Actual source code: matscalapack.c
1: #include <petsc/private/petscscalapack.h>
3: const char ScaLAPACKCitation[] = "@BOOK{scalapack-user-guide,\n"
4: " AUTHOR = {L. S. Blackford and J. Choi and A. Cleary and E. D'Azevedo and\n"
5: " J. Demmel and I. Dhillon and J. Dongarra and S. Hammarling and\n"
6: " G. Henry and A. Petitet and K. Stanley and D. Walker and R. C. Whaley},\n"
7: " TITLE = {Sca{LAPACK} Users' Guide},\n"
8: " PUBLISHER = {SIAM},\n"
9: " ADDRESS = {Philadelphia, PA},\n"
10: " YEAR = 1997\n"
11: "}\n";
12: static PetscBool ScaLAPACKCite = PETSC_FALSE;
14: #define DEFAULT_BLOCKSIZE 64
16: /*
17: The variable Petsc_ScaLAPACK_keyval is used to indicate an MPI attribute that
18: is attached to a communicator, in this case the attribute is a Mat_ScaLAPACK_Grid
19: */
20: static PetscMPIInt Petsc_ScaLAPACK_keyval = MPI_KEYVAL_INVALID;
22: static PetscErrorCode Petsc_ScaLAPACK_keyval_free(void)
23: {
24: PetscFunctionBegin;
25: PetscCall(PetscInfo(NULL, "Freeing Petsc_ScaLAPACK_keyval\n"));
26: PetscCallMPI(MPI_Comm_free_keyval(&Petsc_ScaLAPACK_keyval));
27: PetscFunctionReturn(PETSC_SUCCESS);
28: }
30: static PetscErrorCode MatView_ScaLAPACK(Mat A, PetscViewer viewer)
31: {
32: Mat_ScaLAPACK *a = (Mat_ScaLAPACK *)A->data;
33: PetscBool isascii;
34: PetscViewerFormat format;
35: Mat Adense;
37: PetscFunctionBegin;
38: PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &isascii));
39: if (isascii) {
40: PetscCall(PetscViewerGetFormat(viewer, &format));
41: if (format == PETSC_VIEWER_ASCII_INFO || format == PETSC_VIEWER_ASCII_INFO_DETAIL) {
42: PetscCall(PetscViewerASCIIPrintf(viewer, "block sizes: %d,%d\n", (int)a->mb, (int)a->nb));
43: PetscCall(PetscViewerASCIIPrintf(viewer, "grid height=%d, grid width=%d\n", (int)a->grid->nprow, (int)a->grid->npcol));
44: PetscCall(PetscViewerASCIIPrintf(viewer, "coordinates of process owning first row and column: (%d,%d)\n", (int)a->rsrc, (int)a->csrc));
45: PetscCall(PetscViewerASCIIPrintf(viewer, "dimension of largest local matrix: %d x %d\n", (int)a->locr, (int)a->locc));
46: PetscFunctionReturn(PETSC_SUCCESS);
47: } else if (format == PETSC_VIEWER_ASCII_FACTOR_INFO) {
48: PetscFunctionReturn(PETSC_SUCCESS);
49: }
50: }
51: /* convert to dense format and call MatView() */
52: PetscCall(MatConvert(A, MATDENSE, MAT_INITIAL_MATRIX, &Adense));
53: PetscCall(MatView(Adense, viewer));
54: PetscCall(MatDestroy(&Adense));
55: PetscFunctionReturn(PETSC_SUCCESS);
56: }
58: static PetscErrorCode MatGetInfo_ScaLAPACK(Mat A, MatInfoType flag, MatInfo *info)
59: {
60: Mat_ScaLAPACK *a = (Mat_ScaLAPACK *)A->data;
61: PetscLogDouble isend[2], irecv[2];
63: PetscFunctionBegin;
64: info->block_size = 1.0;
66: isend[0] = a->lld * a->locc; /* locally allocated */
67: isend[1] = a->locr * a->locc; /* used submatrix */
68: if (flag == MAT_LOCAL || flag == MAT_GLOBAL_MAX) {
69: info->nz_allocated = isend[0];
70: info->nz_used = isend[1];
71: } else if (flag == MAT_GLOBAL_MAX) {
72: PetscCallMPI(MPIU_Allreduce(isend, irecv, 2, MPIU_PETSCLOGDOUBLE, MPI_MAX, PetscObjectComm((PetscObject)A)));
73: info->nz_allocated = irecv[0];
74: info->nz_used = irecv[1];
75: } else if (flag == MAT_GLOBAL_SUM) {
76: PetscCallMPI(MPIU_Allreduce(isend, irecv, 2, MPIU_PETSCLOGDOUBLE, MPI_SUM, PetscObjectComm((PetscObject)A)));
77: info->nz_allocated = irecv[0];
78: info->nz_used = irecv[1];
79: }
81: info->nz_unneeded = 0;
82: info->assemblies = A->num_ass;
83: info->mallocs = 0;
84: info->memory = 0; /* REVIEW ME */
85: info->fill_ratio_given = 0;
86: info->fill_ratio_needed = 0;
87: info->factor_mallocs = 0;
88: PetscFunctionReturn(PETSC_SUCCESS);
89: }
91: static PetscErrorCode MatSetOption_ScaLAPACK(Mat A, MatOption op, PetscBool flg)
92: {
93: Mat_ScaLAPACK *a = (Mat_ScaLAPACK *)A->data;
95: PetscFunctionBegin;
96: switch (op) {
97: case MAT_NEW_NONZERO_LOCATIONS:
98: case MAT_NEW_NONZERO_LOCATION_ERR:
99: case MAT_NEW_NONZERO_ALLOCATION_ERR:
100: case MAT_SYMMETRIC:
101: case MAT_SORTED_FULL:
102: case MAT_HERMITIAN:
103: break;
104: case MAT_ROW_ORIENTED:
105: a->roworiented = flg;
106: break;
107: default:
108: SETERRQ(PETSC_COMM_SELF, PETSC_ERR_SUP, "Unsupported option %s", MatOptions[op]);
109: }
110: PetscFunctionReturn(PETSC_SUCCESS);
111: }
113: static PetscErrorCode MatSetValues_ScaLAPACK(Mat A, PetscInt nr, const PetscInt *rows, PetscInt nc, const PetscInt *cols, const PetscScalar *vals, InsertMode imode)
114: {
115: Mat_ScaLAPACK *a = (Mat_ScaLAPACK *)A->data;
116: PetscInt i, j;
117: PetscBLASInt gridx, gcidx, lridx, lcidx, rsrc, csrc;
118: PetscBool roworiented = a->roworiented;
120: PetscFunctionBegin;
121: PetscCheck(imode == INSERT_VALUES || imode == ADD_VALUES, PetscObjectComm((PetscObject)A), PETSC_ERR_SUP, "No support for InsertMode %d", (int)imode);
122: for (i = 0; i < nr; i++) {
123: if (rows[i] < 0) continue;
124: PetscCall(PetscBLASIntCast(rows[i] + 1, &gridx));
125: for (j = 0; j < nc; j++) {
126: if (cols[j] < 0) continue;
127: PetscCall(PetscBLASIntCast(cols[j] + 1, &gcidx));
128: PetscCallBLAS("SCALAPACKinfog2l", SCALAPACKinfog2l_(&gridx, &gcidx, a->desc, &a->grid->nprow, &a->grid->npcol, &a->grid->myrow, &a->grid->mycol, &lridx, &lcidx, &rsrc, &csrc));
129: if (rsrc == a->grid->myrow && csrc == a->grid->mycol) {
130: if (roworiented) {
131: switch (imode) {
132: case INSERT_VALUES:
133: a->loc[lridx - 1 + (lcidx - 1) * a->lld] = vals[i * nc + j];
134: break;
135: default:
136: a->loc[lridx - 1 + (lcidx - 1) * a->lld] += vals[i * nc + j];
137: break;
138: }
139: } else {
140: switch (imode) {
141: case INSERT_VALUES:
142: a->loc[lridx - 1 + (lcidx - 1) * a->lld] = vals[i + j * nr];
143: break;
144: default:
145: a->loc[lridx - 1 + (lcidx - 1) * a->lld] += vals[i + j * nr];
146: break;
147: }
148: }
149: } else {
150: PetscCheck(!A->nooffprocentries, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Setting off process entry even though MatSetOption(,MAT_NO_OFF_PROC_ENTRIES,PETSC_TRUE) was set");
151: A->assembled = PETSC_FALSE;
152: PetscCall(MatStashValuesRow_Private(&A->stash, rows[i], 1, cols + j, roworiented ? vals + i * nc + j : vals + i + j * nr, (PetscBool)(imode == ADD_VALUES)));
153: }
154: }
155: }
156: PetscFunctionReturn(PETSC_SUCCESS);
157: }
159: static PetscErrorCode MatMultXXXYYY_ScaLAPACK(Mat A, PetscBool transpose, PetscBool hermitian, PetscScalar beta, const PetscScalar *x, PetscScalar *y)
160: {
161: Mat_ScaLAPACK *a = (Mat_ScaLAPACK *)A->data;
162: PetscScalar *x2d, *y2d, alpha = 1.0;
163: const PetscInt *ranges;
164: PetscBLASInt xdesc[9], ydesc[9], x2desc[9], y2desc[9], mb, nb, lszx, lszy, zero = 0, one = 1, xlld, ylld, info;
166: PetscFunctionBegin;
167: if (transpose) {
168: /* create ScaLAPACK descriptors for vectors (1d block distribution) */
169: PetscCall(PetscLayoutGetRanges(A->rmap, &ranges));
170: PetscCall(PetscBLASIntCast(ranges[1], &mb)); /* x block size */
171: PetscCall(PetscBLASIntCast(PetscMax(1, A->rmap->n), &xlld));
172: PetscCallBLAS("SCALAPACKdescinit", SCALAPACKdescinit_(xdesc, &a->M, &one, &mb, &one, &zero, &zero, &a->grid->ictxcol, &xlld, &info));
173: PetscCheckScaLapackInfo("descinit", info);
174: PetscCall(PetscLayoutGetRanges(A->cmap, &ranges));
175: PetscCall(PetscBLASIntCast(ranges[1], &nb)); /* y block size */
176: ylld = 1;
177: PetscCallBLAS("SCALAPACKdescinit", SCALAPACKdescinit_(ydesc, &one, &a->N, &one, &nb, &zero, &zero, &a->grid->ictxrow, &ylld, &info));
178: PetscCheckScaLapackInfo("descinit", info);
180: /* allocate 2d vectors */
181: lszx = SCALAPACKnumroc_(&a->M, &a->mb, &a->grid->myrow, &a->rsrc, &a->grid->nprow);
182: lszy = SCALAPACKnumroc_(&a->N, &a->nb, &a->grid->mycol, &a->csrc, &a->grid->npcol);
183: PetscCall(PetscMalloc2(lszx, &x2d, lszy, &y2d));
