Actual source code: mpisbaij.c
1: #include <../src/mat/impls/baij/mpi/mpibaij.h>
2: #include <../src/mat/impls/sbaij/mpi/mpisbaij.h>
3: #include <../src/mat/impls/sbaij/seq/sbaij.h>
4: #include <petscblaslapack.h>
6: static PetscErrorCode MatDestroy_MPISBAIJ(Mat mat)
7: {
8: Mat_MPISBAIJ *baij = (Mat_MPISBAIJ *)mat->data;
10: PetscFunctionBegin;
11: PetscCall(PetscLogObjectState((PetscObject)mat, "Rows=%" PetscInt_FMT ",Cols=%" PetscInt_FMT, mat->rmap->N, mat->cmap->N));
12: PetscCall(MatStashDestroy_Private(&mat->stash));
13: PetscCall(MatStashDestroy_Private(&mat->bstash));
14: PetscCall(MatDestroy(&baij->A));
15: PetscCall(MatDestroy(&baij->B));
16: #if defined(PETSC_USE_CTABLE)
17: PetscCall(PetscHMapIDestroy(&baij->colmap));
18: #else
19: PetscCall(PetscFree(baij->colmap));
20: #endif
21: PetscCall(PetscFree(baij->garray));
22: PetscCall(VecDestroy(&baij->lvec));
23: PetscCall(VecScatterDestroy(&baij->Mvctx));
24: PetscCall(VecDestroy(&baij->slvec0));
25: PetscCall(VecDestroy(&baij->slvec0b));
26: PetscCall(VecDestroy(&baij->slvec1));
27: PetscCall(VecDestroy(&baij->slvec1a));
28: PetscCall(VecDestroy(&baij->slvec1b));
29: PetscCall(VecScatterDestroy(&baij->sMvctx));
30: PetscCall(PetscFree2(baij->rowvalues, baij->rowindices));
31: PetscCall(PetscFree(baij->barray));
32: PetscCall(PetscFree(baij->hd));
33: PetscCall(VecDestroy(&baij->diag));
34: PetscCall(VecDestroy(&baij->bb1));
35: PetscCall(VecDestroy(&baij->xx1));
36: #if defined(PETSC_USE_REAL_MAT_SINGLE)
37: PetscCall(PetscFree(baij->setvaluescopy));
38: #endif
39: PetscCall(PetscFree(baij->in_loc));
40: PetscCall(PetscFree(baij->v_loc));
41: PetscCall(PetscFree(baij->rangebs));
42: PetscCall(PetscFree(mat->data));
44: PetscCall(PetscObjectChangeTypeName((PetscObject)mat, NULL));
45: PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatStoreValues_C", NULL));
46: PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatRetrieveValues_C", NULL));
47: PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatMPISBAIJSetPreallocation_C", NULL));
48: PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatMPISBAIJSetPreallocationCSR_C", NULL));
49: #if defined(PETSC_HAVE_ELEMENTAL)
50: PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConvert_mpisbaij_elemental_C", NULL));
51: #endif
52: #if defined(PETSC_HAVE_SCALAPACK) && (defined(PETSC_USE_REAL_SINGLE) || defined(PETSC_USE_REAL_DOUBLE))
53: PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConvert_mpisbaij_scalapack_C", NULL));
54: #endif
55: PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConvert_mpisbaij_mpiaij_C", NULL));
56: PetscCall(PetscObjectComposeFunction((PetscObject)mat, "MatConvert_mpisbaij_mpibaij_C", NULL));
57: PetscFunctionReturn(PETSC_SUCCESS);
58: }
60: /* defines MatSetValues_MPI_Hash(), MatAssemblyBegin_MPI_Hash(), MatAssemblyEnd_MPI_Hash(), MatSetUp_MPI_Hash() */
61: #define TYPE SBAIJ
62: #define TYPE_SBAIJ
63: #include "../src/mat/impls/aij/mpi/mpihashmat.h"
64: #undef TYPE
65: #undef TYPE_SBAIJ
67: #if defined(PETSC_HAVE_ELEMENTAL)
68: PETSC_INTERN PetscErrorCode MatConvert_MPISBAIJ_Elemental(Mat, MatType, MatReuse, Mat *);
69: #endif
70: #if defined(PETSC_HAVE_SCALAPACK) && (defined(PETSC_USE_REAL_SINGLE) || defined(PETSC_USE_REAL_DOUBLE))
71: PETSC_INTERN PetscErrorCode MatConvert_SBAIJ_ScaLAPACK(Mat, MatType, MatReuse, Mat *);
72: #endif
74: /* This could be moved to matimpl.h */
75: static PetscErrorCode MatPreallocateWithMats_Private(Mat B, PetscInt nm, Mat X[], PetscBool symm[], PetscBool fill)
76: {
77: Mat preallocator;
78: PetscInt r, rstart, rend;
79: PetscInt bs, i, m, n, M, N;
80: PetscBool cong = PETSC_TRUE;
82: PetscFunctionBegin;
85: for (i = 0; i < nm; i++) {
87: PetscCall(PetscLayoutCompare(B->rmap, X[i]->rmap, &cong));
88: PetscCheck(cong, PetscObjectComm((PetscObject)B), PETSC_ERR_SUP, "Not for different layouts");
89: }
91: PetscCall(MatGetBlockSize(B, &bs));
92: PetscCall(MatGetSize(B, &M, &N));
93: PetscCall(MatGetLocalSize(B, &m, &n));
94: PetscCall(MatCreate(PetscObjectComm((PetscObject)B), &preallocator));
95: PetscCall(MatSetType(preallocator, MATPREALLOCATOR));
96: PetscCall(MatSetBlockSize(preallocator, bs));
97: PetscCall(MatSetSizes(preallocator, m, n, M, N));
98: PetscCall(MatSetUp(preallocator));
99: PetscCall(MatGetOwnershipRange(preallocator, &rstart, &rend));
100: for (r = rstart; r < rend; ++r) {
101: PetscInt ncols;
102: const PetscInt *row;
103: const PetscScalar *vals;
105: for (i = 0; i < nm; i++) {
106: PetscCall(MatGetRow(X[i], r, &ncols, &row, &vals));
107: PetscCall(MatSetValues(preallocator, 1, &r, ncols, row, vals, INSERT_VALUES));
108: if (symm && symm[i]) PetscCall(MatSetValues(preallocator, ncols, row, 1, &r, vals, INSERT_VALUES));
109: PetscCall(MatRestoreRow(X[i], r, &ncols, &row, &vals));
110: }
111: }
112: PetscCall(MatAssemblyBegin(preallocator, MAT_FINAL_ASSEMBLY));
113: PetscCall(MatAssemblyEnd(preallocator, MAT_FINAL_ASSEMBLY));
114: PetscCall(MatPreallocatorPreallocate(preallocator, fill, B));
115: PetscCall(MatDestroy(&preallocator));
116: PetscFunctionReturn(PETSC_SUCCESS);
117: }
119: PETSC_INTERN PetscErrorCode MatConvert_MPISBAIJ_Basic(Mat A, MatType newtype, MatReuse reuse, Mat *newmat)
120: {
121: Mat B;
122: PetscInt r;
124: PetscFunctionBegin;
125: if (reuse != MAT_REUSE_MATRIX) {
126: PetscBool symm = PETSC_TRUE, isdense;
127: PetscInt bs;
129: PetscCall(MatCreate(PetscObjectComm((PetscObject)A), &B));
130: PetscCall(MatSetSizes(B, A->rmap->n, A->cmap->n, A->rmap->N, A->cmap->N));
131: PetscCall(MatSetType(B, newtype));
132: PetscCall(MatGetBlockSize(A, &bs));
133: PetscCall(MatSetBlockSize(B, bs));
134: PetscCall(PetscLayoutSetUp(B->rmap));
135: PetscCall(PetscLayoutSetUp(B->cmap));
136: PetscCall(PetscObjectTypeCompareAny((PetscObject)B, &isdense, MATSEQDENSE, MATMPIDENSE, MATSEQDENSECUDA, ""));
137: if (!isdense) {
138: PetscCall(MatGetRowUpperTriangular(A));
139: PetscCall(MatPreallocateWithMats_Private(B, 1, &A, &symm, PETSC_TRUE));
140: PetscCall(MatRestoreRowUpperTriangular(A));
141: } else {
142: PetscCall(MatSetUp(B));
143: }
144: } else {
145: B = *newmat;
146: PetscCall(MatZeroEntries(B));
147: }
149: PetscCall(MatGetRowUpperTriangular(A));
150: for (r = A->rmap->rstart; r < A->rmap->rend; r++) {
151: PetscInt ncols;
152: const PetscInt *row;
153: const PetscScalar *vals;
155: PetscCall(MatGetRow(A, r, &ncols, &row, &vals));
156: PetscCall(MatSetValues(B, 1, &r, ncols, row, vals, INSERT_VALUES));
157: #if defined(PETSC_USE_COMPLEX)
158: if (A->hermitian == PETSC_BOOL3_TRUE) {
159: PetscInt i;
160: for (i = 0; i < ncols; i++) PetscCall(MatSetValue(B, row[i], r, PetscConj(vals[i]), INSERT_VALUES));
161: } else {
162: PetscCall(MatSetValues(B, ncols, row, 1, &r, vals, INSERT_VALUES));
163: }
164: #else
165: PetscCall(MatSetValues(B, ncols, row, 1, &r, vals, INSERT_VALUES));
166: #endif
167: PetscCall(MatRestoreRow(A, r, &ncols, &row, &vals));
168: }
169: PetscCall(MatRestoreRowUpperTriangular(A));
170: PetscCall(MatAssemblyBegin(B, MAT_FINAL_ASSEMBLY));
171: PetscCall(MatAssemblyEnd(B, MAT_FINAL_ASSEMBLY));
173: if (reuse == MAT_INPLACE_MATRIX) {
174: PetscCall(MatHeaderReplace(A, &B));
175: } else {
176: *newmat = B;
177: }
178: PetscFunctionReturn(PETSC_SUCCESS);
179: }
181: static PetscErrorCode MatStoreValues_MPISBAIJ(Mat mat)
182: {
183: Mat_MPISBAIJ *aij = (Mat_MPISBAIJ *)mat->data;
185: PetscFunctionBegin;
186: PetscCall(MatStoreValues(aij->A));
187: PetscCall(MatStoreValues(aij->B));
188: PetscFunctionReturn(PETSC_SUCCESS);
189: }
191: static PetscErrorCode MatRetrieveValues_MPISBAIJ(Mat mat)
192: {
193: Mat_MPISBAIJ *aij = (Mat_MPISBAIJ *)mat->data;
195: PetscFunctionBegin;
196: PetscCall(MatRetrieveValues(aij->A));
197: PetscCall(MatRetrieveValues(aij->B));
198: PetscFunctionReturn(PETSC_SUCCESS);
199: }
201: #define MatSetValues_SeqSBAIJ_A_Private(row, col, value, addv, orow, ocol) \
202: do { \
203: brow = row / bs; \
204: rp = aj + ai[brow]; \
205: ap = aa + bs2 * ai[brow]; \
206: rmax = aimax[brow]; \
207: nrow = ailen[brow]; \
208: bcol = col / bs; \
209: ridx = row % bs; \
210: cidx = col % bs; \
211: low = 0; \
212: high = nrow; \
213: while (high - low > 3) { \
214: t = (low + high) / 2; \
215: if (rp[t] > bcol) high = t; \
216: else low = t; \
217: } \
218: for (_i = low; _i < high; _i++) { \
219: if (rp[_i] > bcol) break; \
220: if (rp[_i] == bcol) { \
221: bap = ap + bs2 * _i + bs * cidx + ridx; \
222: if (addv == ADD_VALUES) *bap += value; \
223: else *bap = value; \
224: goto a_noinsert; \
225: } \
226: } \
227: if (a->nonew == 1) goto a_noinsert; \
228: PetscCheck(a->nonew != -1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Inserting a new nonzero at global row/column (%" PetscInt_FMT ", %" PetscInt_FMT ") into matrix", orow, ocol); \
229: MatSeqXAIJReallocateAIJ(A, a->mbs, bs2, nrow, brow, bcol, rmax, aa, ai, aj, rp, ap, aimax, a->nonew, MatScalar); \
230: N = nrow++ - 1; \
231: /* shift up all the later entries in this row */ \
232: PetscCall(PetscArraymove(rp + _i + 1, rp + _i, N - _i + 1)); \
233: PetscCall(PetscArraymove(ap + bs2 * (_i + 1), ap + bs2 * _i, bs2 * (N - _i + 1))); \
234: PetscCall(PetscArrayzero(ap + bs2 * _i, bs2)); \
235: rp[_i] = bcol; \
236: ap[bs2 * _i + bs * cidx + ridx] = value; \
237: a_noinsert:; \
238: ailen[brow] = nrow; \
239: } while (0)
241: #define MatSetValues_SeqSBAIJ_B_Private(row, col, value, addv, orow, ocol) \
242: do { \
243: brow = row / bs; \
244: rp = bj + bi[brow]; \
245: ap = ba + bs2 * bi[brow]; \
246: rmax = bimax[brow]; \
247: nrow = bilen[brow]; \
248: bcol = col / bs; \
249: ridx = row % bs; \
250: cidx = col % bs; \
251: low = 0; \
252: high = nrow; \
253: while (high - low > 3) { \
254: t = (low + high) / 2; \
255: if (rp[t] > bcol) high = t; \
256: else low = t; \
257: } \
258: for (_i = low; _i < high; _i++) { \
259: if (rp[_i] > bcol) break; \
260: if (rp[_i] == bcol) { \
261: bap = ap + bs2 * _i + bs * cidx + ridx; \
262: if (addv == ADD_VALUES) *bap += value; \
263: else *bap = value; \
264: goto b_noinsert; \
265: } \
266: } \
267: if (b->nonew == 1) goto b_noinsert; \
268: PetscCheck(b->nonew != -1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Inserting a new nonzero at global row/column (%" PetscInt_FMT ", %" PetscInt_FMT ") into matrix", orow, ocol); \
269: MatSeqXAIJReallocateAIJ(B, b->mbs, bs2, nrow, brow, bcol, rmax, ba, bi, bj, rp, ap, bimax, b->nonew, MatScalar); \
270: N = nrow++ - 1; \
271: /* shift up all the later entries in this row */ \
272: PetscCall(PetscArraymove(rp + _i + 1, rp + _i, N - _i + 1)); \
273: PetscCall(PetscArraymove(ap + bs2 * (_i + 1), ap + bs2 * _i, bs2 * (N - _i + 1))); \
274: PetscCall(PetscArrayzero(ap + bs2 * _i, bs2)); \
275: rp[_i] = bcol; \
276: ap[bs2 * _i + bs * cidx + ridx] = value; \
277: b_noinsert:; \
278: bilen[brow] = nrow; \
279: } while (0)
281: /* Only add/insert a(i,j) with i<=j (blocks).
