat inmat, PetscInt n, MatReuse scall, Mat *outmat)
2809: {
2810:   PetscInt     m, N, i, rstart, nnz, Ii, bs, cbs;
2811:   PetscInt    *indx;
2812:   PetscScalar *values;

2814:   PetscFunctionBegin;
2815:   PetscCall(MatGetSize(inmat, &m, &N));
2816:   if (scall == MAT_INITIAL_MATRIX) { /* symbolic phase */
2817:     Mat_SeqSBAIJ *a = (Mat_SeqSBAIJ *)inmat->data;
2818:     PetscInt     *dnz, *onz, mbs, Nbs, nbs;
2819:     PetscInt     *bindx, rmax = a->rmax, j;
2820:     PetscMPIInt   rank, size;

2822:     PetscCall(MatGetBlockSizes(inmat, &bs, &cbs));
2823:     mbs = m / bs;
2824:     Nbs = N / cbs;
2825:     if (n == PETSC_DECIDE) PetscCall(PetscSplitOwnershipBlock(comm, cbs, &n, &N));
2826:     nbs = n / cbs;

2828:     PetscCall(PetscMalloc1(rmax, &bindx));
2829:     MatPreallocateBegin(comm, mbs, nbs, dnz, onz); /* inline function, output __end and __rstart are used below */

2831:     PetscCallMPI(MPI_Comm_rank(comm, &rank));
2832:     PetscCallMPI(MPI_Comm_rank(comm, &size));
2833:     if (rank == size - 1) {
2834:       /* Check sum(nbs) = Nbs */
2835:       PetscCheck(__end == Nbs, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Sum of local block columns %" PetscInt_FMT " != global block columns %" PetscInt_FMT, __end, Nbs);
2836:     }

2838:     rstart = __rstart; /* block rstart of *outmat; see inline function MatPreallocateBegin */
2839:     PetscCall(MatSetOption(inmat, MAT_GETROW_UPPERTRIANGULAR, PETSC_TRUE));
2840:     for (i = 0; i < mbs; i++) {
2841:       PetscCall(MatGetRow_SeqSBAIJ(inmat, i * bs, &nnz, &indx, NULL)); /* non-blocked nnz and indx */
2842:       nnz = nnz / bs;
2843:       for (j = 0; j < nnz; j++) bindx[j] = indx[j * bs] / bs;
2844:       PetscCall(MatPreallocateSet(i + rstart, nnz, bindx, dnz, onz));
2845:       PetscCall(MatRestoreRow_SeqSBAIJ(inmat, i * bs, &nnz, &indx, NULL));
2846:     }
2847:     PetscCall(MatSetOption(inmat, MAT_GETROW_UPPERTRIANGULAR, PETSC_FALSE));
2848:     PetscCall(PetscFree(bindx));

2850:     PetscCall(MatCreate(comm, outmat));
2851:     PetscCall(MatSetSizes(*outmat, m, n, PETSC_DETERMINE, PETSC_DETERMINE));
2852:     PetscCall(MatSetBlockSizes(*outmat, bs, cbs));
2853:     PetscCall(MatSetType(*outmat, MATSBAIJ));
2854:     PetscCall(MatSeqSBAIJSetPreallocation(*outmat, bs, 0, dnz));
2855:     PetscCall(MatMPISBAIJSetPreallocation(*outmat, bs, 0, dnz, 0, onz));
2856:     MatPreallocateEnd(dnz, onz);
2857:   }

2859:   /* numeric phase */
2860:   PetscCall(MatGetBlockSizes(inmat, &bs, &cbs));
2861:   PetscCall(MatGetOwnershipRange(*outmat, &rstart, NULL));

2863:   PetscCall(MatSetOption(inmat, MAT_GETROW_UPPERTRIANGULAR, PETSC_TRUE));
2864:   for (i = 0; i < m; i++) {
2865:     PetscCall(MatGetRow_SeqSBAIJ(inmat, i, &nnz, &indx, &values));
2866:     Ii = i + rstart;
2867:     PetscCall(MatSetValues(*outmat, 1, &Ii, nnz, indx, values, INSERT_VALUES));
2868:     PetscCall(MatRestoreRow_SeqSBAIJ(inmat, i, &nnz, &indx, &values));
2869:   }
2870:   PetscCall(MatSetOption(inmat, MAT_GETROW_UPPERTRIANGULAR, PETSC_FALSE));
2871:   PetscCall(MatAssemblyBegin(*outmat, MAT_FINAL_ASSEMBLY));
2872:   PetscCall(MatAssemblyEnd(*outmat, MAT_FINAL_ASSEMBLY));
2873:   PetscFunctionReturn(PETSC_SUCCESS);
2874: }