184: PetscCall(PetscBLASIntCast(PetscMax(1, lszx), &xlld));
186: /* create ScaLAPACK descriptors for vectors (2d block distribution) */
187: PetscCallBLAS("SCALAPACKdescinit", SCALAPACKdescinit_(x2desc, &a->M, &one, &a->mb, &one, &zero, &zero, &a->grid->ictxt, &xlld, &info));
188: PetscCheckScaLapackInfo("descinit", info);
189: PetscCallBLAS("SCALAPACKdescinit", SCALAPACKdescinit_(y2desc, &one, &a->N, &one, &a->nb, &zero, &zero, &a->grid->ictxt, &ylld, &info));
190: PetscCheckScaLapackInfo("descinit", info);
192: /* redistribute x as a column of a 2d matrix */
193: PetscCallBLAS("SCALAPACKgemr2d", SCALAPACKgemr2d_(&a->M, &one, x, &one, &one, xdesc, x2d, &one, &one, x2desc, &a->grid->ictxcol));
195: /* redistribute y as a row of a 2d matrix */
196: if (beta != 0.0) PetscCallBLAS("SCALAPACKgemr2d", SCALAPACKgemr2d_(&one, &a->N, y, &one, &one, ydesc, y2d, &one, &one, y2desc, &a->grid->ictxrow));
198: /* call PBLAS subroutine */
199: if (hermitian) PetscCallBLAS("PBLASgemv", PBLASgemv_("C", &a->M, &a->N, &alpha, a->loc, &one, &one, a->desc, x2d, &one, &one, x2desc, &one, &beta, y2d, &one, &one, y2desc, &one));
200: else PetscCallBLAS("PBLASgemv", PBLASgemv_("T", &a->M, &a->N, &alpha, a->loc, &one, &one, a->desc, x2d, &one, &one, x2desc, &one, &beta, y2d, &one, &one, y2desc, &one));
202: /* redistribute y from a row of a 2d matrix */
203: PetscCallBLAS("SCALAPACKgemr2d", SCALAPACKgemr2d_(&one, &a->N, y2d, &one, &one, y2desc, y, &one, &one, ydesc, &a->grid->ictxrow));
205: } else { /* non-transpose */
207: /* create ScaLAPACK descriptors for vectors (1d block distribution) */
208: PetscCall(PetscLayoutGetRanges(A->cmap, &ranges));
209: PetscCall(PetscBLASIntCast(ranges[1], &nb)); /* x block size */
210: xlld = 1;
211: PetscCallBLAS("SCALAPACKdescinit", SCALAPACKdescinit_(xdesc, &one, &a->N, &one, &nb, &zero, &zero, &a->grid->ictxrow, &xlld, &info));
212: PetscCheckScaLapackInfo("descinit", info);
213: PetscCall(PetscLayoutGetRanges(A->rmap, &ranges));
214: PetscCall(PetscBLASIntCast(ranges[1], &mb)); /* y block size */
215: PetscCall(PetscBLASIntCast(PetscMax(1, A->rmap->n), &ylld));
216: PetscCallBLAS("SCALAPACKdescinit", SCALAPACKdescinit_(ydesc, &a->M, &one, &mb, &one, &zero, &zero, &a->grid->ictxcol, &ylld, &info));
217: PetscCheckScaLapackInfo("descinit", info);
219: /* allocate 2d vectors */
220: lszy = SCALAPACKnumroc_(&a->M, &a->mb, &a->grid->myrow, &a->rsrc, &a->grid->nprow);
221: lszx = SCALAPACKnumroc_(&a->N, &a->nb, &a->grid->mycol, &a->csrc, &a->grid->npcol);
222: PetscCall(PetscMalloc2(lszx, &x2d, lszy, &y2d));
223: PetscCall(PetscBLASIntCast(PetscMax(1, lszy), &ylld));
225: /* create ScaLAPACK descriptors for vectors (2d block distribution) */
226: PetscCallBLAS("SCALAPACKdescinit", SCALAPACKdescinit_(x2desc, &one, &a->N, &one, &a->nb, &zero, &zero, &a->grid->ictxt, &xlld, &info));
227: PetscCheckScaLapackInfo("descinit", info);
228: PetscCallBLAS("SCALAPACKdescinit", SCALAPACKdescinit_(y2desc, &a->M, &one, &a->mb, &one, &zero, &zero, &a->grid->ictxt, &ylld, &info));
229: PetscCheckScaLapackInfo("descinit", info);
231: /* redistribute x as a row of a 2d matrix */
232: PetscCallBLAS("SCALAPACKgemr2d", SCALAPACKgemr2d_(&one, &a->N, x, &one, &one, xdesc, x2d, &one, &one, x2desc, &a->grid->ictxrow));
234: /* redistribute y as a column of a 2d matrix */
235: if (beta != 0.0) PetscCallBLAS("SCALAPACKgemr2d", SCALAPACKgemr2d_(&a->M, &one, y, &one, &one, ydesc, y2d, &one, &one, y2desc, &a->grid->ictxcol));
237: /* call PBLAS subroutine */
238: PetscCallBLAS("PBLASgemv", PBLASgemv_("N", &a->M, &a->N, &alpha, a->loc, &one, &one, a->desc, x2d, &one, &one, x2desc, &one, &beta, y2d, &one, &one, y2desc, &one));
240: /* redistribute y from a column of a 2d matrix */
241: PetscCallBLAS("SCALAPACKgemr2d", SCALAPACKgemr2d_(&a->M, &one, y2d, &one, &one, y2desc, y, &one, &one, ydesc, &a->grid->ictxcol));
242: }
243: PetscCall(PetscFree2(x2d, y2d));
244: PetscFunctionReturn(PETSC_SUCCESS);
245: }
247: static PetscErrorCode MatMult_ScaLAPACK(Mat A, Vec x, Vec y)
248: {
249: const PetscScalar *xarray;
250: PetscScalar *yarray;
252: PetscFunctionBegin;
253: PetscCall(VecGetArrayRead(x, &xarray));
254: PetscCall(VecGetArray(y, &yarray));
255: PetscCall(MatMultXXXYYY_ScaLAPACK(A, PETSC_FALSE, PETSC_FALSE, 0.0, xarray, yarray));
256: PetscCall(VecRestoreArrayRead(x, &xarray));
257: PetscCall(VecRestoreArray(y, &yarray));
258: PetscFunctionReturn(PETSC_SUCCESS);
259: }
261: static PetscErrorCode MatMultTranspose_ScaLAPACK(Mat A, Vec x, Vec y)
262: {
263: const PetscScalar *xarray;
264: PetscScalar *yarray;
266: PetscFunctionBegin;
267: PetscCall(VecGetArrayRead(x, &xarray));
268: PetscCall(VecGetArray(y, &yarray));
269: PetscCall(MatMultXXXYYY_ScaLAPACK(A, PETSC_TRUE, PETSC_FALSE, 0.0, xarray, yarray));
270: PetscCall(VecRestoreArrayRead(x, &xarray));
271: PetscCall(VecRestoreArray(y, &yarray));
272: PetscFunctionReturn(PETSC_SUCCESS);
273: }
275: static PetscErrorCode MatMultHermitianTranspose_ScaLAPACK(Mat A, Vec x, Vec y)
276: {
277: const PetscScalar *xarray;
278: PetscScalar *yarray;
280: PetscFunctionBegin;
281: PetscCall(VecGetArrayRead(x, &xarray));
282: PetscCall(VecGetArrayWrite(y, &yarray));
283: PetscCall(MatMultXXXYYY_ScaLAPACK(A, PETSC_TRUE, PETSC_TRUE, 0.0, xarray, yarray));
284: PetscCall(VecRestoreArrayRead(x, &xarray));
285: PetscCall(VecRestoreArrayWrite(y, &yarray));
286: PetscFunctionReturn(PETSC_SUCCESS);
287: }
289: static PetscErrorCode MatMultAdd_ScaLAPACK(Mat A, Vec x, Vec y, Vec z)
290: {
291: const PetscScalar *xarray;
292: PetscScalar *zarray;
294: PetscFunctionBegin;
295: if (y != z) PetscCall(VecCopy(y, z));
296: PetscCall(VecGetArrayRead(x, &xarray));
297: PetscCall(VecGetArray(z, &zarray));
298: PetscCall(MatMultXXXYYY_ScaLAPACK(A, PETSC_FALSE, PETSC_FALSE, 1.0, xarray, zarray));
299: PetscCall(VecRestoreArrayRead(x, &xarray));
300: PetscCall(VecRestoreArray(z, &zarray));
301: PetscFunctionReturn(PETSC_SUCCESS);
302: }
304: static PetscErrorCode MatMultTransposeAdd_ScaLAPACK(Mat A, Vec x, Vec y, Vec z)
305: {
306: const PetscScalar *xarray;
307: PetscScalar *zarray;
309: PetscFunctionBegin;
310: if (y != z) PetscCall(VecCopy(y, z));
311: PetscCall(VecGetArrayRead(x, &xarray));
312: PetscCall(VecGetArray(z, &zarray));
313: PetscCall(MatMultXXXYYY_ScaLAPACK(A, PETSC_TRUE, PETSC_FALSE, 1.0, xarray, zarray));
314: PetscCall(VecRestoreArrayRead(x, &xarray));
315: PetscCall(VecRestoreArray(z, &zarray));
316: PetscFunctionReturn(PETSC_SUCCESS);
317: }
319: static PetscErrorCode MatMultHermitianTransposeAdd_ScaLAPACK(Mat A, Vec x, Vec y, Vec z)
320: {
321: const PetscScalar *xarray;
322: PetscScalar *zarray;
324: PetscFunctionBegin;
325: if (y != z) PetscCall(VecCopy(y, z));
326: PetscCall(VecGetArrayRead(x, &xarray));
327: PetscCall(VecGetArray(z, &zarray));
328: PetscCall(MatMultXXXYYY_ScaLAPACK(A, PETSC_TRUE, PETSC_TRUE, 1.0, xarray, zarray));
329: PetscCall(VecRestoreArrayRead(x, &xarray));
330: PetscCall(VecRestoreArray(z, &zarray));
331: PetscFunctionReturn(PETSC_SUCCESS);
332: }
334: PetscErrorCode MatMatMultNumeric_ScaLAPACK(Mat A, Mat B, Mat C)
335: {
336: Mat_ScaLAPACK *a = (Mat_ScaLAPACK *)A->data;
337: Mat_ScaLAPACK *b = (Mat_ScaLAPACK *)B->data;
338: Mat_ScaLAPACK *c = (Mat_ScaLAPACK *)C->data;
339: PetscScalar sone = 1.0, zero = 0.0;
340: PetscBLASInt one = 1;
342: PetscFunctionBegin;
343: PetscCallBLAS("PBLASgemm", PBLASgemm_("N", "N", &a->M, &b->N, &a->N, &sone, a->loc, &one, &one, a->desc, b->loc, &one, &one, b->desc, &zero, c->loc, &one, &one, c->desc));
344: C->assembled = PETSC_TRUE;
345: PetscFunctionReturn(PETSC_SUCCESS);
346: }
348: PetscErrorCode MatMatMultSymbolic_ScaLAPACK(Mat A, Mat B, PetscReal fill, Mat C)