282: Any a(i,j) with i>j input by user is ignored or generates an error
283: */
284: static PetscErrorCode MatSetValues_MPISBAIJ(Mat mat, PetscInt m, const PetscInt im[], PetscInt n, const PetscInt in[], const PetscScalar v[], InsertMode addv)
285: {
286: Mat_MPISBAIJ *baij = (Mat_MPISBAIJ *)mat->data;
287: MatScalar value;
288: PetscBool roworiented = baij->roworiented;
289: PetscInt i, j, row, col;
290: PetscInt rstart_orig = mat->rmap->rstart;
291: PetscInt rend_orig = mat->rmap->rend, cstart_orig = mat->cmap->rstart;
292: PetscInt cend_orig = mat->cmap->rend, bs = mat->rmap->bs;
294: /* Some Variables required in the macro */
295: Mat A = baij->A;
296: Mat_SeqSBAIJ *a = (Mat_SeqSBAIJ *)A->data;
297: PetscInt *aimax = a->imax, *ai = a->i, *ailen = a->ilen, *aj = a->j;
298: MatScalar *aa = a->a;
300: Mat B = baij->B;
301: Mat_SeqBAIJ *b = (Mat_SeqBAIJ *)B->data;
302: PetscInt *bimax = b->imax, *bi = b->i, *bilen = b->ilen, *bj = b->j;
303: MatScalar *ba = b->a;
305: PetscInt *rp, ii, nrow, _i, rmax, N, brow, bcol;
306: PetscInt low, high, t, ridx, cidx, bs2 = a->bs2;
307: MatScalar *ap, *bap;
309: /* for stash */
310: PetscInt n_loc, *in_loc = NULL;
311: MatScalar *v_loc = NULL;
313: PetscFunctionBegin;
314: if (!baij->donotstash) {
315: if (n > baij->n_loc) {
316: PetscCall(PetscFree(baij->in_loc));
317: PetscCall(PetscFree(baij->v_loc));
318: PetscCall(PetscMalloc1(n, &baij->in_loc));
319: PetscCall(PetscMalloc1(n, &baij->v_loc));
321: baij->n_loc = n;
322: }
323: in_loc = baij->in_loc;
324: v_loc = baij->v_loc;
325: }
327: for (i = 0; i < m; i++) {
328: if (im[i] < 0) continue;
329: PetscCheck(im[i] < mat->rmap->N, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row too large: row %" PetscInt_FMT " max %" PetscInt_FMT, im[i], mat->rmap->N - 1);
330: if (im[i] >= rstart_orig && im[i] < rend_orig) { /* this processor entry */
331: row = im[i] - rstart_orig; /* local row index */
332: for (j = 0; j < n; j++) {
333: if (im[i] / bs > in[j] / bs) {
334: PetscCheck(a->ignore_ltriangular, PETSC_COMM_SELF, PETSC_ERR_USER, "Lower triangular value cannot be set for sbaij format. Ignoring these values, run with -mat_ignore_lower_triangular or call MatSetOption(mat,MAT_IGNORE_LOWER_TRIANGULAR,PETSC_TRUE)");
335: continue; /* ignore lower triangular blocks */
336: }
337: if (in[j] >= cstart_orig && in[j] < cend_orig) { /* diag entry (A) */
338: col = in[j] - cstart_orig; /* local col index */
339: brow = row / bs;
340: bcol = col / bs;
341: if (brow > bcol) continue; /* ignore lower triangular blocks of A */
342: if (roworiented) value = v[i * n + j];
343: else value = v[i + j * m];
344: MatSetValues_SeqSBAIJ_A_Private(row, col, value, addv, im[i], in[j]);
345: /* PetscCall(MatSetValues_SeqBAIJ(baij->A,1,&row,1,&col,&value,addv)); */
346: } else if (in[j] < 0) {
347: continue;
348: } else {
349: PetscCheck(in[j] < mat->cmap->N, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column too large: col %" PetscInt_FMT " max %" PetscInt_FMT, in[j], mat->cmap->N - 1);
350: /* off-diag entry (B) */
351: if (mat->was_assembled) {
352: if (!baij->colmap) PetscCall(MatCreateColmap_MPIBAIJ_Private(mat));
353: #if defined(PETSC_USE_CTABLE)
354: PetscCall(PetscHMapIGetWithDefault(baij->colmap, in[j] / bs + 1, 0, &col));
355: col = col - 1;
356: #else
357: col = baij->colmap[in[j] / bs] - 1;
358: #endif
359: if (col < 0 && !((Mat_SeqSBAIJ *)baij->A->data)->nonew) {
360: PetscCall(MatDisAssemble_MPISBAIJ(mat));
361: col = in[j];
362: /* Reinitialize the variables required by MatSetValues_SeqBAIJ_B_Private() */
363: B = baij->B;
364: b = (Mat_SeqBAIJ *)B->data;
365: bimax = b->imax;
366: bi = b->i;
367: bilen = b->ilen;
368: bj = b->j;
369: ba = b->a;
370: } else col += in[j] % bs;
371: } else col = in[j];
372: if (roworiented) value = v[i * n + j];
373: else value = v[i + j * m];
374: MatSetValues_SeqSBAIJ_B_Private(row, col, value, addv, im[i], in[j]);
375: /* PetscCall(MatSetValues_SeqBAIJ(baij->B,1,&row,1,&col,&value,addv)); */
376: }
377: }
378: } else { /* off processor entry */
379: PetscCheck(!mat->nooffprocentries, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Setting off process row %" PetscInt_FMT " even though MatSetOption(,MAT_NO_OFF_PROC_ENTRIES,PETSC_TRUE) was set", im[i]);
380: if (!baij->donotstash) {
381: mat->assembled = PETSC_FALSE;
382: n_loc = 0;
383: for (j = 0; j < n; j++) {
384: if (im[i] / bs > in[j] / bs) continue; /* ignore lower triangular blocks */
385: in_loc[n_loc] = in[j];
386: if (roworiented) {
387: v_loc[n_loc] = v[i * n + j];
388: } else {
389: v_loc[n_loc] = v[j * m + i];
390: }
391: n_loc++;
392: }
393: PetscCall(MatStashValuesRow_Private(&mat->stash, im[i], n_loc, in_loc, v_loc, PETSC_FALSE));
394: }
395: }
396: }
397: PetscFunctionReturn(PETSC_SUCCESS);
398: }
400: static inline PetscErrorCode MatSetValuesBlocked_SeqSBAIJ_Inlined(Mat A, PetscInt row, PetscInt col, const PetscScalar v[], InsertMode is, PetscInt orow, PetscInt ocol)
401: {
402: Mat_SeqSBAIJ *a = (Mat_SeqSBAIJ *)A->data;
403: PetscInt *rp, low, high, t, ii, jj, nrow, i, rmax, N;
404: PetscInt *imax = a->imax, *ai = a->i, *ailen = a->ilen;
405: PetscInt *aj = a->j, nonew = a->nonew, bs2 = a->bs2, bs = A->rmap->bs;
406: PetscBool roworiented = a->roworiented;
407: const PetscScalar *value = v;
408: MatScalar *ap, *aa = a->a, *bap;
410: PetscFunctionBegin;
411: if (col < row) {
412: PetscCheck(a->ignore_ltriangular, PETSC_COMM_SELF, PETSC_ERR_USER, "Lower triangular value cannot be set for sbaij format. Ignoring these values, run with -mat_ignore_lower_triangular or call MatSetOption(mat,MAT_IGNORE_LOWER_TRIANGULAR,PETSC_TRUE)");
413: PetscFunctionReturn(PETSC_SUCCESS); /* ignore lower triangular block */
414: }
415: rp = aj + ai[row];
416: ap = aa + bs2 * ai[row];
417: rmax = imax[row];
418: nrow = ailen[row];
419: value = v;
420: low = 0;
421: high = nrow;
423: while (high - low > 7) {
424: t = (low + high) / 2;
425: if (rp[t] > col) high = t;
426: else low = t;
427: }
428: for (i = low; i < high; i++) {
429: if (rp[i] > col) break;
430: if (rp[i] == col) {
431: bap = ap + bs2 * i;
432: if (roworiented) {
433: if (is == ADD_VALUES) {
434: for (ii = 0; ii < bs; ii++) {
435: for (jj = ii; jj < bs2; jj += bs) bap[jj] += *value++;
436: }
437: } else {
438: for (ii = 0; ii < bs; ii++) {
439: for (jj = ii; jj < bs2; jj += bs) bap[jj] = *value++;
440: }
441: }
442: } else {
443: if (is == ADD_VALUES) {
444: for (ii = 0; ii < bs; ii++) {
445: for (jj = 0; jj < bs; jj++) *bap++ += *value++;
446: }
447: } else {
448: for (ii = 0; ii < bs; ii++) {
449: for (jj = 0; jj < bs; jj++) *bap++ = *value++;
450: }
451: }
452: }
453: goto noinsert2;
454: }
455: }
456: if (nonew == 1) goto noinsert2;
457: PetscCheck(nonew != -1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Inserting a new block index nonzero block (%" PetscInt_FMT ", %" PetscInt_FMT ") in the matrix", orow, ocol);
458: MatSeqXAIJReallocateAIJ(A, a->mbs, bs2, nrow, row, col, rmax, aa, ai, aj, rp, ap, imax, nonew, MatScalar);
459: N = nrow++ - 1;
460: high++;
461: /* shift up all the later entries in this row */
462: PetscCall(PetscArraymove(rp + i + 1, rp + i, N - i + 1));
463: PetscCall(PetscArraymove(ap + bs2 * (i + 1), ap + bs2 * i, bs2 * (N - i + 1)));
464: rp[i] = col;
465: bap = ap + bs2 * i;
466: if (roworiented) {
467: for (ii = 0; ii < bs; ii++) {
468: for (jj = ii; jj < bs2; jj += bs) bap[jj] = *value++;
469: }
470: } else {
471: for (ii = 0; ii < bs; ii++) {
472: for (jj = 0; jj < bs; jj++) *bap++ = *value++;
473: }
474: }
475: noinsert2:;
476: ailen[row] = nrow;
477: PetscFunctionReturn(PETSC_SUCCESS);
478: }
480: /*
481: This routine is exactly duplicated in mpibaij.c
482: */
483: static inline PetscErrorCode MatSetValuesBlocked_SeqBAIJ_Inlined(Mat A, PetscInt row, PetscInt col, const PetscScalar v[], InsertMode is, PetscInt orow, PetscInt ocol)
484: {
485: Mat_SeqBAIJ *a = (Mat_SeqBAIJ *)A->data;
486: PetscInt *rp, low, high, t, ii, jj, nrow, i, rmax, N;
487: PetscInt *imax = a->imax, *ai = a->i, *ailen = a->ilen;
488: PetscInt *aj = a->j, nonew = a->nonew, bs2 = a->bs2, bs = A->rmap->bs;
489: PetscBool roworiented = a->roworiented;
490: const PetscScalar *value = v;
491: MatScalar *ap, *aa = a->a, *bap;
493: PetscFunctionBegin;
494: rp = aj + ai[row];
495: ap = aa + bs2 * ai[row];
496: rmax = imax[row];
497: nrow = ailen[row];
498: low = 0;
499: high = nrow;
500: value = v;
501: while (high - low > 7) {
502: t = (low + high) / 2;
503: if (rp[t] > col) high = t;
504: else low = t;
505: }
506: for (i = low; i < high; i++) {
507: if (rp[i] > col) break;
508: if (rp[i] == col) {
509: bap = ap + bs2 * i;
510: if (roworiented) {
511: if (is == ADD_VALUES) {
512: for (ii = 0; ii < bs; ii++) {
513: for (jj = ii; jj < bs2; jj += bs) bap[jj] += *value++;
514: }
515: } else {
516: for (ii = 0; ii < bs; ii++) {
517: for (jj = ii; jj < bs2; jj += bs) bap[jj] = *value++;
518: }
519: }
520: } else {
521: if (is == ADD_VALUES) {
522: for (ii = 0; ii < bs; ii++, value += bs) {
523: for (jj = 0; jj < bs; jj++) bap[jj] += value[jj];
524: bap += bs;
525: }
526: } else {
527: for (ii = 0; ii < bs; ii++, value += bs) {
528: for (jj = 0; jj < bs; jj++) bap[jj] = value[jj];
529: bap += bs;
530: }
531: }
532: }
533: goto noinsert2;
534: }
535: }
536: if (nonew == 1) goto noinsert2;
537: PetscCheck(nonew != -1, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Inserting a new global block indexed nonzero block (%" PetscInt_FMT ", %" PetscInt_FMT ") in the matrix", orow, ocol);
538: MatSeqXAIJReallocateAIJ(A, a->mbs, bs2, nrow, row, col, rmax, aa, ai, aj, rp, ap, imax, nonew, MatScalar);
539: N = nrow++ - 1;
540: high++;
541: /* shift up all the later entries in this row */
542: PetscCall(PetscArraymove(rp + i + 1, rp + i, N - i + 1));
543: PetscCall(PetscArraymove(ap + bs2 * (i + 1), ap + bs2 * i, bs2 * (N - i + 1)));
544: rp[i] = col;
545: bap = ap + bs2 * i;
546: if (roworiented) {
547: for (ii = 0; ii < bs; ii++) {
548: for (jj = ii; jj < bs2; jj += bs) bap[jj] = *value++;
549: }
550: } else {
551: for (ii = 0; ii < bs; ii++) {
552: for (jj = 0; jj < bs; jj++) *bap++ = *value++;
553: }
554: }
555: noinsert2:;
556: ailen[row] = nrow;
557: PetscFunctionReturn(PETSC_SUCCESS);
558: }
560: /*
561: This routine could be optimized by removing the need for the block copy below and passing stride information
562: to the above inline routines; similarly in MatSetValuesBlocked_MPIBAIJ()
563: */
564: static PetscErrorCode MatSetValuesBlocked_MPISBAIJ(Mat mat, PetscInt m, const PetscInt im[], PetscInt n, const PetscInt in[], const MatScalar v[], InsertMode addv)
565: {
566: Mat_MPISBAIJ *baij = (Mat_MPISBAIJ *)mat->data;
567: const MatScalar *value;
568: MatScalar *barray = baij->barray;
569: PetscBool roworiented = baij->roworiented, ignore_ltriangular = ((Mat_SeqSBAIJ *)baij->A->data)->ignore_ltriangular;
570: PetscInt i, j, ii, jj, row, col, rstart = baij->rstartbs;
571: PetscInt rend = baij->rendbs, cstart = baij->cstartbs, stepval;
572: PetscInt cend = baij->cendbs, bs = mat->rmap->bs, bs2 = baij->bs2;
574: PetscFunctionBegin;
575: if (!barray) {
576: PetscCall(PetscMalloc1(bs2, &barray));
577: baij->barray = barray;
578: }
580: if (roworiented) {
581: stepval = (n - 1) * bs;
582: } else {
583: stepval = (m - 1) * bs;
584: }
585: for (i = 0; i < m; i++) {
586: if (im[i] < 0) continue;
587: PetscCheck(im[i] < baij->Mbs, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Block indexed row too large %" PetscInt_FMT " max %" PetscInt_FMT, im[i], baij->Mbs - 1);
588: if (im[i] >= rstart && im[i] < rend) {
589: row = im[i] - rstart;
590: for (j = 0; j < n; j++) {
591: if (im[i] > in[j]) {
592: PetscCheck(ignore_ltriangular, PETSC_COMM_SELF, PETSC_ERR_USER, "Lower triangular value cannot be set for sbaij format. Ignoring these values, run with -mat_ignore_lower_triangular or call MatSetOption(mat,MAT_IGNORE_LOWER_TRIANGULAR,PETSC_TRUE)");
593: continue; /* ignore lower triangular blocks */
594: }
595: /* If NumCol = 1 then a copy is not required */
596: if (roworiented && n == 1) {
597: barray = (MatScalar *)v + i * bs2;
598: } else if ((!roworiented) && (m == 1)) {
599: barray = (MatScalar *)v + j * bs2;
600: } else { /* Here a copy is required */
601: if (roworiented) {
602: value = v + i * (stepval + bs) * bs + j * bs;
603: } else {
604: value = v + j * (stepval + bs) * bs + i * bs;
605: }
606: for (ii = 0; ii < bs; ii++, value += stepval) {
607: for (jj = 0; jj < bs; jj++) *barray++ = *value++;
608: }
609: barray -= bs2;
610: }
612: if (in[j] >= cstart && in[j] < cend) {
613: col = in[j] - cstart;
614: PetscCall(MatSetValuesBlocked_SeqSBAIJ_Inlined(baij->A, row, col, barray, addv, im[i], in[j]));
615: } else if (in[j] < 0) {
616: continue;
617: } else {
618: PetscCheck(in[j] < baij->Nbs, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Block indexed column too large %" PetscInt_FMT " max %" PetscInt_FMT, in[j], baij->Nbs - 1);
619: if (mat->was_assembled) {
620: if (!baij->colmap) PetscCall(MatCreateColmap_MPIBAIJ_Private(mat));
622: #if defined(PETSC_USE_CTABLE)
623: PetscCall(PetscHMapIGetWithDefault(baij->colmap, in[j] + 1, 0, &col));
624: col = col < 1 ? -1 : (col - 1) / bs;
625: #else
626: col = baij->colmap[in[j]] < 1 ? -1 : (baij->colmap[in[j]] - 1) / bs;
627: #endif
628: if (col < 0 && !((Mat_SeqBAIJ *)baij->A->data)->nonew) {
629: PetscCall(MatDisAssemble_MPISBAIJ(mat));
630: col = in[j];
631: }
632: } else col = in[j];
633: PetscCall(MatSetValuesBlocked_SeqBAIJ_Inlined(baij->B, row, col, barray, addv, im[i], in[j]));
634: }
635: }
636: } else {
637: PetscCheck(!mat->nooffprocentries, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Setting off process block indexed row %" PetscInt_FMT " even though MatSetOption(,MAT_NO_OFF_PROC_ENTRIES,PETSC_TRUE) was set", im[i]);
638: if (!baij->donotstash) {
639: if (roworiented) {
640: PetscCall(MatStashValuesRowBlocked_Private(&mat->bstash, im[i], n, in, v, m, n, i));
641: } else {
642: PetscCall(MatStashValuesColBlocked_Private(&mat->bstash, im[i], n, in, v, m, n, i));
643: }
644: }
645: }
646: }
647: PetscFunctionReturn(PETSC_SUCCESS);
648: }
650: static PetscErrorCode MatGetValues_MPISBAIJ(Mat mat, PetscInt m, const PetscInt idxm[], PetscInt n, const PetscInt idxn[], PetscScalar v[])
651: {
652: Mat_MPISBAIJ *baij = (Mat_MPISBAIJ *)mat->data;
653: PetscInt bs = mat->rmap->bs, i, j, bsrstart = mat->rmap->rstart, bsrend = mat->rmap->rend;
654: PetscInt bscstart = mat->cmap->rstart, bscend = mat->cmap->rend, row, col, data;
656: PetscFunctionBegin;
657: for (i = 0; i < m; i++) {
658: if (idxm[i] < 0) continue; /* negative row */
659: PetscCheck(idxm[i] < mat->rmap->N, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Row too large: row %" PetscInt_FMT " max %" PetscInt_FMT, idxm[i], mat->rmap->N - 1);
660: PetscCheck(idxm[i] >= bsrstart && idxm[i] < bsrend, PETSC_COMM_SELF, PETSC_ERR_SUP, "Only local values currently supported");
661: row = idxm[i] - bsrstart;
662: for (j = 0; j < n; j++) {
663: if (idxn[j] < 0) continue; /* negative column */
664: PetscCheck(idxn[j] < mat->cmap->N, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Column too large: col %" PetscInt_FMT " max %" PetscInt_FMT, idxn[j], mat->cmap->N - 1);
665: if (idxn[j] >= bscstart && idxn[j] < bscend) {
666: col = idxn[j] - bscstart;
667: PetscCall(MatGetValues_SeqSBAIJ(baij->A, 1, &row, 1, &col, v + i * n + j));
668: } else {
669: if (!baij->colmap) PetscCall(MatCreateColmap_MPIBAIJ_Private(mat));
670: #if defined(PETSC_USE_CTABLE)
671: PetscCall(PetscHMapIGetWithDefault(baij->colmap, idxn[j] / bs + 1, 0, &data));
672: data--;
673: #else
674: data = baij->colmap[idxn[j] / bs] - 1;
675: #endif
676: if (data < 0 || baij->garray[data / bs] != idxn[j] / bs) *(v + i * n + j) = 0.0;
677: else {
678: col = data + idxn[j] % bs;
679: PetscCall(MatGetValues_SeqBAIJ(baij->B, 1, &row, 1, &col, v + i * n + j));
680: }
681: }
682: }
683: }
684: PetscFunctionReturn(PETSC_SUCCESS);
685: }
687: static PetscErrorCode MatNorm_MPISBAIJ(Mat mat, NormType type, PetscReal *norm)
688: {
689: Mat_MPISBAIJ *baij = (Mat_MPISBAIJ *)mat->data;
690: PetscReal sum[2], *lnorm2;
692: PetscFunctionBegin;
693: if (baij->size == 1) {
694: PetscCall(MatNorm(baij->A, type, norm));
695: } else {
696: if (type == NORM_FROBENIUS) {
697: PetscCall(PetscMalloc1(2, &lnorm2));
698: PetscCall(MatNorm(baij->A, type, lnorm2));
699: *lnorm2 = (*lnorm2) * (*lnorm2);
700: lnorm2++; /* square power of norm(A) */
701: PetscCall(MatNorm(baij->B, type, lnorm2));
702: *lnorm2 = (*lnorm2) * (*lnorm2);
703: lnorm2--; /* square power of norm(B) */
704: PetscCallMPI(MPIU_Allreduce(lnorm2, sum, 2, MPIU_REAL, MPIU_SUM, PetscObjectComm((PetscObject)mat)));
705: *norm = PetscSqrtReal(sum[0] + 2 * sum[1]);
706: PetscCall(PetscFree(lnorm2));
707: } else if (type == NORM_INFINITY || type == NORM_1) { /* max row/column sum */
708: Mat_SeqSBAIJ *amat = (Mat_SeqSBAIJ *)baij->A->data;
709: Mat_SeqBAIJ *bmat = (Mat_SeqBAIJ *)baij->B->data;
710: PetscReal *rsum, vabs;
711: PetscInt *jj, *garray = baij->garray, rstart = baij->rstartbs, nz;
712: PetscInt brow, bcol, col, bs = baij->A->rmap->bs, row, grow, gcol, mbs = amat->mbs;
713: MatScalar *v;
715: PetscCall(PetscCalloc1(mat->cmap->N, &rsum));
716: /* Amat */
717: v = amat->a;
718: jj = amat->j;
719: for (brow = 0; brow < mbs; brow++) {
720: grow = bs * (rstart + brow);
721: nz = amat->i[brow + 1] - amat->i[brow];
722: for (bcol = 0; bcol < nz; bcol++) {
723: gcol = bs * (rstart + *jj);
724: jj++;
725: for (col = 0; col < bs; col++) {
726: for (row = 0; row < bs; row++) {
727: vabs = PetscAbsScalar(*v);
728: v++;
729: rsum[gcol + col] += vabs;
730: /* non-diagonal block */
731: if (bcol > 0 && vabs > 0.0) rsum[grow + row] += vabs;
732: }
733: }
734: }
735: PetscCall(PetscLogFlops(nz * bs * bs));
736: }
737: /* Bmat */
738: v = bmat->a;
739: jj = bmat->j;
740: for (brow = 0; brow < mbs; brow++) {
741: grow = bs * (rstart + brow);
742: nz = bmat->i[brow + 1] - bmat->i[brow];
743: for (bcol = 0; bcol < nz; bcol++) {
744: gcol = bs * garray[*jj];
745: jj++;
746: for (col = 0; col < bs; col++) {