349: {
350: PetscFunctionBegin;
351: PetscCall(MatSetSizes(C, A->rmap->n, B->cmap->n, PETSC_DECIDE, PETSC_DECIDE));
352: PetscCall(MatSetType(C, MATSCALAPACK));
353: PetscCall(MatSetUp(C));
354: C->ops->matmultnumeric = MatMatMultNumeric_ScaLAPACK;
355: PetscFunctionReturn(PETSC_SUCCESS);
356: }
358: static PetscErrorCode MatTransposeMatMultNumeric_ScaLAPACK(Mat A, Mat B, Mat C)
359: {
360: Mat_ScaLAPACK *a = (Mat_ScaLAPACK *)A->data;
361: Mat_ScaLAPACK *b = (Mat_ScaLAPACK *)B->data;
362: Mat_ScaLAPACK *c = (Mat_ScaLAPACK *)C->data;
363: PetscScalar sone = 1.0, zero = 0.0;
364: PetscBLASInt one = 1;
366: PetscFunctionBegin;
367: PetscCallBLAS("PBLASgemm", PBLASgemm_("T", "N", &a->N, &b->N, &a->M, &sone, a->loc, &one, &one, a->desc, b->loc, &one, &one, b->desc, &zero, c->loc, &one, &one, c->desc));
368: C->assembled = PETSC_TRUE;
369: PetscFunctionReturn(PETSC_SUCCESS);
370: }
372: static PetscErrorCode MatTransposeMatMultSymbolic_ScaLAPACK(Mat A, Mat B, PetscReal fill, Mat C)
373: {
374: PetscFunctionBegin;
375: PetscCall(MatSetSizes(C, A->cmap->n, B->cmap->n, PETSC_DECIDE, PETSC_DECIDE));
376: PetscCall(MatSetType(C, MATSCALAPACK));
377: PetscCall(MatSetUp(C));
378: C->ops->transposematmultnumeric = MatTransposeMatMultNumeric_ScaLAPACK;
379: PetscFunctionReturn(PETSC_SUCCESS);
380: }
382: static PetscErrorCode MatMatTransposeMultNumeric_ScaLAPACK(Mat A, Mat B, Mat C)
383: {
384: Mat_ScaLAPACK *a = (Mat_ScaLAPACK *)A->data;
385: Mat_ScaLAPACK *b = (Mat_ScaLAPACK *)B->data;
386: Mat_ScaLAPACK *c = (Mat_ScaLAPACK *)C->data;
387: PetscScalar sone = 1.0, zero = 0.0;
388: PetscBLASInt one = 1;
390: PetscFunctionBegin;
391: PetscCallBLAS("PBLASgemm", PBLASgemm_("N", "T", &a->M, &b->M, &a->N, &sone, a->loc, &one, &one, a->desc, b->loc, &one, &one, b->desc, &zero, c->loc, &one, &one, c->desc));
392: C->assembled = PETSC_TRUE;
393: PetscFunctionReturn(PETSC_SUCCESS);
394: }
396: static PetscErrorCode MatMatTransposeMultSymbolic_ScaLAPACK(Mat A, Mat B, PetscReal fill, Mat C)
397: {
398: PetscFunctionBegin;
399: PetscCall(MatSetSizes(C, A->rmap->n, B->rmap->n, PETSC_DECIDE, PETSC_DECIDE));
400: PetscCall(MatSetType(C, MATSCALAPACK));
401: PetscCall(MatSetUp(C));
402: C->ops->mattransposemultnumeric = MatMatTransposeMultNumeric_ScaLAPACK;
403: PetscFunctionReturn(PETSC_SUCCESS);
404: }
406: PETSC_INTERN PetscErrorCode MatProductSetFromOptions_ScaLAPACK(Mat C)
407: {
408: Mat_Product *product = C->product;
410: PetscFunctionBegin;
411: switch (product->type) {
412: case MATPRODUCT_AB:
413: C->ops->matmultsymbolic = MatMatMultSymbolic_ScaLAPACK;
414: C->ops->productsymbolic = MatProductSymbolic_AB;
415: break;
416: case MATPRODUCT_AtB:
417: C->ops->transposematmultsymbolic = MatTransposeMatMultSymbolic_ScaLAPACK;
418: C->ops->productsymbolic = MatProductSymbolic_AtB;
419: break;
420: case MATPRODUCT_ABt:
421: C->ops->mattransposemultsymbolic = MatMatTransposeMultSymbolic_ScaLAPACK;
422: C->ops->productsymbolic = MatProductSymbolic_ABt;
423: break;
424: default:
425: SETERRQ(PetscObjectComm((PetscObject)C), PETSC_ERR_SUP, "MatProduct type %s is not supported for ScaLAPACK and ScaLAPACK matrices", MatProductTypes[product->type]);
426: }
427: PetscFunctionReturn(PETSC_SUCCESS);
428: }
430: static PetscErrorCode MatGetDiagonal_ScaLAPACK(Mat A, Vec D)
431: {
432: Mat_ScaLAPACK *a = (Mat_ScaLAPACK *)A->data;
433: PetscScalar *darray, *d2d, v;
434: const PetscInt *ranges;
435: PetscBLASInt j, ddesc[9], d2desc[9], mb, nb, lszd, zero = 0, one = 1, dlld, info;
437: PetscFunctionBegin;
438: PetscCall(VecGetArray(D, &darray));
440: if (A->rmap->N <= A->cmap->N) { /* row version */
442: /* create ScaLAPACK descriptor for vector (1d block distribution) */
443: PetscCall(PetscLayoutGetRanges(A->rmap, &ranges));
444: PetscCall(PetscBLASIntCast(ranges[1], &mb)); /* D block size */
445: PetscCall(PetscBLASIntCast(PetscMax(1, A->rmap->n), &dlld));
446: PetscCallBLAS("SCALAPACKdescinit", SCALAPACKdescinit_(ddesc, &a->M, &one, &mb, &one, &zero, &zero, &a->grid->ictxcol, &dlld, &info));
447: PetscCheckScaLapackInfo("descinit", info);
449: /* allocate 2d vector */
450: lszd = SCALAPACKnumroc_(&a->M, &a->mb, &a->grid->myrow, &a->rsrc, &a->grid->nprow);
451: PetscCall(PetscCalloc1(lszd, &d2d));
452: PetscCall(PetscBLASIntCast(PetscMax(1, lszd), &dlld));
454: /* create ScaLAPACK descriptor for vector (2d block distribution) */
455: PetscCallBLAS("SCALAPACKdescinit", SCALAPACKdescinit_(d2desc, &a->M, &one, &a->mb, &one, &zero, &zero, &a->grid->ictxt, &dlld, &info));
456: PetscCheckScaLapackInfo("descinit", info);
458: /* collect diagonal */
459: for (j = 1; j <= a->M; j++) {
460: PetscCallBLAS("SCALAPACKelget", SCALAPACKelget_("R", " ", &v, a->loc, &j, &j, a->desc));
461: PetscCallBLAS("SCALAPACKelset", SCALAPACKelset_(d2d, &j, &one, d2desc, &v));
462: }
464: /* redistribute d from a column of a 2d matrix */
465: PetscCallBLAS("SCALAPACKgemr2d", SCALAPACKgemr2d_(&a->M, &one, d2d, &one, &one, d2desc, darray, &one, &one, ddesc, &a->grid->ictxcol));
466: PetscCall(PetscFree(d2d));
468: } else { /* column version */
470: /* create ScaLAPACK descriptor for vector (1d block distribution) */
471: PetscCall(PetscLayoutGetRanges(A->cmap, &ranges));
472: PetscCall(PetscBLASIntCast(ranges[1], &nb)); /* D block size */
473: dlld = 1;
474: PetscCallBLAS("SCALAPACKdescinit", SCALAPACKdescinit_(ddesc, &one, &a->N, &one, &nb, &zero, &zero, &a->grid->ictxrow, &dlld, &info));
475: PetscCheckScaLapackInfo("descinit", info);
477: /* allocate 2d vector */
478: lszd = SCALAPACKnumroc_(&a->N, &a->nb, &a->grid->mycol, &a->csrc, &a->grid->npcol);
479: PetscCall(PetscCalloc1(lszd, &d2d));
481: /* create ScaLAPACK descriptor for vector (2d block distribution) */
482: PetscCallBLAS("SCALAPACKdescinit", SCALAPACKdescinit_(d2desc, &one, &a->N, &one, &a->nb, &zero, &zero, &a->grid->ictxt, &dlld, &info));
483: PetscCheckScaLapackInfo("descinit", info);
485: /* collect diagonal */
486: for (j = 1; j <= a->N; j++) {
487: PetscCallBLAS("SCALAPACKelget", SCALAPACKelget_("C", " ", &v, a->loc, &j, &j, a->desc));
488: PetscCallBLAS("SCALAPACKelset", SCALAPACKelset_(d2d, &one, &j, d2desc, &v));
489: }
491: /* redistribute d from a row of a 2d matrix */
492: PetscCallBLAS("SCALAPACKgemr2d", SCALAPACKgemr2d_(&one, &a->N, d2d, &one, &one, d2desc, darray, &one, &one, ddesc, &a->grid->ictxrow));
493: PetscCall(PetscFree(d2d));
494: }
496: PetscCall(VecRestoreArray(D, &darray));
497: PetscCall(VecAssemblyBegin(D));
498: PetscCall(VecAssemblyEnd(D));
499: PetscFunctionReturn(PETSC_SUCCESS);
500: }
502: static PetscErrorCode MatDiagonalScale_ScaLAPACK(Mat A, Vec L, Vec R)
503: {
504: Mat_ScaLAPACK *a = (Mat_ScaLAPACK *)A->data;
505: const PetscScalar *d;
506: const PetscInt *ranges;
507: PetscScalar *d2d;
508: PetscBLASInt i, j, ddesc[9], d2desc[9], mb, nb, lszd, zero = 0, one = 1, dlld, info;
510: PetscFunctionBegin;
511: if (R) {
512: PetscCall(VecGetArrayRead(R, &d));
513: /* create ScaLAPACK descriptor for vector (1d block distribution) */
514: PetscCall(PetscLayoutGetRanges(A->cmap, &ranges));
515: PetscCall(PetscBLASIntCast(ranges[1], &nb)); /* D block size */
516: dlld = 1;
517: PetscCallBLAS("SCALAPACKdescinit", SCALAPACKdescinit_(ddesc, &one, &a->N, &one, &nb, &zero, &zero, &a->grid->ictxrow, &dlld, &info));
518: PetscCheckScaLapackInfo("descinit", info);
520: /* allocate 2d vector */
521: lszd = SCALAPACKnumroc_(&a->N, &a->nb, &a->grid->mycol, &a->csrc, &a->grid->npcol);
522: PetscCall(PetscCalloc1(lszd, &d2d));
524: /* create ScaLAPACK descriptor for vector (2d block distribution) */
525: PetscCallBLAS("SCALAPACKdescinit", SCALAPACKdescinit_(d2desc, &one, &a->N, &one, &a->nb, &zero, &zero, &a->grid->ictxt, &dlld, &info));
526: PetscCheckScaLapackInfo("descinit", info);
528: /* redistribute d to a row of a 2d matrix */
529: PetscCallBLAS("SCALAPACKgemr2d", SCALAPACKgemr2d_(&one, &a->N, d, &one, &one, ddesc, d2d, &one, &one, d2desc, &a->grid->ictxrow));
531: /* broadcast along process columns */
532: if (!a->grid->myrow) Cdgebs2d(a->grid->ictxt, "C", " ", 1, lszd, d2d, dlld);
533: else Cdgebr2d(a->grid->ictxt, "C", " ", 1, lszd, d2d, dlld, 0, a->grid->mycol);
535: /* local scaling */
536: for (j = 0; j < a->locc; j++)
537: for (i = 0; i < a->locr; i++) a->loc[i + j * a->lld] *= d2d[j];
539: PetscCall(PetscFree(d2d));
540: PetscCall(VecRestoreArrayRead(R, &d));
541: }
542: if (L) {
543: PetscCall(VecGetArrayRead(L, &d));
544: /* create ScaLAPACK descriptor for vector (1d block distribution) */
545: PetscCall(PetscLayoutGetRanges(A->rmap, &ranges));
546: PetscCall(PetscBLASIntCast(ranges[1], &mb)); /* D block size */
547: PetscCall(PetscBLASIntCast(PetscMax(1, A->rmap->n), &dlld));
548: PetscCallBLAS("SCALAPACKdescinit", SCALAPACKdescinit_(ddesc, &a->M, &one, &mb, &one, &zero, &zero, &a->grid->ictxcol, &dlld, &info));
549: PetscCheckScaLapackInfo("descinit", info);
551: /* allocate 2d vector */
552: lszd = SCALAPACKnumroc_(&a->M, &a->mb, &a->grid->myrow, &a->rsrc, &a->grid->nprow);
553: PetscCall(PetscCalloc1(lszd, &d2d));
554: PetscCall(PetscBLASIntCast(PetscMax(1, lszd), &dlld));
556: /* create ScaLAPACK descriptor for vector (2d block distribution) */
557: PetscCallBLAS("SCALAPACKdescinit", SCALAPACKdescinit_(d2desc, &a->M, &one, &a->mb, &one, &zero, &zero, &a->grid->ictxt, &dlld, &info));
558: PetscCheckScaLapackInfo("descinit", info);
560: /* redistribute d to a column of a 2d matrix */
561: PetscCallBLAS("SCALAPACKgemr2d", SCALAPACKgemr2d_(&a->M, &one, d, &one, &one, ddesc, d2d, &one, &one, d2desc, &a->grid->ictxcol));
563: /* broadcast along process rows */
564: if (!a->grid->mycol) Cdgebs2d(a->grid->ictxt, "R", " ", lszd, 1, d2d, dlld);
565: else Cdgebr2d(a->grid->ictxt, "R", " ", lszd, 1, d2d, dlld, a->grid->myrow, 0);
567: /* local scaling */
568: for (i = 0; i < a->locr; i++)
569: for (j = 0; j < a->locc; j++) a->loc[i + j * a->lld] *= d2d[i];
571: PetscCall(PetscFree(d2d));
572: PetscCall(VecRestoreArrayRead(L, &d));
573: }
574: PetscFunctionReturn(PETSC_SUCCESS);
575: }
577: static PetscErrorCode MatScale_ScaLAPACK(Mat X, PetscScalar a)
578: {
579: Mat_ScaLAPACK *x = (Mat_ScaLAPACK *)X->data;
580: PetscBLASInt n, one = 1;
582: PetscFunctionBegin;
583: n = x->lld * x->locc;
584: PetscCallBLAS("BLASscal", BLASscal_(&n, &a, x->loc, &one));
585: PetscFunctionReturn(PETSC_SUCCESS);
586: }
588: static PetscErrorCode MatShift_ScaLAPACK(Mat X, PetscScalar alpha)
589: {
590: Mat_ScaLAPACK *x = (Mat_ScaLAPACK *)X->data;
591: PetscBLASInt i, n;
592: PetscScalar v;
594: PetscFunctionBegin;
595: n = PetscMin(x->M, x->N);
596: for (i = 1; i <= n; i++) {
597: PetscCallBLAS("SCALAPACKelget", SCALAPACKelget_("-", " ", &v, x->loc, &i, &i, x->desc));
598: v += alpha;
599: PetscCallBLAS("SCALAPACKelset", SCALAPACKelset_(x->loc, &i, &i, x->desc, &v));
600: }
601: PetscFunctionReturn(PETSC_SUCCESS);
602: }
604: static PetscErrorCode MatAXPY_ScaLAPACK(Mat Y, PetscScalar alpha, Mat X, MatStructure str)
605: {
606: Mat_ScaLAPACK *x = (Mat_ScaLAPACK *)X->data;
607: Mat_ScaLAPACK *y = (Mat_ScaLAPACK *)Y->data;
608: PetscBLASInt one = 1;
609: PetscScalar beta = 1.0;
611: PetscFunctionBegin;
612: MatScaLAPACKCheckDistribution(Y, 1, X, 3);
613: PetscCallBLAS("SCALAPACKmatadd", SCALAPACKmatadd_(&x->M, &x->N, &alpha, x->loc, &one, &one, x->desc, &beta, y->loc, &one, &one, y->desc));
614: PetscCall(PetscObjectStateIncrease((PetscObject)Y));
615: PetscFunctionReturn(PETSC_SUCCESS);
616: }
618: static PetscErrorCode MatCopy_ScaLAPACK(Mat A, Mat B, MatStructure str)
619: {
620: Mat_ScaLAPACK *a = (Mat_ScaLAPACK *)A->data;
621: Mat_ScaLAPACK *b = (Mat_ScaLAPACK *)B->data;
623: PetscFunctionBegin;
624: PetscCall(PetscArraycpy(b->loc, a->loc, a->lld * a->locc));
625: PetscCall(PetscObjectStateIncrease((PetscObject)B));
626: PetscFunctionReturn(PETSC_SUCCESS);
627: }
629: static PetscErrorCode MatDuplicate_ScaLAPACK(Mat A, MatDuplicateOption op, Mat *B)
630: {
631: Mat Bs;
632: MPI_Comm comm;
633: Mat_ScaLAPACK *a = (Mat_ScaLAPACK *)A->data, *b;
635: PetscFunctionBegin;
636: PetscCall(PetscObjectGetComm((PetscObject)A, &comm));
637: PetscCall(MatCreate(comm, &Bs));
638: PetscCall(MatSetSizes(Bs, A->rmap->n, A->cmap->n, PETSC_DECIDE, PETSC_DECIDE));
639: PetscCall(MatSetType(Bs, MATSCALAPACK));
640: b = (Mat_ScaLAPACK *)Bs->data;
641: b->M = a->M;
642: b->N = a->N;
643: b->mb = a->mb;
644: b->nb = a->nb;
645: b->rsrc = a->rsrc;
646: b->csrc = a->csrc;
647: PetscCall(MatSetUp(Bs));
648: *B = Bs;
649: if (op == MAT_COPY_VALUES) PetscCall(PetscArraycpy(b->loc, a->loc, a->lld * a->locc));
650: Bs->assembled = PETSC_TRUE;
651: PetscFunctionReturn(PETSC_SUCCESS);
652: }
654: static PetscErrorCode MatTranspose_ScaLAPACK(Mat A, MatReuse reuse, Mat *B)
655: {
656: Mat_ScaLAPACK *a = (Mat_ScaLAPACK *)A->data, *b;
657: Mat Bs = *B;
658: PetscBLASInt one = 1;
659: PetscScalar sone = 1.0, zero = 0.0;
660: #if defined(PETSC_USE_COMPLEX)
661: PetscInt i, j;
662: #endif
664: PetscFunctionBegin;
665: if (reuse == MAT_REUSE_MATRIX) PetscCall(MatTransposeCheckNonzeroState_Private(A, *B));
666: PetscCheck(reuse == MAT_INITIAL_MATRIX, PetscObjectComm((PetscObject)A), PETSC_ERR_SUP, "Only MAT_INITIAL_MATRIX supported");
667: PetscCall(MatCreateScaLAPACK(PetscObjectComm((PetscObject)A), a->nb, a->mb, a->N, a->M, a->csrc, a->rsrc, &Bs));
668: *B = Bs;
669: b = (Mat_ScaLAPACK *)Bs->data;
670: PetscCallBLAS("PBLAStran", PBLAStran_(&a->N, &a->M, &sone, a->loc, &one, &one, a->desc, &zero, b->loc, &one, &one, b->desc));
671: #if defined(PETSC_USE_COMPLEX)
672: /* undo conjugation */
673: for (i = 0; i < b->locr; i++)
674: for (j = 0; j < b->locc; j++) b->loc[i + j * b->lld] = PetscConj(b->loc[i + j * b->lld]);
675: #endif
676: Bs->assembled = PETSC_TRUE;
677: PetscFunctionReturn(PETSC_SUCCESS);
678: }
680: static PetscErrorCode MatConjugate_ScaLAPACK(Mat A)
681: {
682: Mat_ScaLAPACK *a = (Mat_ScaLAPACK *)A->data;
683: PetscInt i, j;
685: PetscFunctionBegin;
686: for (i = 0; i < a->locr; i++)
687: for (j = 0; j < a->locc; j++) a->loc[i + j * a->lld] = PetscConj(a->loc[i + j * a->lld]);
688: PetscFunctionReturn(PETSC_SUCCESS);
689: }
691: static PetscErrorCode MatHermitianTranspose_ScaLAPACK(Mat A, MatReuse reuse, Mat *B)
692: {
693: Mat_ScaLAPACK *a = (Mat_ScaLAPACK *)A->data, *b;
694: Mat Bs = *B;
695: PetscBLASInt one = 1;
696: PetscScalar sone = 1.0, zero = 0.0;
698: PetscFunctionBegin;
699: PetscCheck(reuse == MAT_INITIAL_MATRIX, PetscObjectComm((PetscObject)A), PETSC_ERR_SUP, "Only MAT_INITIAL_MATRIX supported");
700: PetscCall(MatCreateScaLAPACK(PetscObjectComm((PetscObject)A), a->nb, a->mb, a->N, a->M, a->csrc, a->rsrc, &Bs));
701: *B = Bs;
702: b = (Mat_ScaLAPACK *)Bs->data;
703: PetscCallBLAS("PBLAStran", PBLAStran_(&a->N, &a->M, &sone, a->loc, &one, &one, a->desc, &zero, b->loc, &one, &one, b->desc));
704: Bs->assembled = PETSC_TRUE;
705: PetscFunctionReturn(PETSC_SUCCESS);
706: }
708: static PetscErrorCode MatSolve_ScaLAPACK(Mat A, Vec B, Vec X)
709: {
710: Mat_ScaLAPACK *a = (Mat_ScaLAPACK *)A->data;
711: PetscScalar *x, *x2d;
712: const PetscInt *ranges;
713: PetscBLASInt xdesc[9], x2desc[9], mb, lszx, zero = 0, one = 1, xlld, nrhs = 1, info;
715: PetscFunctionBegin;
716: PetscCall(VecCopy(B, X));
717: PetscCall(VecGetArray(X, &x));
719: /* create ScaLAPACK descriptor for a vector (1d block distribution) */
720: PetscCall(PetscLayoutGetRanges(A->rmap, &ranges));
721: PetscCall(PetscBLASIntCast(ranges[1], &mb)); /* x block size */