747: for (row = 0; row < bs; row++) {
748: vabs = PetscAbsScalar(*v);
749: v++;
750: rsum[gcol + col] += vabs;
751: rsum[grow + row] += vabs;
752: }
753: }
754: }
755: PetscCall(PetscLogFlops(nz * bs * bs));
756: }
757: PetscCallMPI(MPIU_Allreduce(MPI_IN_PLACE, rsum, mat->cmap->N, MPIU_REAL, MPIU_SUM, PetscObjectComm((PetscObject)mat)));
758: *norm = 0.0;
759: for (col = 0; col < mat->cmap->N; col++) {
760: if (rsum[col] > *norm) *norm = rsum[col];
761: }
762: PetscCall(PetscFree(rsum));
763: } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_SUP, "No support for this norm yet");
764: }
765: PetscFunctionReturn(PETSC_SUCCESS);
766: }
768: static PetscErrorCode MatAssemblyBegin_MPISBAIJ(Mat mat, MatAssemblyType mode)
769: {
770: Mat_MPISBAIJ *baij = (Mat_MPISBAIJ *)mat->data;
771: PetscInt nstash, reallocs;
773: PetscFunctionBegin;
774: if (baij->donotstash || mat->nooffprocentries) PetscFunctionReturn(PETSC_SUCCESS);
776: PetscCall(MatStashScatterBegin_Private(mat, &mat->stash, mat->rmap->range));
777: PetscCall(MatStashScatterBegin_Private(mat, &mat->bstash, baij->rangebs));
778: PetscCall(MatStashGetInfo_Private(&mat->stash, &nstash, &reallocs));
779: PetscCall(PetscInfo(mat, "Stash has %" PetscInt_FMT " entries,uses %" PetscInt_FMT " mallocs.\n", nstash, reallocs));
780: PetscCall(MatStashGetInfo_Private(&mat->stash, &nstash, &reallocs));
781: PetscCall(PetscInfo(mat, "Block-Stash has %" PetscInt_FMT " entries, uses %" PetscInt_FMT " mallocs.\n", nstash, reallocs));
782: PetscFunctionReturn(PETSC_SUCCESS);
783: }
785: static PetscErrorCode MatAssemblyEnd_MPISBAIJ(Mat mat, MatAssemblyType mode)
786: {
787: Mat_MPISBAIJ *baij = (Mat_MPISBAIJ *)mat->data;
788: Mat_SeqSBAIJ *a = (Mat_SeqSBAIJ *)baij->A->data;
789: PetscInt i, j, rstart, ncols, flg, bs2 = baij->bs2;
790: PetscInt *row, *col;
791: PetscBool all_assembled;
792: PetscMPIInt n;
793: PetscBool r1, r2, r3;
794: MatScalar *val;
796: /* do not use 'b=(Mat_SeqBAIJ*)baij->B->data' as B can be reset in disassembly */
797: PetscFunctionBegin;
798: if (!baij->donotstash && !mat->nooffprocentries) {
799: while (1) {
800: PetscCall(MatStashScatterGetMesg_Private(&mat->stash, &n, &row, &col, &val, &flg));
801: if (!flg) break;
803: for (i = 0; i < n;) {
804: /* Now identify the consecutive vals belonging to the same row */
805: for (j = i, rstart = row[j]; j < n; j++) {
806: if (row[j] != rstart) break;
807: }
808: if (j < n) ncols = j - i;
809: else ncols = n - i;
810: /* Now assemble all these values with a single function call */
811: PetscCall(MatSetValues_MPISBAIJ(mat, 1, row + i, ncols, col + i, val + i, mat->insertmode));
812: i = j;
813: }
814: }
815: PetscCall(MatStashScatterEnd_Private(&mat->stash));
816: /* Now process the block-stash. Since the values are stashed column-oriented,
817: set the row-oriented flag to column-oriented, and after MatSetValues()
818: restore the original flags */
819: r1 = baij->roworiented;
820: r2 = a->roworiented;
821: r3 = ((Mat_SeqBAIJ *)baij->B->data)->roworiented;
823: baij->roworiented = PETSC_FALSE;
824: a->roworiented = PETSC_FALSE;
826: ((Mat_SeqBAIJ *)baij->B->data)->roworiented = PETSC_FALSE; /* b->roworiented */
827: while (1) {
828: PetscCall(MatStashScatterGetMesg_Private(&mat->bstash, &n, &row, &col, &val, &flg));
829: if (!flg) break;
831: for (i = 0; i < n;) {
832: /* Now identify the consecutive vals belonging to the same row */
833: for (j = i, rstart = row[j]; j < n; j++) {
834: if (row[j] != rstart) break;
835: }
836: if (j < n) ncols = j - i;
837: else ncols = n - i;
838: PetscCall(MatSetValuesBlocked_MPISBAIJ(mat, 1, row + i, ncols, col + i, val + i * bs2, mat->insertmode));
839: i = j;
840: }
841: }
842: PetscCall(MatStashScatterEnd_Private(&mat->bstash));
844: baij->roworiented = r1;
845: a->roworiented = r2;
847: ((Mat_SeqBAIJ *)baij->B->data)->roworiented = r3; /* b->roworiented */
848: }
850: PetscCall(MatAssemblyBegin(baij->A, mode));
851: PetscCall(MatAssemblyEnd(baij->A, mode));
853: /* determine if any process has disassembled, if so we must
854: also disassemble ourselves, in order that we may reassemble. */
855: /*
856: if nonzero structure of submatrix B cannot change then we know that
857: no process disassembled thus we can skip this stuff
858: */
859: if (!((Mat_SeqBAIJ *)baij->B->data)->nonew) {
860: PetscCallMPI(MPIU_Allreduce(&mat->was_assembled, &all_assembled, 1, MPI_C_BOOL, MPI_LAND, PetscObjectComm((PetscObject)mat)));
861: if (mat->was_assembled && !all_assembled) PetscCall(MatDisAssemble_MPISBAIJ(mat));
862: }
864: if (!mat->was_assembled && mode == MAT_FINAL_ASSEMBLY) PetscCall(MatSetUpMultiply_MPISBAIJ(mat)); /* setup Mvctx and sMvctx */
865: PetscCall(MatAssemblyBegin(baij->B, mode));
866: PetscCall(MatAssemblyEnd(baij->B, mode));
868: PetscCall(PetscFree2(baij->rowvalues, baij->rowindices));
870: baij->rowvalues = NULL;
872: /* if no new nonzero locations are allowed in matrix then only set the matrix state the first time through */
873: if ((!mat->was_assembled && mode == MAT_FINAL_ASSEMBLY) || !((Mat_SeqBAIJ *)baij->A->data)->nonew) {
874: PetscObjectState state = baij->A->nonzerostate + baij->B->nonzerostate;
875: PetscCallMPI(MPIU_Allreduce(&state, &mat->nonzerostate, 1, MPIU_INT64, MPI_SUM, PetscObjectComm((PetscObject)mat)));
876: }
877: PetscFunctionReturn(PETSC_SUCCESS);
878: }
880: extern PetscErrorCode MatSetValues_MPIBAIJ(Mat, PetscInt, const PetscInt[], PetscInt, const PetscInt[], const PetscScalar[], InsertMode);
881: #include <petscdraw.h>
882: static PetscErrorCode MatView_MPISBAIJ_ASCIIorDraworSocket(Mat mat, PetscViewer viewer)
883: {
884: Mat_MPISBAIJ *baij = (Mat_MPISBAIJ *)mat->data;
885: PetscInt bs = mat->rmap->bs;
886: PetscMPIInt rank = baij->rank;
887: PetscBool isascii, isdraw;
888: PetscViewer sviewer;
889: PetscViewerFormat format;
891: PetscFunctionBegin;
892: PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &isascii));
893: PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERDRAW, &isdraw));
894: if (isascii) {
895: PetscCall(PetscViewerGetFormat(viewer, &format));
896: if (format == PETSC_VIEWER_ASCII_INFO_DETAIL) {
897: MatInfo info;
898: PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)mat), &rank));
899: PetscCall(MatGetInfo(mat, MAT_LOCAL, &info));
900: PetscCall(PetscViewerASCIIPushSynchronized(viewer));
901: PetscCall(PetscViewerASCIISynchronizedPrintf(viewer, "[%d] Local rows %" PetscInt_FMT " nz %" PetscInt_FMT " nz alloced %" PetscInt_FMT " bs %" PetscInt_FMT " mem %g\n", rank, mat->rmap->n, (PetscInt)info.nz_used, (PetscInt)info.nz_allocated,
902: mat->rmap->bs, info.memory));
903: PetscCall(MatGetInfo(baij->A, MAT_LOCAL, &info));
904: PetscCall(PetscViewerASCIISynchronizedPrintf(viewer, "[%d] on-diagonal part: nz %" PetscInt_FMT " \n", rank, (PetscInt)info.nz_used));
905: PetscCall(MatGetInfo(baij->B, MAT_LOCAL, &info));
906: PetscCall(PetscViewerASCIISynchronizedPrintf(viewer, "[%d] off-diagonal part: nz %" PetscInt_FMT " \n", rank, (PetscInt)info.nz_used));
907: PetscCall(PetscViewerFlush(viewer));
908: PetscCall(PetscViewerASCIIPopSynchronized(viewer));
909: PetscCall(PetscViewerASCIIPrintf(viewer, "Information on VecScatter used in matrix-vector product: \n"));
910: PetscCall(VecScatterView(baij->Mvctx, viewer));
911: PetscFunctionReturn(PETSC_SUCCESS);
912: } else if (format == PETSC_VIEWER_ASCII_INFO || format == PETSC_VIEWER_ASCII_FACTOR_INFO) PetscFunctionReturn(PETSC_SUCCESS);
913: }
915: if (isdraw) {
916: PetscDraw draw;
917: PetscBool isnull;
918: PetscCall(PetscViewerDrawGetDraw(viewer, 0, &draw));
919: PetscCall(PetscDrawIsNull(draw, &isnull));
920: if (isnull) PetscFunctionReturn(PETSC_SUCCESS);
921: }
923: {
924: /* assemble the entire matrix onto first processor. */
925: Mat A;
926: Mat_SeqSBAIJ *Aloc;
927: Mat_SeqBAIJ *Bloc;
928: PetscInt M = mat->rmap->N, N = mat->cmap->N, *ai, *aj, col, i, j, k, *rvals, mbs = baij->mbs;
929: MatScalar *a;
930: const char *matname;
932: /* Should this be the same type as mat? */
933: PetscCall(MatCreate(PetscObjectComm((PetscObject)mat), &A));
934: if (rank == 0) {
935: PetscCall(MatSetSizes(A, M, N, M, N));
936: } else {
937: PetscCall(MatSetSizes(A, 0, 0, M, N));
938: }
939: PetscCall(MatSetType(A, MATMPISBAIJ));
940: PetscCall(MatMPISBAIJSetPreallocation(A, mat->rmap->bs, 0, NULL, 0, NULL));
941: PetscCall(MatSetOption(A, MAT_NEW_NONZERO_LOCATION_ERR, PETSC_FALSE));
943: /* copy over the A part */
944: Aloc = (Mat_SeqSBAIJ *)baij->A->data;
945: ai = Aloc->i;
946: aj = Aloc->j;
947: a = Aloc->a;
948: PetscCall(PetscMalloc1(bs, &rvals));
950: for (i = 0; i < mbs; i++) {
951: rvals[0] = bs * (baij->rstartbs + i);
952: for (j = 1; j < bs; j++) rvals[j] = rvals[j - 1] + 1;
953: for (j = ai[i]; j < ai[i + 1]; j++) {
954: col = (baij->cstartbs + aj[j]) * bs;
955: for (k = 0; k < bs; k++) {
956: PetscCall(MatSetValues_MPISBAIJ(A, bs, rvals, 1, &col, a, INSERT_VALUES));
957: col++;
958: a += bs;
959: }
960: }
961: }
962: /* copy over the B part */
963: Bloc = (Mat_SeqBAIJ *)baij->B->data;
964: ai = Bloc->i;
965: aj = Bloc->j;
966: a = Bloc->a;
967: for (i = 0; i < mbs; i++) {
968: rvals[0] = bs * (baij->rstartbs + i);
969: for (j = 1; j < bs; j++) rvals[j] = rvals[j - 1] + 1;
970: for (j = ai[i]; j < ai[i + 1]; j++) {
971: col = baij->garray[aj[j]] * bs;
972: for (k = 0; k < bs; k++) {
973: PetscCall(MatSetValues_MPIBAIJ(A, bs, rvals, 1, &col, a, INSERT_VALUES));
974: col++;
975: a += bs;
976: }
977: }
978: }
979: PetscCall(PetscFree(rvals));
980: PetscCall(MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY));
981: PetscCall(MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY));
982: /*
983: Everyone has to call to draw the matrix since the graphics waits are
984: synchronized across all processors that share the PetscDraw object
985: */
986: PetscCall(PetscViewerGetSubViewer(viewer, PETSC_COMM_SELF, &sviewer));
987: if (((PetscObject)mat)->name) PetscCall(PetscObjectGetName((PetscObject)mat, &matname));
988: if (rank == 0) {
989: if (((PetscObject)mat)->name) PetscCall(PetscObjectSetName((PetscObject)((Mat_MPISBAIJ *)A->data)->A, matname));
990: PetscCall(MatView_SeqSBAIJ(((Mat_MPISBAIJ *)A->data)->A, sviewer));
991: }
992: PetscCall(PetscViewerRestoreSubViewer(viewer, PETSC_COMM_SELF, &sviewer));
993: PetscCall(MatDestroy(&A));
994: }
995: PetscFunctionReturn(PETSC_SUCCESS);
996: }
998: /* Used for both MPIBAIJ and MPISBAIJ matrices */
999: #define MatView_MPISBAIJ_Binary MatView_MPIBAIJ_Binary
1001: static PetscErrorCode MatView_MPISBAIJ(Mat mat, PetscViewer viewer)
1002: {
1003: PetscBool isascii, isdraw, issocket, isbinary;
1005: PetscFunctionBegin;
1006: PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &isascii));
1007: PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERDRAW, &isdraw));
1008: PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERSOCKET, &issocket));
1009: PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERBINARY, &isbinary));
1010: if (isascii || isdraw || issocket) PetscCall(MatView_MPISBAIJ_ASCIIorDraworSocket(mat, viewer));
1011: else if (isbinary) PetscCall(MatView_MPISBAIJ_Binary(mat, viewer));
1012: PetscFunctionReturn(PETSC_SUCCESS);
1013: }
1015: #if defined(PETSC_USE_COMPLEX)
1016: static PetscErrorCode MatMult_MPISBAIJ_Hermitian(Mat A, Vec xx, Vec yy)
1017: {
1018: Mat_MPISBAIJ *a = (Mat_MPISBAIJ *)A->data;
1019: PetscInt mbs = a->mbs, bs = A->rmap->bs;
1020: PetscScalar *from;
1021: const PetscScalar *x;
1023: PetscFunctionBegin;
1024: /* diagonal part */
1025: PetscCall((*a->A->ops->mult)(a->A, xx, a->slvec1a));
1026: /* since a->slvec1b shares memory (dangerously) with a->slec1 changes to a->slec1 will affect it */
1027: PetscCall(PetscObjectStateIncrease((PetscObject)a->slvec1b));
1028: PetscCall(VecZeroEntries(a->slvec1b));
1030: /* subdiagonal part */
1031: PetscCheck(a->B->ops->multhermitiantranspose, PetscObjectComm((PetscObject)a->B), PETSC_ERR_SUP, "Not for type %s", ((PetscObject)a->B)->type_name);
1032: PetscCall((*a->B->ops->multhermitiantranspose)(a->B, xx, a->slvec0b));
1034: /* copy x into the vec slvec0 */
1035: PetscCall(VecGetArray(a->slvec0, &from));
1036: PetscCall(VecGetArrayRead(xx, &x));
1038: PetscCall(PetscArraycpy(from, x, bs * mbs));
1039: PetscCall(VecRestoreArray(a->slvec0, &from));
1040: PetscCall(VecRestoreArrayRead(xx, &x));
1042: PetscCall(VecScatterBegin(a->sMvctx, a->slvec0, a->slvec1, ADD_VALUES, SCATTER_FORWARD));
1043: PetscCall(VecScatterEnd(a->sMvctx, a->slvec0, a->slvec1, ADD_VALUES, SCATTER_FORWARD));
1044: /* supperdiagonal part */
1045: PetscCall((*a->B->ops->multadd)(a->B, a->slvec1b, a->slvec1a, yy));
1046: PetscFunctionReturn(PETSC_SUCCESS);
1047: }
1048: #endif
1050: static PetscErrorCode MatMult_MPISBAIJ(Mat A, Vec xx, Vec yy)
1051: {
1052: Mat_MPISBAIJ *a = (Mat_MPISBAIJ *)A->data;
1053: PetscInt mbs = a->mbs, bs = A->rmap->bs;
1054: PetscScalar *from;
1055: const PetscScalar *x;
1057: PetscFunctionBegin;
1058: /* diagonal part */
1059: PetscCall((*a->A->ops->mult)(a->A, xx, a->slvec1a));
1060: /* since a->slvec1b shares memory (dangerously) with a->slec1 changes to a->slec1 will affect it */
1061: PetscCall(PetscObjectStateIncrease((PetscObject)a->slvec1b));
1062: PetscCall(VecZeroEntries(a->slvec1b));
1064: /* subdiagonal part */
1065: PetscCall((*a->B->ops->multtranspose)(a->B, xx, a->slvec0b));
1067: /* copy x into the vec slvec0 */
1068: PetscCall(VecGetArray(a->slvec0, &from));
1069: PetscCall(VecGetArrayRead(xx, &x));
1071: PetscCall(PetscArraycpy(from, x, bs * mbs));
1072: PetscCall(VecRestoreArray(a->slvec0, &from));
1073: PetscCall(VecRestoreArrayRead(xx, &x));
1075: PetscCall(VecScatterBegin(a->sMvctx, a->slvec0, a->slvec1, ADD_VALUES, SCATTER_FORWARD));
1076: PetscCall(VecScatterEnd(a->sMvctx, a->slvec0, a->slvec1, ADD_VALUES, SCATTER_FORWARD));
1077: /* supperdiagonal part */
1078: PetscCall((*a->B->ops->multadd)(a->B, a->slvec1b, a->slvec1a, yy));
1079: PetscFunctionReturn(PETSC_SUCCESS);
1080: }
1082: #if PetscDefined(USE_COMPLEX)
1083: static PetscErrorCode MatMultAdd_MPISBAIJ_Hermitian(Mat A, Vec xx, Vec yy, Vec zz)
1084: {
1085: Mat_MPISBAIJ *a = (Mat_MPISBAIJ *)A->data;
1086: PetscInt mbs = a->mbs, bs = A->rmap->bs;
1087: PetscScalar *from;
1088: const PetscScalar *x;
1090: PetscFunctionBegin;
1091: /* diagonal part */
1092: PetscCall((*a->A->ops->multadd)(a->A, xx, yy, a->slvec1a));
1093: PetscCall(PetscObjectStateIncrease((PetscObject)a->slvec1b));
1094: PetscCall(VecZeroEntries(a->slvec1b));
1096: /* subdiagonal part */
1097: PetscCheck(a->B->ops->multhermitiantranspose, PetscObjectComm((PetscObject)a->B), PETSC_ERR_SUP, "Not for type %s", ((PetscObject)a->B)->type_name);
1098: PetscCall((*a->B->ops->multhermitiantranspose)(a->B, xx, a->slvec0b));
1100: /* copy x into the vec slvec0 */
1101: PetscCall(VecGetArray(a->slvec0, &from));
1102: PetscCall(VecGetArrayRead(xx, &x));
1103: PetscCall(PetscArraycpy(from, x, bs * mbs));
1104: PetscCall(VecRestoreArray(a->slvec0, &from));
1106: PetscCall(VecScatterBegin(a->sMvctx, a->slvec0, a->slvec1, ADD_VALUES, SCATTER_FORWARD));
1107: PetscCall(VecRestoreArrayRead(xx, &x));
1108: PetscCall(VecScatterEnd(a->sMvctx, a->slvec0, a->slvec1, ADD_VALUES, SCATTER_FORWARD));
1110: /* supperdiagonal part */
1111: PetscCall((*a->B->ops->multadd)(a->B, a->slvec1b, a->slvec1a, zz));
1112: PetscFunctionReturn(PETSC_SUCCESS);
1113: }
1114: #endif
1116: static PetscErrorCode MatMultAdd_MPISBAIJ(Mat A, Vec xx, Vec yy, Vec zz)
1117: {
1118: Mat_MPISBAIJ *a = (Mat_MPISBAIJ *)A->data;
1119: PetscInt mbs = a->mbs, bs = A->rmap->bs;
1120: PetscScalar *from;
1121: const PetscScalar *x;
1123: PetscFunctionBegin;
1124: /* diagonal part */
1125: PetscCall((*a->A->ops->multadd)(a->A, xx, yy, a->slvec1a));
1126: PetscCall(PetscObjectStateIncrease((PetscObject)a->slvec1b));
1127: PetscCall(VecZeroEntries(a->slvec1b));
1129: /* subdiagonal part */
1130: PetscCall((*a->B->ops->multtranspose)(a->B, xx, a->slvec0b));
1132: /* copy x into the vec slvec0 */
1133: PetscCall(VecGetArray(a->slvec0, &from));
1134: PetscCall(VecGetArrayRead(xx, &x));
1135: PetscCall(PetscArraycpy(from, x, bs * mbs));
1136: PetscCall(VecRestoreArray(a->slvec0, &from));
1138: PetscCall(VecScatterBegin(a->sMvctx, a->slvec0, a->slvec1, ADD_VALUES, SCATTER_FORWARD));
1139: PetscCall(VecRestoreArrayRead(xx, &x));
1140: PetscCall(VecScatterEnd(a->sMvctx, a->slvec0, a->slvec1, ADD_VALUES, SCATTER_FORWARD));
1142: /* supperdiagonal part */
1143: PetscCall((*a->B->ops->multadd)(a->B, a->slvec1b, a->slvec1a, zz));
1144: PetscFunctionReturn(PETSC_SUCCESS);
1145: }
1147: /*
1148: This only works correctly for square matrices where the subblock A->A is the
1149: diagonal block
1150: */
1151: static PetscErrorCode MatGetDiagonal_MPISBAIJ(Mat A, Vec v)
1152: {
1153: Mat_MPISBAIJ *a = (Mat_MPISBAIJ *)A->data;
1155: PetscFunctionBegin;
1156: /* PetscCheck(a->rmap->N == a->cmap->N,PETSC_COMM_SELF,PETSC_ERR_SUP,"Supports only square matrix where A->A is diag block"); */
1157: PetscCall(MatGetDiagonal(a->A, v));
1158: PetscFunctionReturn(PETSC_SUCCESS);
1159: }
1161: static PetscErrorCode MatScale_MPISBAIJ(Mat A, PetscScalar aa)
1162: {
1163: Mat_MPISBAIJ *a = (Mat_MPISBAIJ *)A->data;
1165: PetscFunctionBegin;
1166: PetscCall(MatScale(a->A, aa));
1167: PetscCall(MatScale(a->B, aa));
1168: PetscFunctionReturn(PETSC_SUCCESS);
1169: }
1171: static PetscErrorCode MatGetRow_MPISBAIJ(Mat matin, PetscInt row, PetscInt *nz, PetscInt **idx, PetscScalar **v)
1172: {
1173: Mat_MPISBAIJ *mat = (Mat_MPISBAIJ *)matin->data;
1174: PetscScalar *vworkA, *vworkB, **pvA, **pvB, *v_p;
1175: PetscInt bs = matin->rmap->bs, bs2 = mat->bs2, i, *cworkA, *cworkB, **pcA, **pcB;
1176: PetscInt nztot, nzA, nzB, lrow, brstart = matin->rmap->rstart, brend = matin->rmap->rend;
1177: PetscInt *cmap, *idx_p, cstart = mat->rstartbs;
1179: PetscFunctionBegin;
1180: PetscCheck(!mat->getrowactive, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Already active");
1181: mat->getrowactive = PETSC_TRUE;
1183: if (!mat->rowvalues && (idx || v)) {
1184: /*
1185: allocate enough space to hold information from the longest row.