722: PetscCall(PetscBLASIntCast(PetscMax(1, A->rmap->n), &xlld));
723: PetscCallBLAS("SCALAPACKdescinit", SCALAPACKdescinit_(xdesc, &a->M, &one, &mb, &one, &zero, &zero, &a->grid->ictxcol, &xlld, &info));
724: PetscCheckScaLapackInfo("descinit", info);
726: /* allocate 2d vector */
727: lszx = SCALAPACKnumroc_(&a->M, &a->mb, &a->grid->myrow, &a->rsrc, &a->grid->nprow);
728: PetscCall(PetscMalloc1(lszx, &x2d));
729: PetscCall(PetscBLASIntCast(PetscMax(1, lszx), &xlld));
731: /* create ScaLAPACK descriptor for a vector (2d block distribution) */
732: PetscCallBLAS("SCALAPACKdescinit", SCALAPACKdescinit_(x2desc, &a->M, &one, &a->mb, &one, &zero, &zero, &a->grid->ictxt, &xlld, &info));
733: PetscCheckScaLapackInfo("descinit", info);
735: /* redistribute x as a column of a 2d matrix */
736: PetscCallBLAS("SCALAPACKgemr2d", SCALAPACKgemr2d_(&a->M, &one, x, &one, &one, xdesc, x2d, &one, &one, x2desc, &a->grid->ictxcol));
738: /* call ScaLAPACK subroutine */
739: switch (A->factortype) {
740: case MAT_FACTOR_LU:
741: PetscCallBLAS("SCALAPACKgetrs", SCALAPACKgetrs_("N", &a->M, &nrhs, a->loc, &one, &one, a->desc, a->pivots, x2d, &one, &one, x2desc, &info));
742: PetscCheckScaLapackInfo("getrs", info);
743: break;
744: case MAT_FACTOR_CHOLESKY:
745: PetscCallBLAS("SCALAPACKpotrs", SCALAPACKpotrs_("L", &a->M, &nrhs, a->loc, &one, &one, a->desc, x2d, &one, &one, x2desc, &info));
746: PetscCheckScaLapackInfo("potrs", info);
747: break;
748: default:
749: SETERRQ(PETSC_COMM_SELF, PETSC_ERR_SUP, "Unfactored Matrix or Unsupported MatFactorType");
750: }
752: /* redistribute x from a column of a 2d matrix */
753: PetscCallBLAS("SCALAPACKgemr2d", SCALAPACKgemr2d_(&a->M, &one, x2d, &one, &one, x2desc, x, &one, &one, xdesc, &a->grid->ictxcol));
755: PetscCall(PetscFree(x2d));
756: PetscCall(VecRestoreArray(X, &x));
757: PetscFunctionReturn(PETSC_SUCCESS);
758: }
760: static PetscErrorCode MatSolveAdd_ScaLAPACK(Mat A, Vec B, Vec Y, Vec X)
761: {
762: PetscFunctionBegin;
763: PetscCall(MatSolve_ScaLAPACK(A, B, X));
764: PetscCall(VecAXPY(X, 1, Y));
765: PetscFunctionReturn(PETSC_SUCCESS);
766: }
768: static PetscErrorCode MatMatSolve_ScaLAPACK(Mat A, Mat B, Mat X)
769: {
770: Mat_ScaLAPACK *a = (Mat_ScaLAPACK *)A->data, *x;
771: PetscBool flg1, flg2;
772: PetscBLASInt one = 1, info;
773: Mat C;
774: MatType type;
776: PetscFunctionBegin;
777: PetscCall(PetscObjectTypeCompare((PetscObject)B, MATSCALAPACK, &flg1));
778: PetscCall(PetscObjectTypeCompare((PetscObject)X, MATSCALAPACK, &flg2));
779: if (flg1 && flg2) MatScaLAPACKCheckDistribution(B, 2, X, 3);
780: if (flg2) {
781: if (flg1) PetscCall(MatCopy(B, X, SAME_NONZERO_PATTERN));
782: else PetscCall(MatConvert(B, MATSCALAPACK, MAT_REUSE_MATRIX, &X));
783: C = X;
784: } else {
785: PetscCall(MatConvert(B, MATSCALAPACK, MAT_INITIAL_MATRIX, &C));
786: }
787: x = (Mat_ScaLAPACK *)C->data;
789: switch (A->factortype) {
790: case MAT_FACTOR_LU:
791: PetscCallBLAS("SCALAPACKgetrs", SCALAPACKgetrs_("N", &a->M, &x->N, a->loc, &one, &one, a->desc, a->pivots, x->loc, &one, &one, x->desc, &info));
792: PetscCheckScaLapackInfo("getrs", info);
793: break;
794: case MAT_FACTOR_CHOLESKY:
795: PetscCallBLAS("SCALAPACKpotrs", SCALAPACKpotrs_("L", &a->M, &x->N, a->loc, &one, &one, a->desc, x->loc, &one, &one, x->desc, &info));
796: PetscCheckScaLapackInfo("potrs", info);
797: break;
798: default:
799: SETERRQ(PETSC_COMM_SELF, PETSC_ERR_SUP, "Unfactored Matrix or Unsupported MatFactorType");
800: }
801: if (!flg2) {
802: PetscCall(MatGetType(X, &type));
803: PetscCall(MatConvert(C, type, MAT_REUSE_MATRIX, &X));
804: PetscCall(MatDestroy(&C));
805: }
806: PetscFunctionReturn(PETSC_SUCCESS);
807: }
809: static PetscErrorCode MatLUFactor_ScaLAPACK(Mat A, IS row, IS col, const MatFactorInfo *factorinfo)
810: {
811: Mat_ScaLAPACK *a = (Mat_ScaLAPACK *)A->data;
812: PetscBLASInt one = 1, info;
814: PetscFunctionBegin;
815: if (!a->pivots) PetscCall(PetscMalloc1(a->locr + a->mb, &a->pivots));
816: PetscCallBLAS("SCALAPACKgetrf", SCALAPACKgetrf_(&a->M, &a->N, a->loc, &one, &one, a->desc, a->pivots, &info));
817: PetscCheckScaLapackInfo("getrf", info);
818: A->factortype = MAT_FACTOR_LU;
819: A->assembled = PETSC_TRUE;
821: PetscCall(PetscFree(A->solvertype));
822: PetscCall(PetscStrallocpy(MATSOLVERSCALAPACK, &A->solvertype));
823: PetscFunctionReturn(PETSC_SUCCESS);
824: }
826: static PetscErrorCode MatLUFactorNumeric_ScaLAPACK(Mat F, Mat A, const MatFactorInfo *info)
827: {
828: PetscFunctionBegin;
829: PetscCall(MatCopy(A, F, SAME_NONZERO_PATTERN));
830: PetscCall(MatLUFactor_ScaLAPACK(F, 0, 0, info));
831: PetscFunctionReturn(PETSC_SUCCESS);
832: }
834: static PetscErrorCode MatLUFactorSymbolic_ScaLAPACK(Mat F, Mat A, IS r, IS c, const MatFactorInfo *info)
835: {
836: PetscFunctionBegin;
837: /* F is created and allocated by MatGetFactor_scalapack_petsc(), skip this routine. */
838: PetscFunctionReturn(PETSC_SUCCESS);
839: }
841: static PetscErrorCode MatCholeskyFactor_ScaLAPACK(Mat A, IS perm, const MatFactorInfo *factorinfo)
842: {
843: Mat_ScaLAPACK *a = (Mat_ScaLAPACK *)A->data;
844: PetscBLASInt one = 1, info;
846: PetscFunctionBegin;
847: PetscCallBLAS("SCALAPACKpotrf", SCALAPACKpotrf_("L", &a->M, a->loc, &one, &one, a->desc, &info));
848: PetscCheckScaLapackInfo("potrf", info);
849: A->factortype = MAT_FACTOR_CHOLESKY;
850: A->assembled = PETSC_TRUE;
852: PetscCall(PetscFree(A->solvertype));
853: PetscCall(PetscStrallocpy(MATSOLVERSCALAPACK, &A->solvertype));
854: PetscFunctionReturn(PETSC_SUCCESS);
855: }
857: static PetscErrorCode MatCholeskyFactorNumeric_ScaLAPACK(Mat F, Mat A, const MatFactorInfo *info)
858: {
859: PetscFunctionBegin;
860: PetscCall(MatCopy(A, F, SAME_NONZERO_PATTERN));
861: PetscCall(MatCholeskyFactor_ScaLAPACK(F, 0, info));
862: PetscFunctionReturn(PETSC_SUCCESS);
863: }
865: static PetscErrorCode MatCholeskyFactorSymbolic_ScaLAPACK(Mat F, Mat A, IS perm, const MatFactorInfo *info)
866: {
867: PetscFunctionBegin;
868: /* F is created and allocated by MatGetFactor_scalapack_petsc(), skip this routine. */
869: PetscFunctionReturn(PETSC_SUCCESS);
870: }
872: static PetscErrorCode MatFactorGetSolverType_scalapack_scalapack(Mat A, MatSolverType *type)
873: {
874: PetscFunctionBegin;
875: *type = MATSOLVERSCALAPACK;
876: PetscFunctionReturn(PETSC_SUCCESS);
877: }
879: static PetscErrorCode MatGetFactor_scalapack_scalapack(Mat A, MatFactorType ftype, Mat *F)
880: {
881: Mat B;
882: Mat_ScaLAPACK *a = (Mat_ScaLAPACK *)A->data;
884: PetscFunctionBegin;
885: /* Create the factorization matrix */
886: PetscCall(MatCreateScaLAPACK(PetscObjectComm((PetscObject)A), a->mb, a->nb, a->M, a->N, a->rsrc, a->csrc, &B));
887: B->trivialsymbolic = PETSC_TRUE;
888: B->factortype = ftype;
889: PetscCall(PetscFree(B->solvertype));
890: PetscCall(PetscStrallocpy(MATSOLVERSCALAPACK, &B->solvertype));
892: PetscCall(PetscObjectComposeFunction((PetscObject)B, "MatFactorGetSolverType_C", MatFactorGetSolverType_scalapack_scalapack));
893: *F = B;
894: PetscFunctionReturn(PETSC_SUCCESS);
895: }
897: PETSC_INTERN PetscErrorCode MatSolverTypeRegister_ScaLAPACK(void)
898: {
899: PetscFunctionBegin;
900: PetscCall(MatSolverTypeRegister(MATSOLVERSCALAPACK, MATSCALAPACK, MAT_FACTOR_LU, MatGetFactor_scalapack_scalapack));
901: PetscCall(MatSolverTypeRegister(MATSOLVERSCALAPACK, MATSCALAPACK, MAT_FACTOR_CHOLESKY, MatGetFactor_scalapack_scalapack));
902: PetscFunctionReturn(PETSC_SUCCESS);
903: }
905: static PetscErrorCode MatNorm_ScaLAPACK(Mat A, NormType type, PetscReal *nrm)
906: {
907: Mat_ScaLAPACK *a = (Mat_ScaLAPACK *)A->data;
908: PetscBLASInt one = 1, lwork = 0;
909: const char *ntype;
910: PetscScalar *work = NULL, dummy;
912: PetscFunctionBegin;
913: switch (type) {
914: case NORM_1:
915: ntype = "1";
916: lwork = PetscMax(a->locr, a->locc);
917: break;
918: case NORM_FROBENIUS:
919: ntype = "F";
920: work = &dummy;
921: break;
922: case NORM_INFINITY:
923: ntype = "I";
924: lwork = PetscMax(a->locr, a->locc);
925: break;
926: default:
927: SETERRQ(PetscObjectComm((PetscObject)A), PETSC_ERR_SUP, "Unsupported norm type");
928: }
929: if (lwork) PetscCall(PetscMalloc1(lwork, &work));
930: *nrm = SCALAPACKlange_(ntype, &a->M, &a->N, a->loc, &one, &one, a->desc, work);
931: if (lwork) PetscCall(PetscFree(work));
932: PetscFunctionReturn(PETSC_SUCCESS);
933: }
935: static PetscErrorCode MatZeroEntries_ScaLAPACK(Mat A)
936: {
937: Mat_ScaLAPACK *a = (Mat_ScaLAPACK *)A->data;
939: PetscFunctionBegin;
940: PetscCall(PetscArrayzero(a->loc, a->lld * a->locc));
941: PetscFunctionReturn(PETSC_SUCCESS);
942: }
944: static PetscErrorCode MatGetOwnershipIS_ScaLAPACK(Mat A, IS *rows, IS *cols)
945: {
946: Mat_ScaLAPACK *a = (Mat_ScaLAPACK *)A->data;
947: PetscInt i, n, nb, isrc, nproc, iproc, *idx;
949: PetscFunctionBegin;
950: if (rows) {
951: n = a->locr;
952: nb = a->mb;
953: isrc = a->rsrc;
954: nproc = a->grid->nprow;
955: iproc = a->grid->myrow;
956: PetscCall(PetscMalloc1(n, &idx));
957: for (i = 0; i < n; i++) idx[i] = nproc * nb * (i / nb) + i % nb + ((nproc + iproc - isrc) % nproc) * nb;
958: PetscCall(ISCreateGeneral(PETSC_COMM_SELF, n, idx, PETSC_OWN_POINTER, rows));
959: }
960: if (cols) {
961: n = a->locc;
962: nb = a->nb;
963: isrc = a->csrc;
964: nproc = a->grid->npcol;
965: iproc = a->grid->mycol;
966: PetscCall(PetscMalloc1(n, &idx));
967: for (i = 0; i < n; i++) idx[i] = nproc * nb * (i / nb) + i % nb + ((nproc + iproc - isrc) % nproc) * nb;
968: PetscCall(ISCreateGeneral(PETSC_COMM_SELF, n, idx, PETSC_OWN_POINTER, cols));
969: }
970: PetscFunctionReturn(PETSC_SUCCESS);
971: }
973: static PetscErrorCode MatConvert_ScaLAPACK_Dense(Mat A, MatType newtype, MatReuse reuse, Mat *B)
974: {
975: Mat_ScaLAPACK *a = (Mat_ScaLAPACK *)A->data;
976: Mat Bmpi;
977: MPI_Comm comm;
978: PetscInt i, M = A->rmap->N, N = A->cmap->N, m, n, rstart, rend, nz, ldb;
979: const PetscInt *ranges, *branges, *cwork;
980: const PetscScalar *vwork;
981: PetscBLASInt bdesc[9], bmb, zero = 0, one = 1, lld, info;
982: PetscScalar *barray;
983: PetscBool differ = PETSC_FALSE;
984: PetscMPIInt size;
986: PetscFunctionBegin;
987: PetscCall(PetscObjectGetComm((PetscObject)A, &comm));
988: PetscCall(PetscLayoutGetRanges(A->rmap, &ranges));
990: if (reuse == MAT_REUSE_MATRIX) { /* check if local sizes differ in A and B */
991: PetscCallMPI(MPI_Comm_size(comm, &size));
992: PetscCall(PetscLayoutGetRanges((*B)->rmap, &branges));
993: for (i = 0; i < size; i++)
994: if (ranges[i + 1] != branges[i + 1]) {
995: differ = PETSC_TRUE;
996: break;
997: }
998: }
1000: if (reuse == MAT_REUSE_MATRIX && differ) { /* special case, use auxiliary dense matrix */
1001: PetscCall(MatCreate(comm, &Bmpi));
1002: m = PETSC_DECIDE;
1003: PetscCall(PetscSplitOwnershipEqual(comm, &m, &M));
1004: n = PETSC_DECIDE;
1005: PetscCall(PetscSplitOwnershipEqual(comm, &n, &N));
1006: PetscCall(MatSetSizes(Bmpi, m, n, M, N));
1007: PetscCall(MatSetType(Bmpi, MATDENSE));
1008: PetscCall(MatSetUp(Bmpi));
1010: /* create ScaLAPACK descriptor for B (1d block distribution) */
1011: PetscCall(PetscBLASIntCast(ranges[1], &bmb)); /* row block size */
1012: PetscCall(MatDenseGetLDA(Bmpi, &ldb));
1013: PetscCall(PetscBLASIntCast(PetscMax(ldb, 1), &lld)); /* local leading dimension */
1014: PetscCallBLAS("SCALAPACKdescinit", SCALAPACKdescinit_(bdesc, &a->M, &a->N, &bmb, &a->N, &zero, &zero, &a->grid->ictxcol, &lld, &info));
1015: PetscCheckScaLapackInfo("descinit", info);
1017: /* redistribute matrix */
1018: PetscCall(MatDenseGetArray(Bmpi, &barray));
1019: PetscCallBLAS("SCALAPACKgemr2d", SCALAPACKgemr2d_(&a->M, &a->N, a->loc, &one, &one, a->desc, barray, &one, &one, bdesc, &a->grid->ictxcol));
1020: PetscCall(MatDenseRestoreArray(Bmpi, &barray));
1021: PetscCall(MatAssemblyBegin(Bmpi, MAT_FINAL_ASSEMBLY));
1022: PetscCall(MatAssemblyEnd(Bmpi, MAT_FINAL_ASSEMBLY));
1024: /* transfer rows of auxiliary matrix to the final matrix B */
1025: PetscCall(MatGetOwnershipRange(Bmpi, &rstart, &rend));
1026: for (i = rstart; i < rend; i++) {
1027: PetscCall(MatGetRow(Bmpi, i, &nz, &cwork, &vwork));
1028: PetscCall(MatSetValues(*B, 1, &i, nz, cwork, vwork, INSERT_VALUES));
1029: PetscCall(MatRestoreRow(Bmpi, i, &nz, &cwork, &vwork));
1030: }
1031: PetscCall(MatAssemblyBegin(*B, MAT_FINAL_ASSEMBLY));
1032: PetscCall(MatAssemblyEnd(*B, MAT_FINAL_ASSEMBLY));
1033: PetscCall(MatDestroy(&Bmpi));
1035: } else { /* normal cases */
1037: if (reuse == MAT_REUSE_MATRIX) Bmpi = *B;
1038: else {
1039: PetscCall(MatCreate(comm, &Bmpi));
1040: m = PETSC_DECIDE;
1041: PetscCall(PetscSplitOwnershipEqual(comm, &m, &M));
1042: n = PETSC_DECIDE;
1043: PetscCall(PetscSplitOwnershipEqual(comm, &n, &N));
1044: PetscCall(MatSetSizes(Bmpi, m, n, M, N));
1045: PetscCall(MatSetType(Bmpi, MATDENSE));
1046: PetscCall(MatSetUp(Bmpi));
1047: }
1049: /* create ScaLAPACK descriptor for B (1d block distribution) */
1050: PetscCall(PetscBLASIntCast(ranges[1], &bmb)); /* row block size */
1051: PetscCall(MatDenseGetLDA(Bmpi, &ldb));
1052: PetscCall(PetscBLASIntCast(PetscMax(ldb, 1), &lld)); /* local leading dimension */
1053: PetscCallBLAS("SCALAPACKdescinit", SCALAPACKdescinit_(bdesc, &a->M, &a->N, &bmb, &a->N, &zero, &zero, &a->grid->ictxcol, &lld, &info));
1054: PetscCheckScaLapackInfo("descinit", info);
1056: /* redistribute matrix */
1057: PetscCall(MatDenseGetArray(Bmpi, &barray));
1058: PetscCallBLAS("SCALAPACKgemr2d", SCALAPACKgemr2d_(&a->M, &a->N, a->loc, &one, &one, a->desc, barray, &one, &one, bdesc, &a->grid->ictxcol));
1059: PetscCall(MatDenseRestoreArray(Bmpi, &barray));
1061: PetscCall(MatAssemblyBegin(Bmpi, MAT_FINAL_ASSEMBLY));
1062: PetscCall(MatAssemblyEnd(Bmpi, MAT_FINAL_ASSEMBLY));
1063: if (reuse == MAT_INPLACE_MATRIX) PetscCall(MatHeaderReplace(A, &Bmpi));
1064: else *B = Bmpi;
1065: }
1066: PetscFunctionReturn(PETSC_SUCCESS);
1067: }
1069: static inline PetscErrorCode MatScaLAPACKCheckLayout(PetscLayout map, PetscBool *correct)
1070: {
1071: const PetscInt *ranges;
1072: PetscMPIInt size;
1073: PetscInt i, n;
1075: PetscFunctionBegin;
1076: *correct = PETSC_TRUE;
1077: PetscCallMPI(MPI_Comm_size(map->comm, &size));
1078: if (size > 1) {
1079: PetscCall(PetscLayoutGetRanges(map, &ranges));
1080: n = ranges[1] - ranges[0];
1081: for (i = 1; i < size; i++)
1082: if (ranges[i + 1] - ranges[i] != n) break;
1083: *correct = (PetscBool)(i == size || (i == size - 1 && ranges[i + 1] - ranges[i] <= n));
1084: }
1085: PetscFunctionReturn(PETSC_SUCCESS);
1086: }
1088: PETSC_INTERN PetscErrorCode MatConvert_Dense_ScaLAPACK(Mat A, MatType newtype, MatReuse reuse, Mat *B)
1089: {
1090: Mat_ScaLAPACK *b;
1091: Mat Bmpi;
1092: MPI_Comm comm;
1093: PetscInt M = A->rmap->N, N = A->cmap->N, m, n;
1094: const PetscInt *ranges, *rows, *cols;
1095: PetscBLASInt adesc[9], amb, zero = 0, one = 1, lld, info;
1096: const PetscScalar *aarray;
1097: IS ir, ic;
1098: PetscInt lda;
1099: PetscBool flg;
1101: PetscFunctionBegin;
1102: PetscCall(PetscObjectGetComm((PetscObject)A, &comm));
1104: if (reuse == MAT_REUSE_MATRIX) Bmpi = *B;
1105: else {
1106: PetscCall(MatCreate(comm, &Bmpi));
1107: m = PETSC_DECIDE;
1108: PetscCall(PetscSplitOwnershipEqual(comm, &m, &M));
1109: n = PETSC_DECIDE;
1110: PetscCall(PetscSplitOwnershipEqual(comm, &n, &N));
1111: PetscCall(MatSetSizes(Bmpi, m, n, M, N));
1112: PetscCall(MatSetType(Bmpi, MATSCALAPACK));
1113: PetscCall(MatSetUp(Bmpi));
1114: }