1186: */
1187: Mat_SeqSBAIJ *Aa = (Mat_SeqSBAIJ *)mat->A->data;
1188: Mat_SeqBAIJ *Ba = (Mat_SeqBAIJ *)mat->B->data;
1189: PetscInt max = 1, mbs = mat->mbs, tmp;
1190: for (i = 0; i < mbs; i++) {
1191: tmp = Aa->i[i + 1] - Aa->i[i] + Ba->i[i + 1] - Ba->i[i]; /* row length */
1192: if (max < tmp) max = tmp;
1193: }
1194: PetscCall(PetscMalloc2(max * bs2, &mat->rowvalues, max * bs2, &mat->rowindices));
1195: }
1197: PetscCheck(row >= brstart && row < brend, PETSC_COMM_SELF, PETSC_ERR_SUP, "Only local rows");
1198: lrow = row - brstart; /* local row index */
1200: pvA = &vworkA;
1201: pcA = &cworkA;
1202: pvB = &vworkB;
1203: pcB = &cworkB;
1204: if (!v) {
1205: pvA = NULL;
1206: pvB = NULL;
1207: }
1208: if (!idx) {
1209: pcA = NULL;
1210: if (!v) pcB = NULL;
1211: }
1212: PetscCall((*mat->A->ops->getrow)(mat->A, lrow, &nzA, pcA, pvA));
1213: PetscCall((*mat->B->ops->getrow)(mat->B, lrow, &nzB, pcB, pvB));
1214: nztot = nzA + nzB;
1216: cmap = mat->garray;
1217: if (v || idx) {
1218: if (nztot) {
1219: /* Sort by increasing column numbers, assuming A and B already sorted */
1220: PetscInt imark = -1;
1221: if (v) {
1222: *v = v_p = mat->rowvalues;
1223: for (i = 0; i < nzB; i++) {
1224: if (cmap[cworkB[i] / bs] < cstart) v_p[i] = vworkB[i];
1225: else break;
1226: }
1227: imark = i;
1228: for (i = 0; i < nzA; i++) v_p[imark + i] = vworkA[i];
1229: for (i = imark; i < nzB; i++) v_p[nzA + i] = vworkB[i];
1230: }
1231: if (idx) {
1232: *idx = idx_p = mat->rowindices;
1233: if (imark > -1) {
1234: for (i = 0; i < imark; i++) idx_p[i] = cmap[cworkB[i] / bs] * bs + cworkB[i] % bs;
1235: } else {
1236: for (i = 0; i < nzB; i++) {
1237: if (cmap[cworkB[i] / bs] < cstart) idx_p[i] = cmap[cworkB[i] / bs] * bs + cworkB[i] % bs;
1238: else break;
1239: }
1240: imark = i;
1241: }
1242: for (i = 0; i < nzA; i++) idx_p[imark + i] = cstart * bs + cworkA[i];
1243: for (i = imark; i < nzB; i++) idx_p[nzA + i] = cmap[cworkB[i] / bs] * bs + cworkB[i] % bs;
1244: }
1245: } else {
1246: if (idx) *idx = NULL;
1247: if (v) *v = NULL;
1248: }
1249: }
1250: *nz = nztot;
1251: PetscCall((*mat->A->ops->restorerow)(mat->A, lrow, &nzA, pcA, pvA));
1252: PetscCall((*mat->B->ops->restorerow)(mat->B, lrow, &nzB, pcB, pvB));
1253: PetscFunctionReturn(PETSC_SUCCESS);
1254: }
1256: static PetscErrorCode MatRestoreRow_MPISBAIJ(Mat mat, PetscInt row, PetscInt *nz, PetscInt **idx, PetscScalar **v)
1257: {
1258: Mat_MPISBAIJ *baij = (Mat_MPISBAIJ *)mat->data;
1260: PetscFunctionBegin;
1261: PetscCheck(baij->getrowactive, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "MatGetRow() must be called first");
1262: baij->getrowactive = PETSC_FALSE;
1263: PetscFunctionReturn(PETSC_SUCCESS);
1264: }
1266: static PetscErrorCode MatGetRowUpperTriangular_MPISBAIJ(Mat A)
1267: {
1268: Mat_MPISBAIJ *a = (Mat_MPISBAIJ *)A->data;
1269: Mat_SeqSBAIJ *aA = (Mat_SeqSBAIJ *)a->A->data;
1271: PetscFunctionBegin;
1272: aA->getrow_utriangular = PETSC_TRUE;
1273: PetscFunctionReturn(PETSC_SUCCESS);
1274: }
1275: static PetscErrorCode MatRestoreRowUpperTriangular_MPISBAIJ(Mat A)
1276: {
1277: Mat_MPISBAIJ *a = (Mat_MPISBAIJ *)A->data;
1278: Mat_SeqSBAIJ *aA = (Mat_SeqSBAIJ *)a->A->data;
1280: PetscFunctionBegin;
1281: aA->getrow_utriangular = PETSC_FALSE;
1282: PetscFunctionReturn(PETSC_SUCCESS);
1283: }
1285: static PetscErrorCode MatConjugate_MPISBAIJ(Mat mat)
1286: {
1287: Mat_MPISBAIJ *a = (Mat_MPISBAIJ *)mat->data;
1289: PetscFunctionBegin;
1290: PetscCall(MatConjugate(a->A));
1291: PetscCall(MatConjugate(a->B));
1292: PetscFunctionReturn(PETSC_SUCCESS);
1293: }
1295: static PetscErrorCode MatRealPart_MPISBAIJ(Mat A)
1296: {
1297: Mat_MPISBAIJ *a = (Mat_MPISBAIJ *)A->data;
1299: PetscFunctionBegin;
1300: PetscCall(MatRealPart(a->A));
1301: PetscCall(MatRealPart(a->B));
1302: PetscFunctionReturn(PETSC_SUCCESS);
1303: }
1305: static PetscErrorCode MatImaginaryPart_MPISBAIJ(Mat A)
1306: {
1307: Mat_MPISBAIJ *a = (Mat_MPISBAIJ *)A->data;
1309: PetscFunctionBegin;
1310: PetscCall(MatImaginaryPart(a->A));
1311: PetscCall(MatImaginaryPart(a->B));
1312: PetscFunctionReturn(PETSC_SUCCESS);
1313: }
1315: /* Check if isrow is a subset of iscol_local, called by MatCreateSubMatrix_MPISBAIJ()
1316: Input: isrow - distributed(parallel),
1317: iscol_local - locally owned (seq)
1318: */
1319: static PetscErrorCode ISEqual_private(IS isrow, IS iscol_local, PetscBool *flg)
1320: {
1321: PetscInt sz1, sz2, *a1, *a2, i, j, k, nmatch;
1322: const PetscInt *ptr1, *ptr2;
1324: PetscFunctionBegin;
1325: *flg = PETSC_FALSE;
1326: PetscCall(ISGetLocalSize(isrow, &sz1));
1327: PetscCall(ISGetLocalSize(iscol_local, &sz2));
1328: if (sz1 > sz2) PetscFunctionReturn(PETSC_SUCCESS);
1330: PetscCall(ISGetIndices(isrow, &ptr1));
1331: PetscCall(ISGetIndices(iscol_local, &ptr2));
1333: PetscCall(PetscMalloc1(sz1, &a1));
1334: PetscCall(PetscMalloc1(sz2, &a2));
1335: PetscCall(PetscArraycpy(a1, ptr1, sz1));
1336: PetscCall(PetscArraycpy(a2, ptr2, sz2));
1337: PetscCall(PetscSortInt(sz1, a1));
1338: PetscCall(PetscSortInt(sz2, a2));
1340: nmatch = 0;
1341: k = 0;
1342: for (i = 0; i < sz1; i++) {
1343: for (j = k; j < sz2; j++) {
1344: if (a1[i] == a2[j]) {
1345: k = j;
1346: nmatch++;
1347: break;
1348: }
1349: }
1350: }
1351: PetscCall(ISRestoreIndices(isrow, &ptr1));
1352: PetscCall(ISRestoreIndices(iscol_local, &ptr2));
1353: PetscCall(PetscFree(a1));
1354: PetscCall(PetscFree(a2));
1355: if (nmatch < sz1) {
1356: *flg = PETSC_FALSE;
1357: } else {
1358: *flg = PETSC_TRUE;
1359: }
1360: PetscFunctionReturn(PETSC_SUCCESS);
1361: }
1363: static PetscErrorCode MatCreateSubMatrix_MPISBAIJ(Mat mat, IS isrow, IS iscol, MatReuse call, Mat *newmat)
1364: {
1365: Mat C[2];
1366: IS iscol_local, isrow_local;
1367: PetscInt csize, csize_local, rsize;
1368: PetscBool isequal, issorted, isidentity = PETSC_FALSE;
1370: PetscFunctionBegin;
1371: PetscCall(ISGetLocalSize(iscol, &csize));
1372: PetscCall(ISGetLocalSize(isrow, &rsize));
1373: if (call == MAT_REUSE_MATRIX) {
1374: PetscCall(PetscObjectQuery((PetscObject)*newmat, "ISAllGather", (PetscObject *)&iscol_local));
1375: PetscCheck(iscol_local, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Submatrix passed in was not used before, cannot reuse");
1376: } else {
1377: PetscCall(ISAllGather(iscol, &iscol_local));
1378: PetscCall(ISSorted(iscol_local, &issorted));
1379: PetscCheck(issorted, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "For symmetric format, iscol must be sorted");
1380: }
1381: PetscCall(ISEqual_private(isrow, iscol_local, &isequal));
1382: if (!isequal) {
1383: PetscCall(ISGetLocalSize(iscol_local, &csize_local));
1384: isidentity = (PetscBool)(mat->cmap->N == csize_local);
1385: if (!isidentity) {
1386: if (call == MAT_REUSE_MATRIX) {
1387: PetscCall(PetscObjectQuery((PetscObject)*newmat, "ISAllGather_other", (PetscObject *)&isrow_local));
1388: PetscCheck(isrow_local, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Submatrix passed in was not used before, cannot reuse");
1389: } else {
1390: PetscCall(ISAllGather(isrow, &isrow_local));
1391: PetscCall(ISSorted(isrow_local, &issorted));
1392: PetscCheck(issorted, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "For symmetric format, isrow must be sorted");
1393: }
1394: }
1395: }
1396: /* now call MatCreateSubMatrix_MPIBAIJ() */
1397: PetscCall(MatCreateSubMatrix_MPIBAIJ_Private(mat, isrow, iscol_local, csize, isequal || isidentity ? call : MAT_INITIAL_MATRIX, isequal || isidentity ? newmat : C, (PetscBool)(isequal || isidentity)));
1398: if (!isequal && !isidentity) {
1399: if (call == MAT_INITIAL_MATRIX) {
1400: IS intersect;
1401: PetscInt ni;
1403: PetscCall(ISIntersect(isrow_local, iscol_local, &intersect));
1404: PetscCall(ISGetLocalSize(intersect, &ni));
1405: PetscCall(ISDestroy(&intersect));
1406: PetscCheck(ni == 0, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Cannot create such a submatrix: for symmetric format, when requesting an off-diagonal submatrix, isrow and iscol should have an empty intersection (number of common indices is %" PetscInt_FMT ")", ni);
1407: }
1408: PetscCall(MatCreateSubMatrix_MPIBAIJ_Private(mat, iscol, isrow_local, rsize, MAT_INITIAL_MATRIX, C + 1, PETSC_FALSE));
1409: PetscCall(MatTranspose(C[1], MAT_INPLACE_MATRIX, C + 1));
1410: PetscCall(MatAXPY(C[0], 1.0, C[1], DIFFERENT_NONZERO_PATTERN));
1411: if (call == MAT_REUSE_MATRIX) PetscCall(MatCopy(C[0], *newmat, SAME_NONZERO_PATTERN));
1412: else if (mat->rmap->bs == 1) PetscCall(MatConvert(C[0], MATAIJ, MAT_INITIAL_MATRIX, newmat));
1413: else PetscCall(MatCopy(C[0], *newmat, SAME_NONZERO_PATTERN));
1414: PetscCall(MatDestroy(C));
1415: PetscCall(MatDestroy(C + 1));
1416: }
1417: if (call == MAT_INITIAL_MATRIX) {
1418: if (!isequal && !isidentity) {
1419: PetscCall(PetscObjectCompose((PetscObject)*newmat, "ISAllGather_other", (PetscObject)isrow_local));
1420: PetscCall(ISDestroy(&isrow_local));
1421: }
1422: PetscCall(PetscObjectCompose((PetscObject)*newmat, "ISAllGather", (PetscObject)iscol_local));
1423: PetscCall(ISDestroy(&iscol_local));
1424: }
1425: PetscFunctionReturn(PETSC_SUCCESS);
1426: }
1428: static PetscErrorCode MatZeroEntries_MPISBAIJ(Mat A)
1429: {
1430: Mat_MPISBAIJ *l = (Mat_MPISBAIJ *)A->data;
1432: PetscFunctionBegin;
1433: PetscCall(MatZeroEntries(l->A));
1434: PetscCall(MatZeroEntries(l->B));
1435: PetscFunctionReturn(PETSC_SUCCESS);
1436: }
1438: static PetscErrorCode MatGetInfo_MPISBAIJ(Mat matin, MatInfoType flag, MatInfo *info)
1439: {
1440: Mat_MPISBAIJ *a = (Mat_MPISBAIJ *)matin->data;
1441: Mat A = a->A, B = a->B;
1442: PetscLogDouble isend[5], irecv[5];
1444: PetscFunctionBegin;
1445: info->block_size = (PetscReal)matin->rmap->bs;
1447: PetscCall(MatGetInfo(A, MAT_LOCAL, info));
1449: isend[0] = info->nz_used;
1450: isend[1] = info->nz_allocated;
1451: isend[2] = info->nz_unneeded;
1452: isend[3] = info->memory;
1453: isend[4] = info->mallocs;
1455: PetscCall(MatGetInfo(B, MAT_LOCAL, info));
1457: isend[0] += info->nz_used;
1458: isend[1] += info->nz_allocated;
1459: isend[2] += info->nz_unneeded;
1460: isend[3] += info->memory;
1461: isend[4] += info->mallocs;
1462: if (flag == MAT_LOCAL) {
1463: info->nz_used = isend[0];
1464: info->nz_allocated = isend[1];
1465: info->nz_unneeded = isend[2];
1466: info->memory = isend[3];
1467: info->mallocs = isend[4];
1468: } else if (flag == MAT_GLOBAL_MAX) {
1469: PetscCallMPI(MPIU_Allreduce(isend, irecv, 5, MPIU_PETSCLOGDOUBLE, MPI_MAX, PetscObjectComm((PetscObject)matin)));
1471: info->nz_used = irecv[0];
1472: info->nz_allocated = irecv[1];
1473: info->nz_unneeded = irecv[2];
1474: info->memory = irecv[3];
1475: info->mallocs = irecv[4];
1476: } else if (flag == MAT_GLOBAL_SUM) {
1477: PetscCallMPI(MPIU_Allreduce(isend, irecv, 5, MPIU_PETSCLOGDOUBLE, MPI_SUM, PetscObjectComm((PetscObject)matin)));
1479: info->nz_used = irecv[0];
1480: info->nz_allocated = irecv[1];
1481: info->nz_unneeded = irecv[2];
1482: info->memory = irecv[3];
1483: info->mallocs = irecv[4];
1484: } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Unknown MatInfoType argument %d", (int)flag);
1485: info->fill_ratio_given = 0; /* no parallel LU/ILU/Cholesky */
1486: info->fill_ratio_needed = 0;
1487: info->factor_mallocs = 0;
1488: PetscFunctionReturn(PETSC_SUCCESS);
1489: }
1491: static PetscErrorCode MatSetOption_MPISBAIJ(Mat A, MatOption op, PetscBool flg)
1492: {
1493: Mat_MPISBAIJ *a = (Mat_MPISBAIJ *)A->data;
1494: Mat_SeqSBAIJ *aA = (Mat_SeqSBAIJ *)a->A->data;
1496: PetscFunctionBegin;
1497: switch (op) {
1498: case MAT_NEW_NONZERO_LOCATIONS:
1499: case MAT_NEW_NONZERO_ALLOCATION_ERR:
1500: case MAT_UNUSED_NONZERO_LOCATION_ERR:
1501: case MAT_KEEP_NONZERO_PATTERN:
1502: case MAT_NEW_NONZERO_LOCATION_ERR:
1503: MatCheckPreallocated(A, 1);
1504: PetscCall(MatSetOption(a->A, op, flg));
1505: PetscCall(MatSetOption(a->B, op, flg));
1506: break;
1507: case MAT_ROW_ORIENTED:
1508: MatCheckPreallocated(A, 1);
1509: a->roworiented = flg;
1511: PetscCall(MatSetOption(a->A, op, flg));
1512: PetscCall(MatSetOption(a->B, op, flg));
1513: break;
1514: case MAT_IGNORE_OFF_PROC_ENTRIES:
1515: a->donotstash = flg;
1516: break;
1517: case MAT_USE_HASH_TABLE:
1518: a->ht_flag = flg;
1519: break;
1520: case MAT_HERMITIAN:
1521: if (a->A && A->rmap->n == A->cmap->n) PetscCall(MatSetOption(a->A, op, flg));
1522: #if defined(PETSC_USE_COMPLEX)
1523: if (flg) { /* need different mat-vec ops */
1524: A->ops->mult = MatMult_MPISBAIJ_Hermitian;
1525: A->ops->multadd = MatMultAdd_MPISBAIJ_Hermitian;
1526: A->ops->multtranspose = NULL;
1527: A->ops->multtransposeadd = NULL;
1528: }
1529: #endif
1530: break;
1531: case MAT_SPD:
1532: case MAT_SYMMETRIC:
1533: if (a->A && A->rmap->n == A->cmap->n) PetscCall(MatSetOption(a->A, op, flg));
1534: #if defined(PETSC_USE_COMPLEX)
1535: if (flg) { /* restore to use default mat-vec ops */
1536: A->ops->mult = MatMult_MPISBAIJ;
1537: A->ops->multadd = MatMultAdd_MPISBAIJ;
1538: A->ops->multtranspose = MatMult_MPISBAIJ;
1539: A->ops->multtransposeadd = MatMultAdd_MPISBAIJ;
1540: }
1541: #endif
1542: break;
1543: case MAT_STRUCTURALLY_SYMMETRIC:
1544: if (a->A && A->rmap->n == A->cmap->n) PetscCall(MatSetOption(a->A, op, flg));
1545: break;
1546: case MAT_IGNORE_LOWER_TRIANGULAR:
1547: case MAT_ERROR_LOWER_TRIANGULAR:
1548: aA->ignore_ltriangular = flg;
1549: break;
1550: case MAT_GETROW_UPPERTRIANGULAR:
1551: aA->getrow_utriangular = flg;
1552: break;
1553: default:
1554: break;
1555: }
1556: PetscFunctionReturn(PETSC_SUCCESS);
1557: }
1559: static PetscErrorCode MatTranspose_MPISBAIJ(Mat A, MatReuse reuse, Mat *B)
1560: {
1561: PetscFunctionBegin;
1562: if (reuse == MAT_REUSE_MATRIX) PetscCall(MatTransposeCheckNonzeroState_Private(A, *B));
1563: if (reuse == MAT_INITIAL_MATRIX) {
1564: PetscCall(MatDuplicate(A, MAT_COPY_VALUES, B));
1565: } else if (reuse == MAT_REUSE_MATRIX) {
1566: PetscCall(MatCopy(A, *B, SAME_NONZERO_PATTERN));
1567: }
1568: PetscFunctionReturn(PETSC_SUCCESS);
1569: }
1571: static PetscErrorCode MatDiagonalScale_MPISBAIJ(Mat mat, Vec ll, Vec rr)
1572: {
1573: Mat_MPISBAIJ *baij = (Mat_MPISBAIJ *)mat->data;
1574: Mat a = baij->A, b = baij->B;
1575: PetscInt nv, m, n;
1577: PetscFunctionBegin;
1578: if (!ll) PetscFunctionReturn(PETSC_SUCCESS);
1580: PetscCall(MatGetLocalSize(mat, &m, &n));
1581: PetscCheck(m == n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "For symmetric format, local size %" PetscInt_FMT " %" PetscInt_FMT " must be same", m, n);
1583: PetscCall(VecGetLocalSize(rr, &nv));
1584: PetscCheck(nv == n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Left and right vector non-conforming local size");
1586: PetscCall(VecScatterBegin(baij->Mvctx, rr, baij->lvec, INSERT_VALUES, SCATTER_FORWARD));
1588: /* left diagonalscale the off-diagonal part */
1589: PetscUseTypeMethod(b, diagonalscale, ll, NULL);
1591: /* scale the diagonal part */
1592: PetscUseTypeMethod(a, diagonalscale, ll, rr);
1594: /* right diagonalscale the off-diagonal part */
1595: PetscCall(VecScatterEnd(baij->Mvctx, rr, baij->lvec, INSERT_VALUES, SCATTER_FORWARD));
1596: PetscUseTypeMethod(b, diagonalscale, NULL, baij->lvec);
1597: PetscFunctionReturn(PETSC_SUCCESS);
1598: }
1600: static PetscErrorCode MatSetUnfactored_MPISBAIJ(Mat A)
1601: {
1602: Mat_MPISBAIJ *a = (Mat_MPISBAIJ *)A->data;
1604: PetscFunctionBegin;
1605: PetscCall(MatSetUnfactored(a->A));
1606: PetscFunctionReturn(PETSC_SUCCESS);
1607: }
1609: static PetscErrorCode MatDuplicate_MPISBAIJ(Mat, MatDuplicateOption, Mat *);
1611: static PetscErrorCode MatEqual_MPISBAIJ(Mat A, Mat B, PetscBool *flag)
1612: {
1613: Mat_MPISBAIJ *matB = (Mat_MPISBAIJ *)B->data, *matA = (Mat_MPISBAIJ *)A->data;
1614: Mat a, b, c, d;
1615: PetscBool flg;
1617: PetscFunctionBegin;
1618: a = matA->A;
1619: b = matA->B;
1620: c = matB->A;
1621: d = matB->B;
1623: PetscCall(MatEqual(a, c, &flg));
1624: if (flg) PetscCall(MatEqual(b, d, &flg));
1625: PetscCallMPI(MPIU_Allreduce(&flg, flag, 1, MPI_C_BOOL, MPI_LAND, PetscObjectComm((PetscObject)A)));
1626: PetscFunctionReturn(PETSC_SUCCESS);
1627: }
1629: static PetscErrorCode MatCopy_MPISBAIJ(Mat A, Mat B, MatStructure str)
1630: {
1631: PetscBool isbaij;
1633: PetscFunctionBegin;
1634: PetscCall(PetscObjectTypeCompareAny((PetscObject)B, &isbaij, MATSEQSBAIJ, MATMPISBAIJ, ""));
1635: PetscCheck(isbaij, PetscObjectComm((PetscObject)B), PETSC_ERR_SUP, "Not for matrix type %s", ((PetscObject)B)->type_name);
1636: /* If the two matrices don't have the same copy implementation, they aren't compatible for fast copy. */
1637: if ((str != SAME_NONZERO_PATTERN) || (A->ops->copy != B->ops->copy)) {
1638: PetscCall(MatGetRowUpperTriangular(A));
1639: PetscCall(MatCopy_Basic(A, B, str));
1640: PetscCall(MatRestoreRowUpperTriangular(A));
1641: } else {
1642: Mat_MPISBAIJ *a = (Mat_MPISBAIJ *)A->data;
1643: Mat_MPISBAIJ *b = (Mat_MPISBAIJ *)B->data;
1645: PetscCall(MatCopy(a->A, b->A, str));
1646: PetscCall(MatCopy(a->B, b->B, str));
1647: }
1648: PetscCall(PetscObjectStateIncrease((PetscObject)B));
1649: PetscFunctionReturn(PETSC_SUCCESS);
1650: }
1652: static PetscErrorCode MatAXPY_MPISBAIJ(Mat Y, PetscScalar a, Mat X, MatStructure str)
1653: {
1654: Mat_MPISBAIJ *xx = (Mat_MPISBAIJ *)X->data, *yy = (Mat_MPISBAIJ *)Y->data;
1655: PetscBLASInt bnz, one = 1;
1656: Mat_SeqSBAIJ *xa, *ya;
1657: Mat_SeqBAIJ *xb, *yb;
1659: PetscFunctionBegin;
1660: if (str == SAME_NONZERO_PATTERN) {
1661: PetscScalar alpha = a;
1662: xa = (Mat_SeqSBAIJ *)xx->A->data;
1663: ya = (Mat_SeqSBAIJ *)yy->A->data;
1664: PetscCall(PetscBLASIntCast(xa->nz, &bnz));
1665: PetscCallBLAS("BLASaxpy", BLASaxpy_(&bnz, &alpha, xa->a, &one, ya->a, &one));
1666: xb = (Mat_SeqBAIJ *)xx->B->data;
1667: yb = (Mat_SeqBAIJ *)yy->B->data;
1668: PetscCall(PetscBLASIntCast(xb->nz, &bnz));
1669: PetscCallBLAS("BLASaxpy", BLASaxpy_(&bnz, &alpha, xb->a, &one, yb->a, &one));
1670: PetscCall(PetscObjectStateIncrease((PetscObject)Y));
1671: } else if (str == SUBSET_NONZERO_PATTERN) { /* nonzeros of X is a subset of Y's */
1672: PetscCall(MatSetOption(X, MAT_GETROW_UPPERTRIANGULAR, PETSC_TRUE));
1673: PetscCall(MatAXPY_Basic(Y, a, X, str));
1674: PetscCall(MatSetOption(X, MAT_GETROW_UPPERTRIANGULAR, PETSC_FALSE));
1675: } else {
1676: Mat B;
1677: PetscInt *nnz_d, *nnz_o, bs = Y->rmap->bs;
1678: PetscCheck(bs == X->rmap->bs, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "Matrices must have same block size");
1679: PetscCall(MatGetRowUpperTriangular(X));
1680: PetscCall(MatGetRowUpperTriangular(Y));
1681: PetscCall(PetscMalloc1(yy->A->rmap->N, &nnz_d));
1682: PetscCall(PetscMalloc1(yy->B->rmap->N, &nnz_o));
1683: PetscCall(MatCreate(PetscObjectComm((PetscObject)Y), &B));
1684: PetscCall(PetscObjectSetName((PetscObject)B, ((PetscObject)Y)->name));
1685: PetscCall(MatSetSizes(B, Y->rmap->n, Y->cmap->n, Y->rmap->N, Y->cmap->N));
1686: PetscCall(MatSetBlockSizesFromMats(B, Y, Y));
1687: PetscCall(MatSetType(B, MATMPISBAIJ));
1688: PetscCall(MatAXPYGetPreallocation_SeqSBAIJ(yy->A, xx->A, nnz_d));
1689: PetscCall(MatAXPYGetPreallocation_MPIBAIJ(yy->B, yy->garray, xx->B, xx->garray, nnz_o));
1690: PetscCall(MatMPISBAIJSetPreallocation(B, bs, 0, nnz_d, 0, nnz_o));
1691: PetscCall(MatAXPY_BasicWithPreallocation(B, Y, a, X, str));
1692: PetscCall(MatHeaderMerge(Y, &B));
1693: PetscCall(PetscFree(nnz_d));
1694: PetscCall(PetscFree(nnz_o));
1695: PetscCall(MatRestoreRowUpperTriangular(X));
1696: PetscCall(MatRestoreRowUpperTriangular(Y));
1697: }
1698: PetscFunctionReturn(PETSC_SUCCESS);
1699: }
1701: static PetscErrorCode MatCreateSubMatrices_MPISBAIJ(Mat A, PetscInt n, const IS irow[], const IS icol[], MatReuse scall, Mat *B[])
1702: {
1703: PetscInt i;
1704: PetscBool flg;
1706: PetscFunctionBegin;
1707: PetscCall(MatCreateSubMatrices_MPIBAIJ(A, n, irow, icol, scall, B)); /* B[] are sbaij matrices */
1708: for (i = 0; i < n; i++) {
1709: PetscCall(ISEqual(irow[i], icol[i], &flg));
1710: if (!flg) PetscCall(MatSeqSBAIJZeroOps_Private(*B[i]));
1711: }
1712: PetscFunctionReturn(PETSC_SUCCESS);
1713: }
1715: static PetscErrorCode MatShift_MPISBAIJ(Mat Y, PetscScalar a)
1716: {
1717: Mat_MPISBAIJ *maij = (Mat_MPISBAIJ *)Y->data;
1718: Mat_SeqSBAIJ *aij = (Mat_SeqSBAIJ *)maij->A->data;
1720: PetscFunctionBegin;
1721: if (!Y->preallocated) {
1722: PetscCall(MatMPISBAIJSetPreallocation(Y, Y->rmap->bs, 1, NULL, 0, NULL));
1723: } else if (!aij->nz) {
1724: PetscInt nonew = aij->nonew;
1725: PetscCall(MatSeqSBAIJSetPreallocation(maij->A, Y->rmap->bs, 1, NULL));
1726: aij->nonew = nonew;
1727: }
1728: PetscCall(MatShift_Basic(Y, a));
1729: PetscFunctionReturn(PETSC_SUCCESS);
1730: }
1732: static PetscErrorCode MatGetDiagonalBlock_MPISBAIJ(Mat A, Mat *a)
1733: {
1734: PetscFunctionBegin;
1735: *a = ((Mat_MPISBAIJ *)A->data)->A;
1736: PetscFunctionReturn(PETSC_SUCCESS);
1737: }
1739: static PetscErrorCode MatEliminateZeros_MPISBAIJ(Mat A, PetscBool keep)
1740: {
1741: Mat_MPISBAIJ *a = (Mat_MPISBAIJ *)A->data;
1743: PetscFunctionBegin;
1744: PetscCall(MatEliminateZeros_SeqSBAIJ(a->A, keep)); // possibly keep zero diagonal coefficients
1745: PetscCall(MatEliminateZeros_SeqBAIJ(a->B, PETSC_FALSE)); // never keep zero diagonal coefficients
1746: PetscFunctionReturn(PETSC_SUCCESS);
1747: }
1749: static PetscErrorCode MatLoad_MPISBAIJ(Mat, PetscViewer);
1750: static PetscErrorCode MatGetRowMaxAbs_MPISBAIJ(Mat, Vec, PetscInt[]);
1751: static PetscErrorCode MatSOR_MPISBAIJ(Mat, Vec, PetscReal, MatSORType, PetscReal, PetscInt, PetscInt, Vec);
1753: static struct _MatOps MatOps_Values = {MatSetValues_MPISBAIJ,
1754: MatGetRow_MPISBAIJ,
1755: MatRestoreRow_MPISBAIJ,
1756: MatMult_MPISBAIJ,
1757: /* 4*/ MatMultAdd_MPISBAIJ,
1758: MatMult_MPISBAIJ, /* transpose versions are same as non-transpose */
1759: MatMultAdd_MPISBAIJ,
1760: NULL,
1761: NULL,
1762: NULL,
1763: /* 10*/ NULL,
1764: NULL,
1765: NULL,
1766: MatSOR_MPISBAIJ,
1767: MatTranspose_MPISBAIJ,
1768: /* 15*/ MatGetInfo_MPISBAIJ,
1769: MatEqual_MPISBAIJ,
1770: MatGetDiagonal_MPISBAIJ,
1771: MatDiagonalScale_MPISBAIJ,
1772: MatNorm_MPISBAIJ,
1773: /* 20*/ MatAssemblyBegin_MPISBAIJ,
1774: MatAssemblyEnd_MPISBAIJ,
1775: MatSetOption_MPISBAIJ,
1776: MatZeroEntries_MPISBAIJ,
1777: /* 24*/ NULL,
1778: NULL,
1779: NULL,
1780: NULL,
1781: NULL,
1782: /* 29*/ MatSetUp_MPI_Hash,
1783: NULL,
1784: NULL,
1785: MatGetDiagonalBlock_MPISBAIJ,
1786: NULL,
1787: /* 34*/ MatDuplicate_MPISBAIJ,
1788: NULL,
1789: NULL,
1790: NULL,
1791: NULL,
1792: /* 39*/ MatAXPY_MPISBAIJ,
1793: MatCreateSubMatrices_MPISBAIJ,
1794: MatIncreaseOverlap_MPISBAIJ,
1795: MatGetValues_MPISBAIJ,
1796: MatCopy_MPISBAIJ,
1797: /* 44*/ NULL,
1798: MatScale_MPISBAIJ,
1799: MatShift_MPISBAIJ,
1800: NULL,
1801: NULL,
1802: /* 49*/ NULL,
1803: NULL,
1804: NULL,
1805: NULL,
1806: NULL,
1807: /* 54*/ NULL,
1808: NULL,
1809: MatSetUnfactored_MPISBAIJ,
1810: NULL,
1811: MatSetValuesBlocked_MPISBAIJ,
1812: /* 59*/ MatCreateSubMatrix_MPISBAIJ,
1813: NULL,
1814: NULL,
1815: NULL,
1816: NULL,
1817: /* 64*/ NULL,
1818: NULL,
1819: NULL,
1820: NULL,
1821: MatGetRowMaxAbs_MPISBAIJ,
1822: /* 69*/ NULL,
1823: MatConvert_MPISBAIJ_Basic,
1824: NULL,
1825: NULL,
1826: NULL,
1827: NULL,
1828: NULL,
1829: NULL,
1830: NULL,
1831: MatLoad_MPISBAIJ,
1832: /* 79*/ NULL,
1833: NULL,
1834: NULL,
1835: NULL,
1836: NULL,
1837: /* 84*/ NULL,
1838: NULL,
1839: NULL,
1840: NULL,
1841: NULL,
1842: /* 89*/ NULL,
1843: NULL,
1844: NULL,
1845: NULL,
1846: MatConjugate_MPISBAIJ,
1847: /* 94*/ NULL,
1848: NULL,
1849: MatRealPart_MPISBAIJ,
1850: MatImaginaryPart_MPISBAIJ,
1851: MatGetRowUpperTriangular_MPISBAIJ,
1852: /* 99*/ MatRestoreRowUpperTriangular_MPISBAIJ,
1853: NULL,
1854: NULL,
1855: NULL,
1856: NULL,
1857: /*104*/ NULL,
1858: NULL,
1859: NULL,
1860: NULL,
1861: NULL,
1862: /*109*/ NULL,
1863: NULL,
1864: NULL,
1865: NULL,
1866: NULL,
1867: /*114*/ NULL,
1868: NULL,
1869: NULL,
1870: NULL,
1871: NULL,
1872: /*119*/ NULL,
1873: NULL,
1874: NULL,
1875: NULL,
1876: NULL,
1877: /*124*/ NULL,
1878: NULL,
1879: MatSetBlockSizes_Default,
1880: NULL,
1881: NULL,
1882: /*129*/ NULL,
1883: MatCreateMPIMatConcatenateSeqMat_MPISBAIJ,
1884: NULL,
1885: NULL,
1886: NULL,
1887: /*134*/ NULL,
1888: NULL,
1889: MatEliminateZeros_MPISBAIJ,
1890: NULL,
1891: NULL,
1892: /*139*/ NULL,
1893: NULL,
1894: MatCopyHashToXAIJ_MPI_Hash,
1895: NULL,
1896: NULL};
1898: static PetscErrorCode MatMPISBAIJSetPreallocation_MPISBAIJ(Mat B, PetscInt bs, PetscInt d_nz, const PetscInt *d_nnz, PetscInt o_nz, const PetscInt *o_nnz)
1899: {