1115: b = (Mat_ScaLAPACK *)Bmpi->data;
1117: PetscCall(MatDenseGetLDA(A, &lda));
1118: PetscCall(MatDenseGetArrayRead(A, &aarray));
1119: PetscCall(MatScaLAPACKCheckLayout(A->rmap, &flg));
1120: if (flg) PetscCall(MatScaLAPACKCheckLayout(A->cmap, &flg));
1121: if (flg) { /* if the input Mat has a ScaLAPACK-compatible layout, use ScaLAPACK for the redistribution */
1122: /* create ScaLAPACK descriptor for A (1d block distribution) */
1123: PetscCall(PetscLayoutGetRanges(A->rmap, &ranges));
1124: PetscCall(PetscBLASIntCast(ranges[1], &amb)); /* row block size */
1125: PetscCall(PetscBLASIntCast(PetscMax(lda, 1), &lld)); /* local leading dimension */
1126: PetscCallBLAS("SCALAPACKdescinit", SCALAPACKdescinit_(adesc, &b->M, &b->N, &amb, &b->N, &zero, &zero, &b->grid->ictxcol, &lld, &info));
1127: PetscCheckScaLapackInfo("descinit", info);
1129: /* redistribute matrix */
1130: PetscCallBLAS("SCALAPACKgemr2d", SCALAPACKgemr2d_(&b->M, &b->N, aarray, &one, &one, adesc, b->loc, &one, &one, b->desc, &b->grid->ictxcol));
1131: Bmpi->nooffprocentries = PETSC_TRUE;
1132: } else { /* if the input Mat has a ScaLAPACK-incompatible layout, redistribute via MatSetValues() */
1133: PetscCheck(lda == A->rmap->n, PETSC_COMM_SELF, PETSC_ERR_SUP, "Leading dimension (%" PetscInt_FMT ") different than local number of rows (%" PetscInt_FMT ")", lda, A->rmap->n);
1134: b->roworiented = PETSC_FALSE;
1135: PetscCall(MatGetOwnershipIS(A, &ir, &ic));
1136: PetscCall(ISGetIndices(ir, &rows));
1137: PetscCall(ISGetIndices(ic, &cols));
1138: PetscCall(MatSetValues(Bmpi, A->rmap->n, rows, A->cmap->N, cols, aarray, INSERT_VALUES));
1139: PetscCall(ISRestoreIndices(ir, &rows));
1140: PetscCall(ISRestoreIndices(ic, &cols));
1141: PetscCall(ISDestroy(&ic));
1142: PetscCall(ISDestroy(&ir));
1143: }
1144: PetscCall(MatDenseRestoreArrayRead(A, &aarray));
1145: PetscCall(MatAssemblyBegin(Bmpi, MAT_FINAL_ASSEMBLY));
1146: PetscCall(MatAssemblyEnd(Bmpi, MAT_FINAL_ASSEMBLY));
1147: if (reuse == MAT_INPLACE_MATRIX) PetscCall(MatHeaderReplace(A, &Bmpi));
1148: else *B = Bmpi;
1149: PetscFunctionReturn(PETSC_SUCCESS);
1150: }
1152: PETSC_INTERN PetscErrorCode MatConvert_AIJ_ScaLAPACK(Mat A, MatType newtype, MatReuse reuse, Mat *newmat)
1153: {
1154: Mat mat_scal;
1155: PetscInt M = A->rmap->N, N = A->cmap->N, rstart = A->rmap->rstart, rend = A->rmap->rend, m, n, row, ncols;
1156: const PetscInt *cols;
1157: const PetscScalar *vals;
1159: PetscFunctionBegin;
1160: if (reuse == MAT_REUSE_MATRIX) {
1161: mat_scal = *newmat;
1162: PetscCall(MatZeroEntries(mat_scal));
1163: } else {
1164: PetscCall(MatCreate(PetscObjectComm((PetscObject)A), &mat_scal));
1165: m = PETSC_DECIDE;
1166: PetscCall(PetscSplitOwnershipEqual(PetscObjectComm((PetscObject)A), &m, &M));
1167: n = PETSC_DECIDE;
1168: PetscCall(PetscSplitOwnershipEqual(PetscObjectComm((PetscObject)A), &n, &N));
1169: PetscCall(MatSetSizes(mat_scal, m, n, M, N));
1170: PetscCall(MatSetType(mat_scal, MATSCALAPACK));
1171: PetscCall(MatSetUp(mat_scal));
1172: }
1173: for (row = rstart; row < rend; row++) {
1174: PetscCall(MatGetRow(A, row, &ncols, &cols, &vals));
1175: PetscCall(MatSetValues(mat_scal, 1, &row, ncols, cols, vals, INSERT_VALUES));
1176: PetscCall(MatRestoreRow(A, row, &ncols, &cols, &vals));
1177: }
1178: PetscCall(MatAssemblyBegin(mat_scal, MAT_FINAL_ASSEMBLY));
1179: PetscCall(MatAssemblyEnd(mat_scal, MAT_FINAL_ASSEMBLY));
1181: if (reuse == MAT_INPLACE_MATRIX) PetscCall(MatHeaderReplace(A, &mat_scal));
1182: else *newmat = mat_scal;
1183: PetscFunctionReturn(PETSC_SUCCESS);
1184: }
1186: PETSC_INTERN PetscErrorCode MatConvert_SBAIJ_ScaLAPACK(Mat A, MatType newtype, MatReuse reuse, Mat *newmat)
1187: {
1188: Mat mat_scal;
1189: PetscInt M = A->rmap->N, N = A->cmap->N, m, n, row, ncols, j, rstart = A->rmap->rstart, rend = A->rmap->rend;
1190: const PetscInt *cols;
1191: const PetscScalar *vals;
1192: PetscScalar v;
1194: PetscFunctionBegin;
1195: if (reuse == MAT_REUSE_MATRIX) {
1196: mat_scal = *newmat;
1197: PetscCall(MatZeroEntries(mat_scal));
1198: } else {
1199: PetscCall(MatCreate(PetscObjectComm((PetscObject)A), &mat_scal));
1200: m = PETSC_DECIDE;
1201: PetscCall(PetscSplitOwnershipEqual(PetscObjectComm((PetscObject)A), &m, &M));
1202: n = PETSC_DECIDE;
1203: PetscCall(PetscSplitOwnershipEqual(PetscObjectComm((PetscObject)A), &n, &N));
1204: PetscCall(MatSetSizes(mat_scal, m, n, M, N));
1205: PetscCall(MatSetType(mat_scal, MATSCALAPACK));
1206: PetscCall(MatSetUp(mat_scal));
1207: }
1208: PetscCall(MatGetRowUpperTriangular(A));
1209: for (row = rstart; row < rend; row++) {
1210: PetscCall(MatGetRow(A, row, &ncols, &cols, &vals));
1211: PetscCall(MatSetValues(mat_scal, 1, &row, ncols, cols, vals, ADD_VALUES));
1212: for (j = 0; j < ncols; j++) { /* lower triangular part */
1213: if (cols[j] == row) continue;
1214: v = A->hermitian == PETSC_BOOL3_TRUE ? PetscConj(vals[j]) : vals[j];
1215: PetscCall(MatSetValues(mat_scal, 1, &cols[j], 1, &row, &v, ADD_VALUES));
1216: }
1217: PetscCall(MatRestoreRow(A, row, &ncols, &cols, &vals));
1218: }
1219: PetscCall(MatRestoreRowUpperTriangular(A));
1220: PetscCall(MatAssemblyBegin(mat_scal, MAT_FINAL_ASSEMBLY));
1221: PetscCall(MatAssemblyEnd(mat_scal, MAT_FINAL_ASSEMBLY));
1223: if (reuse == MAT_INPLACE_MATRIX) PetscCall(MatHeaderReplace(A, &mat_scal));
1224: else *newmat = mat_scal;
1225: PetscFunctionReturn(PETSC_SUCCESS);
1226: }
1228: static PetscErrorCode MatScaLAPACKSetPreallocation(Mat A)
1229: {
1230: Mat_ScaLAPACK *a = (Mat_ScaLAPACK *)A->data;
1231: PetscInt sz = 0;
1233: PetscFunctionBegin;
1234: PetscCall(PetscLayoutSetUp(A->rmap));
1235: PetscCall(PetscLayoutSetUp(A->cmap));
1236: if (!a->lld) a->lld = a->locr;
1238: PetscCall(PetscFree(a->loc));
1239: PetscCall(PetscIntMultError(a->lld, a->locc, &sz));
1240: PetscCall(PetscCalloc1(sz, &a->loc));
1242: A->preallocated = PETSC_TRUE;
1243: PetscFunctionReturn(PETSC_SUCCESS);
1244: }
1246: static PetscErrorCode MatDestroy_ScaLAPACK(Mat A)
1247: {
1248: Mat_ScaLAPACK *a = (Mat_ScaLAPACK *)A->data;
1249: Mat_ScaLAPACK_Grid *grid;
1250: PetscMPIInt iflg;
1251: MPI_Comm icomm;
1253: PetscFunctionBegin;
1254: PetscCall(MatStashDestroy_Private(&A->stash));
1255: PetscCall(PetscFree(a->loc));
1256: PetscCall(PetscFree(a->pivots));
1257: PetscCall(PetscCommDuplicate(PetscObjectComm((PetscObject)A), &icomm, NULL));
1258: PetscCallMPI(MPI_Comm_get_attr(icomm, Petsc_ScaLAPACK_keyval, (void **)&grid, &iflg));
1259: if (--grid->grid_refct == 0) {
1260: Cblacs_gridexit(grid->ictxt);
1261: Cblacs_gridexit(grid->ictxrow);
1262: Cblacs_gridexit(grid->ictxcol);
1263: PetscCall(PetscFree(grid));
1264: PetscCallMPI(MPI_Comm_delete_attr(icomm, Petsc_ScaLAPACK_keyval));
1265: }
1266: PetscCall(PetscCommDestroy(&icomm));
1267: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatGetOwnershipIS_C", NULL));
1268: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatFactorGetSolverType_C", NULL));
1269: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatScaLAPACKSetBlockSizes_C", NULL));
1270: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatScaLAPACKGetBlockSizes_C", NULL));
1271: PetscCall(PetscFree(A->data));
1272: PetscFunctionReturn(PETSC_SUCCESS);
1273: }
1275: static PetscErrorCode MatSetUp_ScaLAPACK(Mat A)
1276: {
1277: Mat_ScaLAPACK *a = (Mat_ScaLAPACK *)A->data;
1278: PetscBLASInt info = 0;
1279: PetscBool flg;
1281: PetscFunctionBegin;
1282: PetscCall(PetscLayoutSetUp(A->rmap));
1283: PetscCall(PetscLayoutSetUp(A->cmap));
1285: /* check that the layout is as enforced by MatCreateScaLAPACK() */
1286: PetscCall(MatScaLAPACKCheckLayout(A->rmap, &flg));