1900: Mat_MPISBAIJ *b = (Mat_MPISBAIJ *)B->data;
1901: PetscInt i, mbs, Mbs;
1902: PetscMPIInt size;
1904: PetscFunctionBegin;
1905: if (B->hash_active) {
1906: B->ops[0] = b->cops;
1907: B->hash_active = PETSC_FALSE;
1908: }
1909: if (!B->preallocated) PetscCall(MatStashCreate_Private(PetscObjectComm((PetscObject)B), bs, &B->bstash));
1910: PetscCall(MatSetBlockSize(B, bs));
1911: PetscCall(PetscLayoutSetUp(B->rmap));
1912: PetscCall(PetscLayoutSetUp(B->cmap));
1913: PetscCall(PetscLayoutGetBlockSize(B->rmap, &bs));
1914: PetscCheck(B->rmap->N <= B->cmap->N, PetscObjectComm((PetscObject)B), PETSC_ERR_SUP, "MPISBAIJ matrix cannot have more rows %" PetscInt_FMT " than columns %" PetscInt_FMT, B->rmap->N, B->cmap->N);
1915: PetscCheck(B->rmap->n <= B->cmap->n, PETSC_COMM_SELF, PETSC_ERR_SUP, "MPISBAIJ matrix cannot have more local rows %" PetscInt_FMT " than columns %" PetscInt_FMT, B->rmap->n, B->cmap->n);
1917: mbs = B->rmap->n / bs;
1918: Mbs = B->rmap->N / bs;
1919: PetscCheck(mbs * bs == B->rmap->n, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "No of local rows %" PetscInt_FMT " must be divisible by blocksize %" PetscInt_FMT, B->rmap->N, bs);
1921: B->rmap->bs = bs;
1922: b->bs2 = bs * bs;
1923: b->mbs = mbs;
1924: b->Mbs = Mbs;
1925: b->nbs = B->cmap->n / bs;
1926: b->Nbs = B->cmap->N / bs;
1928: for (i = 0; i <= b->size; i++) b->rangebs[i] = B->rmap->range[i] / bs;
1929: b->rstartbs = B->rmap->rstart / bs;
1930: b->rendbs = B->rmap->rend / bs;
1932: b->cstartbs = B->cmap->rstart / bs;
1933: b->cendbs = B->cmap->rend / bs;
1935: #if defined(PETSC_USE_CTABLE)
1936: PetscCall(PetscHMapIDestroy(&b->colmap));
1937: #else
1938: PetscCall(PetscFree(b->colmap));
1939: #endif
1940: PetscCall(PetscFree(b->garray));
1941: PetscCall(VecDestroy(&b->lvec));
1942: PetscCall(VecScatterDestroy(&b->Mvctx));
1943: PetscCall(VecDestroy(&b->slvec0));
1944: PetscCall(VecDestroy(&b->slvec0b));
1945: PetscCall(VecDestroy(&b->slvec1));
1946: PetscCall(VecDestroy(&b->slvec1a));
1947: PetscCall(VecDestroy(&b->slvec1b));
1948: PetscCall(VecScatterDestroy(&b->sMvctx));
1950: PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)B), &size));
1952: MatSeqXAIJGetOptions_Private(b->B);
1953: PetscCall(MatDestroy(&b->B));
1954: PetscCall(MatCreate(PETSC_COMM_SELF, &b->B));
1955: PetscCall(MatSetSizes(b->B, B->rmap->n, size > 1 ? B->cmap->N : 0, B->rmap->n, size > 1 ? B->cmap->N : 0));
1956: PetscCall(MatSetType(b->B, MATSEQBAIJ));
1957: MatSeqXAIJRestoreOptions_Private(b->B);
1959: MatSeqXAIJGetOptions_Private(b->A);
1960: PetscCall(MatDestroy(&b->A));
1961: PetscCall(MatCreate(PETSC_COMM_SELF, &b->A));
1962: PetscCall(MatSetSizes(b->A, B->rmap->n, B->cmap->n, B->rmap->n, B->cmap->n));
1963: PetscCall(MatSetType(b->A, MATSEQSBAIJ));
1964: MatSeqXAIJRestoreOptions_Private(b->A);
1966: PetscCall(MatSeqSBAIJSetPreallocation(b->A, bs, d_nz, d_nnz));
1967: PetscCall(MatSeqBAIJSetPreallocation(b->B, bs, o_nz, o_nnz));
1969: B->preallocated = PETSC_TRUE;
1970: B->was_assembled = PETSC_FALSE;
1971: B->assembled = PETSC_FALSE;
1972: PetscFunctionReturn(PETSC_SUCCESS);
1973: }
1975: static PetscErrorCode MatMPISBAIJSetPreallocationCSR_MPISBAIJ(Mat B, PetscInt bs, const PetscInt ii[], const PetscInt jj[], const PetscScalar V[])
1976: {
1977: PetscInt m, rstart, cend;
1978: PetscInt i, j, d, nz, bd, nz_max = 0, *d_nnz = NULL, *o_nnz = NULL;
1979: const PetscInt *JJ = NULL;
1980: PetscScalar *values = NULL;
1981: PetscBool roworiented = ((Mat_MPISBAIJ *)B->data)->roworiented;
1982: PetscBool nooffprocentries;
1984: PetscFunctionBegin;
1985: PetscCheck(bs >= 1, PetscObjectComm((PetscObject)B), PETSC_ERR_ARG_OUTOFRANGE, "Invalid block size specified, must be positive but it is %" PetscInt_FMT, bs);
1986: PetscCall(PetscLayoutSetBlockSize(B->rmap, bs));
1987: PetscCall(PetscLayoutSetBlockSize(B->cmap, bs));
1988: PetscCall(PetscLayoutSetUp(B->rmap));
1989: PetscCall(PetscLayoutSetUp(B->cmap));
1990: PetscCall(PetscLayoutGetBlockSize(B->rmap, &bs));
1991: m = B->rmap->n / bs;
1992: rstart = B->rmap->rstart / bs;
1993: cend = B->cmap->rend / bs;
1995: PetscCheck(!ii[0], PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "ii[0] must be 0 but it is %" PetscInt_FMT, ii[0]);
1996: PetscCall(PetscMalloc2(m, &d_nnz, m, &o_nnz));
1997: for (i = 0; i < m; i++) {
1998: nz = ii[i + 1] - ii[i];
1999: PetscCheck(nz >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Local row %" PetscInt_FMT " has a negative number of columns %" PetscInt_FMT, i, nz);
2000: /* count the ones on the diagonal and above, split into diagonal and off-diagonal portions. */
2001: JJ = jj + ii[i];
2002: bd = 0;
2003: for (j = 0; j < nz; j++) {
2004: if (*JJ >= i + rstart) break;
2005: JJ++;
2006: bd++;
2007: }
2008: d = 0;
2009: for (; j < nz; j++) {
2010: if (*JJ++ >= cend) break;
2011: d++;
2012: }
2013: d_nnz[i] = d;
2014: o_nnz[i] = nz - d - bd;
2015: nz = nz - bd;
2016: nz_max = PetscMax(nz_max, nz);
2017: }
2018: PetscCall(MatMPISBAIJSetPreallocation(B, bs, 0, d_nnz, 0, o_nnz));
2019: PetscCall(MatSetOption(B, MAT_IGNORE_LOWER_TRIANGULAR, PETSC_TRUE));
2020: PetscCall(PetscFree2(d_nnz, o_nnz));
2022: values = (PetscScalar *)V;
2023: if (!values) PetscCall(PetscCalloc1(bs * bs * nz_max, &values));
2024: for (i = 0; i < m; i++) {
2025: PetscInt row = i + rstart;
2026: PetscInt ncols = ii[i + 1] - ii[i];
2027: const PetscInt *icols = jj + ii[i];
2028: if (bs == 1 || !roworiented) { /* block ordering matches the non-nested layout of MatSetValues so we can insert entire rows */
2029: const PetscScalar *svals = values + (V ? (bs * bs * ii[i]) : 0);
2030: PetscCall(MatSetValuesBlocked_MPISBAIJ(B, 1, &row, ncols, icols, svals, INSERT_VALUES));
2031: } else { /* block ordering does not match so we can only insert one block at a time. */
2032: PetscInt j;
2033: for (j = 0; j < ncols; j++) {
2034: const PetscScalar *svals = values + (V ? (bs * bs * (ii[i] + j)) : 0);
2035: PetscCall(MatSetValuesBlocked_MPISBAIJ(B, 1, &row, 1, &icols[j], svals, INSERT_VALUES));
2036: }
2037: }
2038: }
2040: if (!V) PetscCall(PetscFree(values));
2041: nooffprocentries = B->nooffprocentries;
2042: B->nooffprocentries = PETSC_TRUE;
2043: PetscCall(MatAssemblyBegin(B, MAT_FINAL_ASSEMBLY));
2044: PetscCall(MatAssemblyEnd(B, MAT_FINAL_ASSEMBLY));
2045: B->nooffprocentries = nooffprocentries;
2047: PetscCall(MatSetOption(B, MAT_NEW_NONZERO_LOCATION_ERR, PETSC_TRUE));
2048: PetscFunctionReturn(PETSC_SUCCESS);
2049: }
2051: /*MC
2052: MATMPISBAIJ - MATMPISBAIJ = "mpisbaij" - A matrix type to be used for distributed symmetric sparse block matrices,
2053: based on block compressed sparse row format. Only the upper triangular portion of the "diagonal" portion of
2054: the matrix is stored.
2056: For complex numbers by default this matrix is symmetric, NOT Hermitian symmetric. To make it Hermitian symmetric you
2057: can call `MatSetOption`(`Mat`, `MAT_HERMITIAN`);
2059: Options Database Key:
2060: . -mat_type mpisbaij - sets the matrix type to "mpisbaij" during a call to `MatSetFromOptions()`
2062: Level: beginner
2064: Note:
2065: The number of rows in the matrix must be less than or equal to the number of columns. Similarly the number of rows in the
2066: diagonal portion of the matrix of each process has to less than or equal the number of columns.
2068: .seealso: [](ch_matrices), `Mat`, `MATSBAIJ`, `MATBAIJ`, `MatCreateBAIJ()`, `MATSEQSBAIJ`, `MatType`
2069: M*/
2071: PETSC_EXTERN PetscErrorCode MatCreate_MPISBAIJ(Mat B)
2072: {
2073: Mat_MPISBAIJ *b;
2074: PetscBool flg = PETSC_FALSE;
2076: PetscFunctionBegin;
2077: PetscCall(PetscNew(&b));
2078: B->data = (void *)b;
2079: B->ops[0] = MatOps_Values;
2081: B->ops->destroy = MatDestroy_MPISBAIJ;
2082: B->ops->view = MatView_MPISBAIJ;
2083: B->assembled = PETSC_FALSE;
2084: B->insertmode = NOT_SET_VALUES;
2086: PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)B), &b->rank));
2087: PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)B), &b->size));
2089: /* build local table of row and column ownerships */
2090: PetscCall(PetscMalloc1(b->size + 2, &b->rangebs));
2092: /* build cache for off array entries formed */
2093: PetscCall(MatStashCreate_Private(PetscObjectComm((PetscObject)B), 1, &B->stash));
2095: b->donotstash = PETSC_FALSE;
2096: b->colmap = NULL;
2097: b->garray = NULL;
2098: b->roworiented = PETSC_TRUE;
2100: /* stuff used in block assembly */
2101: b->barray = NULL;
2103: /* stuff used for matrix vector multiply */
2104: b->lvec = NULL;
2105: b->Mvctx = NULL;
2106: b->slvec0 = NULL;
2107: b->slvec0b = NULL;
2108: b->slvec1 = NULL;
2109: b->slvec1a = NULL;
2110: b->slvec1b = NULL;
2111: b->sMvctx = NULL;
2113: /* stuff for MatGetRow() */
2114: b->rowindices = NULL;
2115: b->rowvalues = NULL;
2116: b->getrowactive = PETSC_FALSE;
2118: /* hash table stuff */
2119: b->ht = NULL;
2120: b->hd = NULL;
2121: b->ht_size = 0;
2122: b->ht_flag = PETSC_FALSE;
2123: b->ht_fact = 0;
2124: b->ht_total_ct = 0;
2125: b->ht_insert_ct = 0;
2127: /* stuff for MatCreateSubMatrices_MPIBAIJ_local() */
2128: b->ijonly = PETSC_FALSE;
2130: b->in_loc = NULL;
2131: b->v_loc = NULL;
2132: b->n_loc = 0;
2134: PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatStoreValues_C", MatStoreValues_MPISBAIJ));
2135: PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatRetrieveValues_C", MatRetrieveValues_MPISBAIJ));
2136: PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatMPISBAIJSetPreallocation_C", MatMPISBAIJSetPreallocation_MPISBAIJ));
2137: PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatMPISBAIJSetPreallocationCSR_C", MatMPISBAIJSetPreallocationCSR_MPISBAIJ));
2138: #if defined(PETSC_HAVE_ELEMENTAL)
2139: PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_mpisbaij_elemental_C", MatConvert_MPISBAIJ_Elemental));
2140: #endif
2141: #if defined(PETSC_HAVE_SCALAPACK) && (defined(PETSC_USE_REAL_SINGLE) || defined(PETSC_USE_REAL_DOUBLE))
2142: PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_mpisbaij_scalapack_C", MatConvert_SBAIJ_ScaLAPACK));
2143: #endif
2144: PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_mpisbaij_mpiaij_C", MatConvert_MPISBAIJ_Basic));
2145: PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatConvert_mpisbaij_mpibaij_C", MatConvert_MPISBAIJ_Basic));
2147: B->symmetric = PETSC_BOOL3_TRUE;
2148: B->structurally_symmetric = PETSC_BOOL3_TRUE;
2149: B->symmetry_eternal = PETSC_TRUE;
2150: B->structural_symmetry_eternal = PETSC_TRUE;
2151: #if !defined(PETSC_USE_COMPLEX)
2152: B->hermitian = PETSC_BOOL3_TRUE;
2153: #endif
2155: PetscCall(PetscObjectChangeTypeName((PetscObject)B, MATMPISBAIJ));
2156: PetscOptionsBegin(PetscObjectComm((PetscObject)B), NULL, "Options for loading MPISBAIJ matrix 1", "Mat");
2157: PetscCall(PetscOptionsBool("-mat_use_hash_table", "Use hash table to save memory in constructing matrix", "MatSetOption", flg, &flg, NULL));
2158: if (flg) {
2159: PetscReal fact = 1.39;
2160: PetscCall(MatSetOption(B, MAT_USE_HASH_TABLE, PETSC_TRUE));
2161: PetscCall(PetscOptionsReal("-mat_use_hash_table", "Use hash table factor", "MatMPIBAIJSetHashTableFactor", fact, &fact, NULL));
2162: if (fact <= 1.0) fact = 1.39;
2163: PetscCall(MatMPIBAIJSetHashTableFactor(B, fact));
2164: PetscCall(PetscInfo(B, "Hash table Factor used %5.2g\n", (double)fact));
2165: }
2166: PetscOptionsEnd();
2167: PetscFunctionReturn(PETSC_SUCCESS);
2168: }
2170: // PetscClangLinter pragma disable: -fdoc-section-header-unknown
2171: /*MC
2172: MATSBAIJ - MATSBAIJ = "sbaij" - A matrix type to be used for symmetric block sparse matrices.
2174: This matrix type is identical to `MATSEQSBAIJ` when constructed with a single process communicator,
2175: and `MATMPISBAIJ` otherwise.
2177: Options Database Key:
2178: . -mat_type sbaij - sets the matrix type to `MATSBAIJ` during a call to `MatSetFromOptions()`
2180: Level: beginner
2182: .seealso: [](ch_matrices), `Mat`, `MATSEQSBAIJ`, `MATMPISBAIJ`, `MatCreateSBAIJ()`, `MATSEQSBAIJ`, `MATMPISBAIJ`
2183: M*/
2185: /*@
2186: MatMPISBAIJSetPreallocation - For good matrix assembly performance
2187: the user should preallocate the matrix storage by setting the parameters
2188: d_nz (or d_nnz) and o_nz (or o_nnz). By setting these parameters accurately,
2189: performance can be increased by more than a factor of 50.
2191: Collective
2193: Input Parameters:
2194: + B - the matrix
2195: . bs - size of block, the blocks are ALWAYS square. One can use MatSetBlockSizes() to set a different row and column blocksize but the row
2196: blocksize always defines the size of the blocks. The column blocksize sets the blocksize of the vectors obtained with MatCreateVecs()
2197: . d_nz - number of block nonzeros per block row in diagonal portion of local
2198: submatrix (same for all local rows)
2199: . d_nnz - array containing the number of block nonzeros in the various block rows
2200: in the upper triangular and diagonal part of the in diagonal portion of the local
2201: (possibly different for each block row) or `NULL`. If you plan to factor the matrix you must leave room
2202: for the diagonal entry and set a value even if it is zero.
2203: . o_nz - number of block nonzeros per block row in the off-diagonal portion of local
2204: submatrix (same for all local rows).
2205: - o_nnz - array containing the number of nonzeros in the various block rows of the
2206: off-diagonal portion of the local submatrix that is right of the diagonal
2207: (possibly different for each block row) or `NULL`.
2209: Options Database Keys:
2210: + -mat_no_unroll - uses code that does not unroll the loops in the
2211: block calculations (much slower)
2212: - -mat_block_size - size of the blocks to use
2214: Level: intermediate
2216: Notes:
2218: If `PETSC_DECIDE` or `PETSC_DETERMINE` is used for a particular argument on one processor
2219: than it must be used on all processors that share the object for that argument.
2221: If the *_nnz parameter is given then the *_nz parameter is ignored
2223: Storage Information:
2224: For a square global matrix we define each processor's diagonal portion
2225: to be its local rows and the corresponding columns (a square submatrix);
2226: each processor's off-diagonal portion encompasses the remainder of the
2227: local matrix (a rectangular submatrix).
2229: The user can specify preallocated storage for the diagonal part of
2230: the local submatrix with either `d_nz` or `d_nnz` (not both). Set
2231: `d_nz` = `PETSC_DEFAULT` and `d_nnz` = `NULL` for PETSc to control dynamic
2232: memory allocation. Likewise, specify preallocated storage for the
2233: off-diagonal part of the local submatrix with `o_nz` or `o_nnz` (not both).
2235: You can call `MatGetInfo()` to get information on how effective the preallocation was;
2236: for example the fields mallocs,nz_allocated,nz_used,nz_unneeded;
2237: You can also run with the option `-info` and look for messages with the string
2238: malloc in them to see if additional memory allocation was needed.
2240: Consider a processor that owns rows 3, 4 and 5 of a parallel matrix. In
2241: the figure below we depict these three local rows and all columns (0-11).
2243: .vb
2244: 0 1 2 3 4 5 6 7 8 9 10 11
2245: --------------------------
2246: row 3 |. . . d d d o o o o o o
2247: row 4 |. . . d d d o o o o o o
2248: row 5 |. . . d d d o o o o o o
2249: --------------------------
2250: .ve
2252: Thus, any entries in the d locations are stored in the d (diagonal)
2253: submatrix, and any entries in the o locations are stored in the
2254: o (off-diagonal) submatrix. Note that the d matrix is stored in
2255: `MATSEQSBAIJ` format and the o submatrix in `MATSEQBAIJ` format.
2257: Now `d_nz` should indicate the number of block nonzeros per row in the upper triangular
2258: plus the diagonal part of the d matrix,
2259: and `o_nz` should indicate the number of block nonzeros per row in the o matrix
2261: In general, for PDE problems in which most nonzeros are near the diagonal,
2262: one expects `d_nz` >> `o_nz`.
2264: .seealso: [](ch_matrices), `Mat`, `MATMPISBAIJ`, `MATSBAIJ`, `MatCreate()`, `MatCreateSeqSBAIJ()`, `MatSetValues()`, `MatCreateBAIJ()`, `PetscSplitOwnership()`
2265: @*/
2266: PetscErrorCode MatMPISBAIJSetPreallocation(Mat B, PetscInt bs, PetscInt d_nz, const PetscInt d_nnz[], PetscInt o_nz, const PetscInt o_nnz[])
2267: {
2268: PetscFunctionBegin;
2272: PetscTryMethod(B, "MatMPISBAIJSetPreallocation_C", (Mat, PetscInt, PetscInt, const PetscInt[], PetscInt, const PetscInt[]), (B, bs, d_nz, d_nnz, o_nz, o_nnz));
2273: PetscFunctionReturn(PETSC_SUCCESS);
2274: }
2276: // PetscClangLinter pragma disable: -fdoc-section-header-unknown
2277: /*@
2278: MatCreateSBAIJ - Creates a sparse parallel matrix in symmetric block AIJ format, `MATSBAIJ`,
2279: (block compressed row). For good matrix assembly performance
2280: the user should preallocate the matrix storage by setting the parameters
2281: `d_nz` (or `d_nnz`) and `o_nz` (or `o_nnz`).
2283: Collective
2285: Input Parameters:
2286: + comm - MPI communicator
2287: . bs - size of block, the blocks are ALWAYS square. One can use `MatSetBlockSizes()` to set a different row and column blocksize but the row
2288: blocksize always defines the size of the blocks. The column blocksize sets the blocksize of the vectors obtained with `MatCreateVecs()`
2289: . m - number of local rows (or `PETSC_DECIDE` to have calculated if `M` is given)
2290: This value should be the same as the local size used in creating the
2291: y vector for the matrix-vector product y = Ax.
2292: . n - number of local columns (or `PETSC_DECIDE` to have calculated if `N` is given)
2293: This value should be the same as the local size used in creating the
2294: x vector for the matrix-vector product y = Ax.
2295: . M - number of global rows (or `PETSC_DETERMINE` to have calculated if `m` is given)
2296: . N - number of global columns (or `PETSC_DETERMINE` to have calculated if `n` is given)
2297: . d_nz - number of block nonzeros per block row in diagonal portion of local
2298: submatrix (same for all local rows)
2299: . d_nnz - array containing the number of block nonzeros in the various block rows
2300: in the upper triangular portion of the in diagonal portion of the local
2301: (possibly different for each block block row) or `NULL`.
2302: If you plan to factor the matrix you must leave room for the diagonal entry and
2303: set its value even if it is zero.
2304: . o_nz - number of block nonzeros per block row in the off-diagonal portion of local
2305: submatrix (same for all local rows).
2306: - o_nnz - array containing the number of nonzeros in the various block rows of the
2307: off-diagonal portion of the local submatrix (possibly different for
2308: each block row) or `NULL`.
2310: Output Parameter:
2311: . A - the matrix
2313: Options Database Keys:
2314: + -mat_no_unroll - uses code that does not unroll the loops in the
2315: block calculations (much slower)
2316: . -mat_block_size - size of the blocks to use
2317: - -mat_mpi - use the parallel matrix data structures even on one processor
2318: (defaults to using SeqBAIJ format on one processor)
2320: Level: intermediate
2322: Notes:
2323: It is recommended that one use `MatCreateFromOptions()` or the `MatCreate()`, `MatSetType()` and/or `MatSetFromOptions()`,
2324: MatXXXXSetPreallocation() paradigm instead of this routine directly.
2325: [MatXXXXSetPreallocation() is, for example, `MatSeqAIJSetPreallocation()`]
2327: The number of rows and columns must be divisible by blocksize.
2328: This matrix type does not support complex Hermitian operation.
2330: The user MUST specify either the local or global matrix dimensions
2331: (possibly both).
2333: If `PETSC_DECIDE` or `PETSC_DETERMINE` is used for a particular argument on one processor
2334: than it must be used on all processors that share the object for that argument.
2336: If `m` and `n` are not `PETSC_DECIDE`, then the values determines the `PetscLayout` of the matrix and the ranges returned by
2337: `MatGetOwnershipRange()`, `MatGetOwnershipRanges()`, `MatGetOwnershipRangeColumn()`, and `MatGetOwnershipRangesColumn()`.
2339: If the *_nnz parameter is given then the *_nz parameter is ignored
2341: Storage Information:
2342: For a square global matrix we define each processor's diagonal portion
2343: to be its local rows and the corresponding columns (a square submatrix);
2344: each processor's off-diagonal portion encompasses the remainder of the
2345: local matrix (a rectangular submatrix).
2347: The user can specify preallocated storage for the diagonal part of
2348: the local submatrix with either `d_nz` or `d_nnz` (not both). Set
2349: `d_nz` = `PETSC_DEFAULT` and `d_nnz` = `NULL` for PETSc to control dynamic
2350: memory allocation. Likewise, specify preallocated storage for the
2351: off-diagonal part of the local submatrix with `o_nz` or `o_nnz` (not both).
2353: Consider a processor that owns rows 3, 4 and 5 of a parallel matrix. In
2354: the figure below we depict these three local rows and all columns (0-11).
2356: .vb
2357: 0 1 2 3 4 5 6 7 8 9 10 11
2358: --------------------------
2359: row 3 |. . . d d d o o o o o o
2360: row 4 |. . . d d d o o o o o o
2361: row 5 |. . . d d d o o o o o o
2362: --------------------------
2363: .ve
2365: Thus, any entries in the d locations are stored in the d (diagonal)
2366: submatrix, and any entries in the o locations are stored in the
2367: o (off-diagonal) submatrix. Note that the d matrix is stored in
2368: `MATSEQSBAIJ` format and the o submatrix in `MATSEQBAIJ` format.
2370: Now `d_nz` should indicate the number of block nonzeros per row in the upper triangular
2371: plus the diagonal part of the d matrix,
2372: and `o_nz` should indicate the number of block nonzeros per row in the o matrix.
2373: In general, for PDE problems in which most nonzeros are near the diagonal,
2374: one expects `d_nz` >> `o_nz`.
2376: .seealso: [](ch_matrices), `Mat`, `MATSBAIJ`, `MatCreate()`, `MatCreateSeqSBAIJ()`, `MatSetValues()`, `MatCreateBAIJ()`,
2377: `MatGetOwnershipRange()`, `MatGetOwnershipRanges()`, `MatGetOwnershipRangeColumn()`, `MatGetOwnershipRangesColumn()`, `PetscLayout`
2378: @*/
2379: PetscErrorCode MatCreateSBAIJ(MPI_Comm comm, PetscInt bs, PetscInt m, PetscInt n, PetscInt M, PetscInt N, PetscInt d_nz, const PetscInt d_nnz[], PetscInt o_nz, const PetscInt o_nnz[], Mat *A)
2380: {
2381: PetscMPIInt size;
2383: PetscFunctionBegin;
2384: PetscCall(MatCreate(comm, A));
2385: PetscCall(MatSetSizes(*A, m, n, M, N));
2386: PetscCallMPI(MPI_Comm_size(comm, &size));
2387: if (size > 1) {
2388: PetscCall(MatSetType(*A, MATMPISBAIJ));
2389: PetscCall(MatMPISBAIJSetPreallocation(*A, bs, d_nz, d_nnz, o_nz, o_nnz));
2390: } else {
2391: PetscCall(MatSetType(*A, MATSEQSBAIJ));
2392: PetscCall(MatSeqSBAIJSetPreallocation(*A, bs, d_nz, d_nnz));
2393: }
2394: PetscFunctionReturn(PETSC_SUCCESS);
2395: }
2397: static PetscErrorCode MatDuplicate_MPISBAIJ(Mat matin, MatDuplicateOption cpvalues, Mat *newmat)
2398: {
2399: Mat mat;
2400: Mat_MPISBAIJ *a, *oldmat = (Mat_MPISBAIJ *)matin->data;
2401: PetscInt len = 0, nt, bs = matin->rmap->bs, mbs = oldmat->mbs;
2402: PetscScalar *array;
2404: PetscFunctionBegin;
2405: *newmat = NULL;
2407: PetscCall(MatCreate(PetscObjectComm((PetscObject)matin), &mat));
2408: PetscCall(MatSetSizes(mat, matin->rmap->n, matin->cmap->n, matin->rmap->N, matin->cmap->N));
2409: PetscCall(MatSetType(mat, ((PetscObject)matin)->type_name));
2410: PetscCall(PetscLayoutReference(matin->rmap, &mat->rmap));
2411: PetscCall(PetscLayoutReference(matin->cmap, &mat->cmap));
2413: if (matin->hash_active) {
2414: PetscCall(MatSetUp(mat));
2415: } else {
2416: mat->factortype = matin->factortype;
2417: mat->preallocated = PETSC_TRUE;
2418: mat->assembled = PETSC_TRUE;
2419: mat->insertmode = NOT_SET_VALUES;
2421: a = (Mat_MPISBAIJ *)mat->data;
2422: a->bs2 = oldmat->bs2;
2423: a->mbs = oldmat->mbs;
2424: a->nbs = oldmat->nbs;
2425: a->Mbs = oldmat->Mbs;
2426: a->Nbs = oldmat->Nbs;
2428: a->size = oldmat->size;
2429: a->rank = oldmat->rank;
2430: a->donotstash = oldmat->donotstash;
2431: a->roworiented = oldmat->roworiented;
2432: a->rowindices = NULL;
2433: a->rowvalues = NULL;
2434: a->getrowactive = PETSC_FALSE;
2435: a->barray = NULL;
2436: a->rstartbs = oldmat->rstartbs;
2437: a->rendbs = oldmat->rendbs;
2438: a->cstartbs = oldmat->cstartbs;
2439: a->cendbs = oldmat->cendbs;
2441: /* hash table stuff */
2442: a->ht = NULL;
2443: a->hd = NULL;
2444: a->ht_size = 0;
2445: a->ht_flag = oldmat->ht_flag;
2446: a->ht_fact = oldmat->ht_fact;
2447: a->ht_total_ct = 0;
2448: a->ht_insert_ct = 0;
2450: PetscCall(PetscArraycpy(a->rangebs, oldmat->rangebs, a->size + 2));
2451: if (oldmat->colmap) {
2452: #if defined(PETSC_USE_CTABLE)
2453: PetscCall(PetscHMapIDuplicate(oldmat->colmap, &a->colmap));
2454: #else
2455: PetscCall(PetscMalloc1(a->Nbs, &a->colmap));
2456: PetscCall(PetscArraycpy(a->colmap, oldmat->colmap, a->Nbs));
2457: #endif
2458: } else a->colmap = NULL;
2460: if (oldmat->garray && (len = ((Mat_SeqBAIJ *)oldmat->B->data)->nbs)) {
2461: PetscCall(PetscMalloc1(len, &a->garray));
2462: PetscCall(PetscArraycpy(a->garray, oldmat->garray, len));
2463: } else a->garray = NULL;
2465: PetscCall(MatStashCreate_Private(PetscObjectComm((PetscObject)matin), matin->rmap->bs, &mat->bstash));
2466: PetscCall(VecDuplicate(oldmat->lvec, &a->lvec));
2467: PetscCall(VecScatterCopy(oldmat->Mvctx, &a->Mvctx));
2469: PetscCall(VecDuplicate(oldmat->slvec0, &a->slvec0));
2470: PetscCall(VecDuplicate(oldmat->slvec1, &a->slvec1));
2472: PetscCall(VecGetLocalSize(a->slvec1, &nt));
2473: PetscCall(VecGetArray(a->slvec1, &array));
2474: PetscCall(VecCreateSeqWithArray(PETSC_COMM_SELF, 1, bs * mbs, array, &a->slvec1a));
2475: PetscCall(VecCreateSeqWithArray(PETSC_COMM_SELF, 1, nt - bs * mbs, array + bs * mbs, &a->slvec1b));
2476: PetscCall(VecRestoreArray(a->slvec1, &array));
2477: PetscCall(VecGetArray(a->slvec0, &array));
2478: PetscCall(VecCreateSeqWithArray(PETSC_COMM_SELF, 1, nt - bs * mbs, array + bs * mbs, &a->slvec0b));
2479: PetscCall(VecRestoreArray(a->slvec0, &array));
2481: /* ierr = VecScatterCopy(oldmat->sMvctx,&a->sMvctx); - not written yet, replaced by the lazy trick: */
2482: PetscCall(PetscObjectReference((PetscObject)oldmat->sMvctx));
2483: a->sMvctx = oldmat->sMvctx;
2485: PetscCall(MatDuplicate(oldmat->A, cpvalues, &a->A));
2486: PetscCall(MatDuplicate(oldmat->B, cpvalues, &a->B));
2487: }
2488: PetscCall(PetscFunctionListDuplicate(((PetscObject)matin)->qlist, &((PetscObject)mat)->qlist));
2489: *newmat = mat;
2490: PetscFunctionReturn(PETSC_SUCCESS);
2491: }
2493: /* Used for both MPIBAIJ and MPISBAIJ matrices */
2494: #define MatLoad_MPISBAIJ_Binary MatLoad_MPIBAIJ_Binary
2496: static PetscErrorCode MatLoad_MPISBAIJ(Mat mat, PetscViewer viewer)
2497: {
2498: PetscBool isbinary;
2500: PetscFunctionBegin;
2501: PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERBINARY, &isbinary));
2502: PetscCheck(isbinary, PetscObjectComm((PetscObject)viewer), PETSC_ERR_SUP, "Viewer type %s not yet supported for reading %s matrices", ((PetscObject)viewer)->type_name, ((PetscObject)mat)->type_name);
2503: PetscCall(MatLoad_MPISBAIJ_Binary(mat, viewer));
2504: PetscFunctionReturn(PETSC_SUCCESS);
2505: }
2507: static PetscErrorCode MatGetRowMaxAbs_MPISBAIJ(Mat A, Vec v, PetscInt idx[])
2508: {
2509: Mat_MPISBAIJ *a = (Mat_MPISBAIJ *)A->data;
2510: Mat_SeqBAIJ *b = (Mat_SeqBAIJ *)a->B->data;
2511: PetscReal atmp;
2512: PetscReal *work, *svalues, *rvalues;
2513: PetscInt i, bs, mbs, *bi, *bj, brow, j, ncols, krow, kcol, col, row, Mbs, bcol;
2514: PetscMPIInt rank, size;
2515: PetscInt *rowners_bs, count, source;
2516: PetscScalar *va;
2517: MatScalar *ba;
2518: MPI_Status stat;
2520: PetscFunctionBegin;
2521: PetscCheck(!idx, PETSC_COMM_SELF, PETSC_ERR_SUP, "Send email to petsc-maint@mcs.anl.gov");
2522: PetscCall(MatGetRowMaxAbs(a->A, v, NULL));
2523: PetscCall(VecGetArray(v, &va));
2525: PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)A), &size));
2526: PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)A), &rank));
2528: bs = A->rmap->bs;
2529: mbs = a->mbs;
2530: Mbs = a->Mbs;
2531: ba = b->a;
2532: bi = b->i;
2533: bj = b->j;
2535: /* find ownerships */
2536: rowners_bs = A->rmap->range;
2538: /* each proc creates an array to be distributed */
2539: PetscCall(PetscCalloc1(bs * Mbs, &work));
2541: /* row_max for B */
2542: if (rank != size - 1) {
2543: for (i = 0; i < mbs; i++) {
2544: ncols = bi[1] - bi[0];
2545: bi++;
2546: brow = bs * i;
2547: for (j = 0; j < ncols; j++) {
2548: bcol = bs * (*bj);
2549: for (kcol = 0; kcol < bs; kcol++) {
2550: col = bcol + kcol; /* local col index */
2551: col += rowners_bs[rank + 1]; /* global col index */
2552: for (krow = 0; krow < bs; krow++) {
2553: atmp = PetscAbsScalar(*ba);
2554: ba++;
2555: row = brow + krow; /* local row index */
2556: if (PetscRealPart(va[row]) < atmp) va[row] = atmp;
2557: if (work[col] < atmp) work[col] = atmp;
2558: }
2559: }
2560: bj++;
2561: }
2562: }
2564: /* send values to its owners */
2565: for (PetscMPIInt dest = rank + 1; dest < size; dest++) {
2566: svalues = work + rowners_bs[dest];
2567: count = rowners_bs[dest + 1] - rowners_bs[dest];
2568: PetscCallMPI(MPIU_Send(svalues, count, MPIU_REAL, dest, rank, PetscObjectComm((PetscObject)A)));
2569: }
2570: }
2572: /* receive values */
2573: if (rank) {
2574: rvalues = work;
2575: count = rowners_bs[rank + 1] - rowners_bs[rank];
2576: for (source = 0; source < rank; source++) {
2577: PetscCallMPI(MPIU_Recv(rvalues, count, MPIU_REAL, MPI_ANY_SOURCE, MPI_ANY_TAG, PetscObjectComm((PetscObject)A), &stat));
2578: /* process values */
2579: for (i = 0; i < count; i++) {
2580: if (PetscRealPart(va[i]) < rvalues[i]) va[i] = rvalues[i];
2581: }
2582: }
2583: }
2585: PetscCall(VecRestoreArray(v, &va));
2586: PetscCall(PetscFree(work));
2587: PetscFunctionReturn(PETSC_SUCCESS);
2588: }
2590: static PetscErrorCode MatSOR_MPISBAIJ(Mat matin, Vec bb, PetscReal omega, MatSORType flag, PetscReal fshift, PetscInt its, PetscInt lits, Vec xx)
2591: {
2592: Mat_MPISBAIJ *mat = (Mat_MPISBAIJ *)matin->data;
2593: PetscInt mbs = mat->mbs, bs = matin->rmap->bs;
2594: PetscScalar *x, *ptr, *from;
2595: Vec bb1;
2596: const PetscScalar *b;
2598: PetscFunctionBegin;
2599: PetscCheck(its > 0 && lits > 0, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Relaxation requires global its %" PetscInt_FMT " and local its %" PetscInt_FMT " both positive", its, lits);
2600: PetscCheck(bs <= 1, PETSC_COMM_SELF, PETSC_ERR_SUP, "SSOR for block size > 1 is not yet implemented");
2602: if (flag == SOR_APPLY_UPPER) {
2603: PetscCall((*mat->A->ops->sor)(mat->A, bb, omega, flag, fshift, lits, 1, xx));
2604: PetscFunctionReturn(PETSC_SUCCESS);
2605: }
2607: if ((flag & SOR_LOCAL_SYMMETRIC_SWEEP) == SOR_LOCAL_SYMMETRIC_SWEEP) {
2608: if (flag & SOR_ZERO_INITIAL_GUESS) {
2609: PetscCall((*mat->A->ops->sor)(mat->A, bb, omega, flag, fshift, lits, lits, xx));
2610: its--;
2611: }
2613: PetscCall(VecDuplicate(bb, &bb1));
2614: while (its--) {
2615: /* lower triangular part: slvec0b = - B^T*xx */
2616: PetscCall((*mat->B->ops->multtranspose)(mat->B, xx, mat->slvec0b));
2618: /* copy xx into slvec0a */
2619: PetscCall(VecGetArray(mat->slvec0, &ptr));
2620: PetscCall(VecGetArray(xx, &x));
2621: PetscCall(PetscArraycpy(ptr, x, bs * mbs));
2622: PetscCall(VecRestoreArray(mat->slvec0, &ptr));
2624: PetscCall(VecScale(mat->slvec0, -1.0));
2626: /* copy bb into slvec1a */
2627: PetscCall(VecGetArray(mat->slvec1, &ptr));
2628: PetscCall(VecGetArrayRead(bb, &b));
2629: PetscCall(PetscArraycpy(ptr, b, bs * mbs));
2630: PetscCall(VecRestoreArray(mat->slvec1, &ptr));
2632: /* set slvec1b = 0 */
2633: PetscCall(PetscObjectStateIncrease((PetscObject)mat->slvec1b));
2634: PetscCall(VecZeroEntries(mat->slvec1b));
2636: PetscCall(VecScatterBegin(mat->sMvctx, mat->slvec0, mat->slvec1, ADD_VALUES, SCATTER_FORWARD));
2637: PetscCall(VecRestoreArray(xx, &x));
2638: PetscCall(VecRestoreArrayRead(bb, &b));
2639: PetscCall(VecScatterEnd(mat->sMvctx, mat->slvec0, mat->slvec1, ADD_VALUES, SCATTER_FORWARD));
2641: /* upper triangular part: bb1 = bb1 - B*x */
2642: PetscCall((*mat->B->ops->multadd)(mat->B, mat->slvec1b, mat->slvec1a, bb1));
2644: /* local diagonal sweep */
2645: PetscCall((*mat->A->ops->sor)(mat->A, bb1, omega, SOR_SYMMETRIC_SWEEP, fshift, lits, lits, xx));
2646: }
2647: PetscCall(VecDestroy(&bb1));
2648: } else if ((flag & SOR_LOCAL_FORWARD_SWEEP) && (its == 1) && (flag & SOR_ZERO_INITIAL_GUESS)) {
2649: PetscCall((*mat->A->ops->sor)(mat->A, bb, omega, flag, fshift, lits, 1, xx));
2650: } else if ((flag & SOR_LOCAL_BACKWARD_SWEEP) && (its == 1) && (flag & SOR_ZERO_INITIAL_GUESS)) {
2651: PetscCall((*mat->A->ops->sor)(mat->A, bb, omega, flag, fshift, lits, 1, xx));
2652: } else if (flag & SOR_EISENSTAT) {
2653: Vec xx1;
2654: PetscBool hasop;
2655: const PetscScalar *diag;
2656: PetscScalar *sl, scale = (omega - 2.0) / omega;
2657: PetscInt i, n;
2659: if (!mat->xx1) {
2660: PetscCall(VecDuplicate(bb, &mat->xx1));
2661: PetscCall(VecDuplicate(bb, &mat->bb1));
2662: }
2663: xx1 = mat->xx1;
2664: bb1 = mat->bb1;
2666: PetscCall((*mat->A->ops->sor)(mat->A, bb, omega, (MatSORType)(SOR_ZERO_INITIAL_GUESS | SOR_LOCAL_BACKWARD_SWEEP), fshift, lits, 1, xx));
2668: if (!mat->diag) {
2669: /* this is wrong for same matrix with new nonzero values */
2670: PetscCall(MatCreateVecs(matin, &mat->diag, NULL));
2671: PetscCall(MatGetDiagonal(matin, mat->diag));
2672: }
2673: PetscCall(MatHasOperation(matin, MATOP_MULT_DIAGONAL_BLOCK, &hasop));
2675: if (hasop) {
2676: PetscCall(MatMultDiagonalBlock(matin, xx, bb1));
2677: PetscCall(VecAYPX(mat->slvec1a, scale, bb));
2678: } else {
2679: /*
2680: These two lines are replaced by code that may be a bit faster for a good compiler
2681: PetscCall(VecPointwiseMult(mat->slvec1a,mat->diag,xx));
2682: PetscCall(VecAYPX(mat->slvec1a,scale,bb));
2683: */
2684: PetscCall(VecGetArray(mat->slvec1a, &sl));
2685: PetscCall(VecGetArrayRead(mat->diag, &diag));
2686: PetscCall(VecGetArrayRead(bb, &b));
2687: PetscCall(VecGetArray(xx, &x));
2688: PetscCall(VecGetLocalSize(xx, &n));
2689: if (omega == 1.0) {
2690: for (i = 0; i < n; i++) sl[i] = b[i] - diag[i] * x[i];
2691: PetscCall(PetscLogFlops(2.0 * n));
2692: } else {
2693: for (i = 0; i < n; i++) sl[i] = b[i] + scale * diag[i] * x[i];
2694: PetscCall(PetscLogFlops(3.0 * n));
2695: }
2696: PetscCall(VecRestoreArray(mat->slvec1a, &sl));
2697: PetscCall(VecRestoreArrayRead(mat->diag, &diag));
2698: PetscCall(VecRestoreArrayRead(bb, &b));
2699: PetscCall(VecRestoreArray(xx, &x));
2700: }
2702: /* multiply off-diagonal portion of matrix */
2703: PetscCall(PetscObjectStateIncrease((PetscObject)mat->slvec1b));
2704: PetscCall(VecZeroEntries(mat->slvec1b));
2705: PetscCall((*mat->B->ops->multtranspose)(mat->B, xx, mat->slvec0b));
2706: PetscCall(VecGetArray(mat->slvec0, &from));
2707: PetscCall(VecGetArray(xx, &x));
2708: PetscCall(PetscArraycpy(from, x, bs * mbs));
2709: PetscCall(VecRestoreArray(mat->slvec0, &from));
2710: PetscCall(VecRestoreArray(xx, &x));
2711: PetscCall(VecScatterBegin(mat->sMvctx, mat->slvec0, mat->slvec1, ADD_VALUES, SCATTER_FORWARD));
2712: PetscCall(VecScatterEnd(mat->sMvctx, mat->slvec0, mat->slvec1, ADD_VALUES, SCATTER_FORWARD));
2713: PetscCall((*mat->B->ops->multadd)(mat->B, mat->slvec1b, mat->slvec1a, mat->slvec1a));
2715: /* local sweep */
2716: PetscCall((*mat->A->ops->sor)(mat->A, mat->slvec1a, omega, (MatSORType)(SOR_ZERO_INITIAL_GUESS | SOR_LOCAL_FORWARD_SWEEP), fshift, lits, 1, xx1));
2717: PetscCall(VecAXPY(xx, 1.0, xx1));
2718: } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_SUP, "MatSORType is not supported for SBAIJ matrix format");
2719: PetscFunctionReturn(PETSC_SUCCESS);
2720: }
2722: /*@
2723: MatCreateMPISBAIJWithArrays - creates a `MATMPISBAIJ` matrix using arrays that contain in standard CSR format for the local rows.
2725: Collective
2727: Input Parameters:
2728: + comm - MPI communicator
2729: . bs - the block size, only a block size of 1 is supported
2730: . m - number of local rows (Cannot be `PETSC_DECIDE`)
2731: . n - This value should be the same as the local size used in creating the
2732: x vector for the matrix-vector product $ y = Ax $. (or `PETSC_DECIDE` to have
2733: calculated if `N` is given) For square matrices `n` is almost always `m`.
2734: . M - number of global rows (or `PETSC_DETERMINE` to have calculated if `m` is given)
2735: . N - number of global columns (or `PETSC_DETERMINE` to have calculated if `n` is given)
2736: . i - row indices; that is i[0] = 0, i[row] = i[row-1] + number of block elements in that row block row of the matrix
2737: . j - column indices
2738: - a - matrix values
2740: Output Parameter:
2741: . mat - the matrix
2743: Level: intermediate
2745: Notes:
2746: The `i`, `j`, and `a` arrays ARE copied by this routine into the internal format used by PETSc;
2747: thus you CANNOT change the matrix entries by changing the values of `a` after you have
2748: called this routine. Use `MatCreateMPIAIJWithSplitArrays()` to avoid needing to copy the arrays.
2750: The `i` and `j` indices are 0 based, and `i` indices are indices corresponding to the local `j` array.
2752: .seealso: [](ch_matrices), `Mat`, `MATMPISBAIJ`, `MatCreate()`, `MatCreateSeqAIJ()`, `MatSetValues()`, `MatMPIAIJSetPreallocation()`, `MatMPIAIJSetPreallocationCSR()`,
2753: `MATMPIAIJ`, `MatCreateAIJ()`, `MatCreateMPIAIJWithSplitArrays()`, `MatMPISBAIJSetPreallocationCSR()`
2754: @*/
2755: PetscErrorCode MatCreateMPISBAIJWithArrays(MPI_Comm comm, PetscInt bs, PetscInt m, PetscInt n, PetscInt M, PetscInt N, const PetscInt i[], const PetscInt j[], const PetscScalar a[], Mat *mat)
2756: {
2757: PetscFunctionBegin;
2758: PetscCheck(!i[0], PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "i (row indices) must start with 0");
2759: PetscCheck(m >= 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "local number of rows (m) cannot be PETSC_DECIDE, or negative");
2760: PetscCall(MatCreate(comm, mat));
2761: PetscCall(MatSetSizes(*mat, m, n, M, N));
2762: PetscCall(MatSetType(*mat, MATMPISBAIJ));
2763: PetscCall(MatMPISBAIJSetPreallocationCSR(*mat, bs, i, j, a));
2764: PetscFunctionReturn(PETSC_SUCCESS);
2765: }
2767: /*@
2768: MatMPISBAIJSetPreallocationCSR - Creates a sparse parallel matrix in `MATMPISBAIJ` format using the given nonzero structure and (optional) numerical values
2770: Collective
2772: Input Parameters:
2773: + B - the matrix
2774: . bs - the block size
2775: . i - the indices into `j` for the start of each local row (indices start with zero)
2776: . j - the column indices for each local row (indices start with zero) these must be sorted for each row
2777: - v - optional values in the matrix, pass `NULL` if not provided
2779: Level: advanced
2781: Notes:
2782: The `i`, `j`, and `v` arrays ARE copied by this routine into the internal format used by PETSc;
2783: thus you CANNOT change the matrix entries by changing the values of `v` after you have
2784: called this routine.
2786: Though this routine has Preallocation() in the name it also sets the exact nonzero locations of the matrix entries
2787: and usually the numerical values as well
2789: Any entries passed in that are below the diagonal are ignored
2791: .seealso: [](ch_matrices), `Mat`, `MATMPISBAIJ`, `MatCreate()`, `MatCreateSeqAIJ()`, `MatSetValues()`, `MatMPIBAIJSetPreallocation()`, `MatCreateAIJ()`, `MATMPIAIJ`,
2792: `MatCreateMPISBAIJWithArrays()`
2793: @*/
2794: PetscErrorCode MatMPISBAIJSetPreallocationCSR(Mat B, PetscInt bs, const PetscInt i[], const PetscInt j[], const PetscScalar v[])
2795: {
2796: PetscFunctionBegin;
2797: PetscTryMethod(B, "MatMPISBAIJSetPreallocationCSR_C", (Mat, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[]), (B, bs, i, j, v));
2798: PetscFunctionReturn(PETSC_SUCCESS);
2799: }
2801: PetscErrorCode MatCreateMPIMatConcatenateSeqMat_MPISBAIJ(MPI_Comm comm, Mat inmat, PetscInt n, MatReuse scall, Mat *outmat)
2802: {
2803: PetscInt m, N, i, rstart, nnz, Ii, bs, cbs;
2804: PetscInt *indx;
2805: PetscScalar *values;
2807: PetscFunctionBegin;
2808: PetscCall(MatGetSize(inmat, &m, &N));
2809: if (scall == MAT_INITIAL_MATRIX) { /* symbolic phase */
2810: Mat_SeqSBAIJ *a = (Mat_SeqSBAIJ *)inmat->data;
2811: PetscInt *dnz, *onz, mbs, Nbs, nbs;
2812: PetscInt *bindx, rmax = a->rmax, j;
2813: PetscMPIInt rank, size;
2815: PetscCall(MatGetBlockSizes(inmat, &bs, &cbs));
2816: mbs = m / bs;
2817: Nbs = N / cbs;
2818: if (n == PETSC_DECIDE) PetscCall(PetscSplitOwnershipBlock(comm, cbs, &n, &N));
2819: nbs = n / cbs;
2821: PetscCall(PetscMalloc1(rmax, &bindx));
2822: MatPreallocateBegin(comm, mbs, nbs, dnz, onz); /* inline function, output __end and __rstart are used below */
2824: PetscCallMPI(MPI_Comm_rank(comm, &rank));
2825: PetscCallMPI(MPI_Comm_rank(comm, &size));
2826: if (rank == size - 1) {
2827: /* Check sum(nbs) = Nbs */
2828: PetscCheck(__end == Nbs, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Sum of local block columns %" PetscInt_FMT " != global block columns %" PetscInt_FMT, __end, Nbs);
2829: }
2831: rstart = __rstart; /* block rstart of *outmat; see inline function MatPreallocateBegin */
2832: PetscCall(MatSetOption(inmat, MAT_GETROW_UPPERTRIANGULAR, PETSC_TRUE));
2833: for (i = 0; i < mbs; i++) {
2834: PetscCall(MatGetRow_SeqSBAIJ(inmat, i * bs, &nnz, &indx, NULL)); /* non-blocked nnz and indx */
2835: nnz = nnz / bs;
2836: for (j = 0; j < nnz; j++) bindx[j] = indx[j * bs] / bs;
2837: PetscCall(MatPreallocateSet(i + rstart, nnz, bindx, dnz, onz));
2838: PetscCall(MatRestoreRow_SeqSBAIJ(inmat, i * bs, &nnz, &indx, NULL));
2839: }
2840: PetscCall(MatSetOption(inmat, MAT_GETROW_UPPERTRIANGULAR, PETSC_FALSE));
2841: PetscCall(PetscFree(bindx));
2843: PetscCall(MatCreate(comm, outmat));
2844: PetscCall(MatSetSizes(*outmat, m, n, PETSC_DETERMINE, PETSC_DETERMINE));
2845: PetscCall(MatSetBlockSizes(*outmat, bs, cbs));
2846: PetscCall(MatSetType(*outmat, MATSBAIJ));
2847: PetscCall(MatSeqSBAIJSetPreallocation(*outmat, bs, 0, dnz));
2848: PetscCall(MatMPISBAIJSetPreallocation(*outmat, bs, 0, dnz, 0, onz));
2849: MatPreallocateEnd(dnz, onz);
2850: }
2852: /* numeric phase */
2853: PetscCall(MatGetBlockSizes(inmat, &bs, &cbs));
2854: PetscCall(MatGetOwnershipRange(*outmat, &rstart, NULL));
2856: PetscCall(MatSetOption(inmat, MAT_GETROW_UPPERTRIANGULAR, PETSC_TRUE));
2857: for (i = 0; i < m; i++) {
2858: PetscCall(MatGetRow_SeqSBAIJ(inmat, i, &nnz, &indx, &values));
2859: Ii = i + rstart;
2860: PetscCall(MatSetValues(*outmat, 1, &Ii, nnz, indx, values, INSERT_VALUES));
2861: PetscCall(MatRestoreRow_SeqSBAIJ(inmat, i, &nnz, &indx, &values));
2862: }
2863: PetscCall(MatSetOption(inmat, MAT_GETROW_UPPERTRIANGULAR, PETSC_FALSE));
2864: PetscCall(MatAssemblyBegin(*outmat, MAT_FINAL_ASSEMBLY));
2865: PetscCall(MatAssemblyEnd(*outmat, MAT_FINAL_ASSEMBLY));
2866: PetscFunctionReturn(PETSC_SUCCESS);
2867: }