1287: PetscCheck(flg, A->rmap->comm, PETSC_ERR_SUP, "MATSCALAPACK must have equal local row sizes in all processes (except possibly the last one), consider using MatCreateScaLAPACK");
1288: PetscCall(MatScaLAPACKCheckLayout(A->cmap, &flg));
1289: PetscCheck(flg, A->cmap->comm, PETSC_ERR_SUP, "MATSCALAPACK must have equal local column sizes in all processes (except possibly the last one), consider using MatCreateScaLAPACK");
1291: /* compute local sizes */
1292: PetscCall(PetscBLASIntCast(A->rmap->N, &a->M));
1293: PetscCall(PetscBLASIntCast(A->cmap->N, &a->N));
1294: a->locr = SCALAPACKnumroc_(&a->M, &a->mb, &a->grid->myrow, &a->rsrc, &a->grid->nprow);
1295: a->locc = SCALAPACKnumroc_(&a->N, &a->nb, &a->grid->mycol, &a->csrc, &a->grid->npcol);
1296: a->lld = PetscMax(1, a->locr);
1298: /* allocate local array */
1299: PetscCall(MatScaLAPACKSetPreallocation(A));
1301: /* set up ScaLAPACK descriptor */
1302: PetscCallBLAS("SCALAPACKdescinit", SCALAPACKdescinit_(a->desc, &a->M, &a->N, &a->mb, &a->nb, &a->rsrc, &a->csrc, &a->grid->ictxt, &a->lld, &info));
1303: PetscCheckScaLapackInfo("descinit", info);
1304: PetscFunctionReturn(PETSC_SUCCESS);
1305: }
1307: static PetscErrorCode MatAssemblyBegin_ScaLAPACK(Mat A, MatAssemblyType type)
1308: {
1309: PetscInt nstash, reallocs;
1311: PetscFunctionBegin;
1312: if (A->nooffprocentries) PetscFunctionReturn(PETSC_SUCCESS);
1313: PetscCall(MatStashScatterBegin_Private(A, &A->stash, NULL));
1314: PetscCall(MatStashGetInfo_Private(&A->stash, &nstash, &reallocs));
1315: PetscCall(PetscInfo(A, "Stash has %" PetscInt_FMT " entries, uses %" PetscInt_FMT " mallocs.\n", nstash, reallocs));
1316: PetscFunctionReturn(PETSC_SUCCESS);
1317: }
1319: static PetscErrorCode MatAssemblyEnd_ScaLAPACK(Mat A, MatAssemblyType type)
1320: {
1321: Mat_ScaLAPACK *a = (Mat_ScaLAPACK *)A->data;
1322: PetscMPIInt n;
1323: PetscInt i, flg, *row, *col;
1324: PetscScalar *val;
1325: PetscBLASInt gridx, gcidx, lridx, lcidx, rsrc, csrc;
1327: PetscFunctionBegin;
1328: if (A->nooffprocentries) PetscFunctionReturn(PETSC_SUCCESS);
1329: while (1) {
1330: PetscCall(MatStashScatterGetMesg_Private(&A->stash, &n, &row, &col, &val, &flg));
1331: if (!flg) break;
1332: for (i = 0; i < n; i++) {
1333: PetscCall(PetscBLASIntCast(row[i] + 1, &gridx));
1334: PetscCall(PetscBLASIntCast(col[i] + 1, &gcidx));
1335: PetscCallBLAS("SCALAPACKinfog2l", SCALAPACKinfog2l_(&gridx, &gcidx, a->desc, &a->grid->nprow, &a->grid->npcol, &a->grid->myrow, &a->grid->mycol, &lridx, &lcidx, &rsrc, &csrc));
1336: PetscCheck(rsrc == a->grid->myrow && csrc == a->grid->mycol, PetscObjectComm((PetscObject)A), PETSC_ERR_LIB, "Something went wrong, received value does not belong to this process");
1337: switch (A->insertmode) {
1338: case INSERT_VALUES:
1339: a->loc[lridx - 1 + (lcidx - 1) * a->lld] = val[i];
1340: break;
1341: case ADD_VALUES:
1342: a->loc[lridx - 1 + (lcidx - 1) * a->lld] += val[i];
1343: break;
1344: default:
1345: SETERRQ(PetscObjectComm((PetscObject)A), PETSC_ERR_SUP, "No support for InsertMode %d", (int)A->insertmode);
1346: }
1347: }
1348: }
1349: PetscCall(MatStashScatterEnd_Private(&A->stash));
1350: PetscFunctionReturn(PETSC_SUCCESS);
1351: }
1353: static PetscErrorCode MatLoad_ScaLAPACK(Mat newMat, PetscViewer viewer)
1354: {
1355: Mat Adense, As;
1356: MPI_Comm comm;
1358: PetscFunctionBegin;
1359: PetscCall(PetscObjectGetComm((PetscObject)newMat, &comm));
1360: PetscCall(MatCreate(comm, &Adense));
1361: PetscCall(MatSetType(Adense, MATDENSE));
1362: PetscCall(MatLoad(Adense, viewer));
1363: PetscCall(MatConvert(Adense, MATSCALAPACK, MAT_INITIAL_MATRIX, &As));
1364: PetscCall(MatDestroy(&Adense));
1365: PetscCall(MatHeaderReplace(newMat, &As));
1366: PetscFunctionReturn(PETSC_SUCCESS);
1367: }
1369: static struct _MatOps MatOps_Values = {MatSetValues_ScaLAPACK,
1370: NULL,
1371: NULL,
1372: MatMult_ScaLAPACK,
1373: /* 4*/ MatMultAdd_ScaLAPACK,
1374: MatMultTranspose_ScaLAPACK,
1375: MatMultTransposeAdd_ScaLAPACK,
1376: MatSolve_ScaLAPACK,
1377: MatSolveAdd_ScaLAPACK,
1378: NULL,
1379: /*10*/ NULL,
1380: MatLUFactor_ScaLAPACK,
1381: MatCholeskyFactor_ScaLAPACK,
1382: NULL,
1383: MatTranspose_ScaLAPACK,
1384: /*15*/ MatGetInfo_ScaLAPACK,
1385: NULL,
1386: MatGetDiagonal_ScaLAPACK,
1387: MatDiagonalScale_ScaLAPACK,
1388: MatNorm_ScaLAPACK,
1389: /*20*/ MatAssemblyBegin_ScaLAPACK,
1390: MatAssemblyEnd_ScaLAPACK,
1391: MatSetOption_ScaLAPACK,
1392: MatZeroEntries_ScaLAPACK,
1393: /*24*/ NULL,
1394: MatLUFactorSymbolic_ScaLAPACK,
1395: MatLUFactorNumeric_ScaLAPACK,
1396: MatCholeskyFactorSymbolic_ScaLAPACK,
1397: MatCholeskyFactorNumeric_ScaLAPACK,
1398: /*29*/ MatSetUp_ScaLAPACK,
1399: NULL,
1400: NULL,
1401: NULL,
1402: NULL,
1403: /*34*/ MatDuplicate_ScaLAPACK,
1404: NULL,
1405: NULL,
1406: NULL,
1407: NULL,
1408: /*39*/ MatAXPY_ScaLAPACK,
1409: NULL,
1410: NULL,
1411: NULL,
1412: MatCopy_ScaLAPACK,
1413: /*44*/ NULL,
1414: MatScale_ScaLAPACK,
1415: MatShift_ScaLAPACK,
1416: NULL,
1417: NULL,
1418: /*49*/ NULL,
1419: NULL,
1420: NULL,
1421: NULL,
1422: NULL,
1423: /*54*/ NULL,
1424: NULL,
1425: NULL,
1426: NULL,
1427: NULL,
1428: /*59*/ NULL,
1429: MatDestroy_ScaLAPACK,
1430: MatView_ScaLAPACK,
1431: NULL,
1432: NULL,
1433: /*64*/ NULL,
1434: NULL,
1435: NULL,
1436: NULL,
1437: NULL,
1438: /*69*/ NULL,
1439: MatConvert_ScaLAPACK_Dense,
1440: NULL,
1441: NULL,
1442: NULL,
1443: /*74*/ NULL,
1444: NULL,
1445: NULL,
1446: NULL,
1447: MatLoad_ScaLAPACK,
1448: /*79*/ NULL,
1449: NULL,
1450: NULL,
1451: NULL,
1452: NULL,
1453: /*84*/ NULL,
1454: MatMatMultNumeric_ScaLAPACK,
1455: NULL,
1456: NULL,
1457: MatMatTransposeMultNumeric_ScaLAPACK,
1458: /*89*/ NULL,
1459: MatProductSetFromOptions_ScaLAPACK,
1460: NULL,
1461: NULL,
1462: MatConjugate_ScaLAPACK,
1463: /*94*/ NULL,
1464: NULL,
1465: NULL,
1466: NULL,
1467: NULL,
1468: /*99*/ NULL,
1469: MatMatSolve_ScaLAPACK,
1470: NULL,
1471: NULL,
1472: NULL,
1473: /*104*/ NULL,
1474: NULL,
1475: NULL,
1476: NULL,
1477: NULL,
1478: /*109*/ NULL,
1479: MatHermitianTranspose_ScaLAPACK,
1480: MatMultHermitianTranspose_ScaLAPACK,
1481: MatMultHermitianTransposeAdd_ScaLAPACK,
1482: NULL,
1483: /*114*/ NULL,
1484: NULL,
1485: NULL,
1486: NULL,
1487: NULL,
1488: /*119*/ NULL,
1489: NULL,
1490: MatTransposeMatMultNumeric_ScaLAPACK,
1491: NULL,
1492: /*124*/ NULL,
1493: NULL,
1494: NULL,
1495: NULL,
1496: NULL,
1497: /*129*/ NULL,
1498: NULL,
1499: NULL,
1500: NULL,
1501: NULL,
1502: /*134*/ NULL,
1503: NULL,
1504: NULL,
1505: NULL,
1506: NULL,
1507: NULL,
1508: /*140*/ NULL,
1509: NULL,
1510: NULL,
1511: NULL,
1512: NULL};
1514: static PetscErrorCode MatStashScatterBegin_ScaLAPACK(Mat mat, MatStash *stash, PetscInt *owners)
1515: {
1516: PetscInt *owner, *startv, *starti, bs2;
1517: PetscInt size = stash->size, nsends;
1518: PetscInt *sindices, **rindices, j, l;
1519: PetscScalar **rvalues, *svalues;
1520: MPI_Comm comm = stash->comm;
1521: MPI_Request *send_waits, *recv_waits, *recv_waits1, *recv_waits2;
1522: PetscMPIInt tag1 = stash->tag1, tag2 = stash->tag2, *sizes, *nlengths, nreceives, insends, ii;
1523: PetscInt *sp_idx, *sp_idy;
1524: PetscScalar *sp_val;
1525: PetscMatStashSpace space, space_next;
1526: PetscBLASInt gridx, gcidx, lridx, lcidx, rsrc, csrc;
1527: Mat_ScaLAPACK *a = (Mat_ScaLAPACK *)mat->data;
1529: PetscFunctionBegin;
1530: { /* make sure all processors are either in INSERTMODE or ADDMODE */
1531: InsertMode addv;
1532: PetscCallMPI(MPIU_Allreduce((PetscEnum *)&mat->insertmode, (PetscEnum *)&addv, 1, MPIU_ENUM, MPI_BOR, PetscObjectComm((PetscObject)mat)));
1533: PetscCheck(addv != (ADD_VALUES | INSERT_VALUES), PetscObjectComm((PetscObject)mat), PETSC_ERR_ARG_WRONGSTATE, "Some processors inserted others added");
1534: mat->insertmode = addv; /* in case this processor had no cache */
1535: }
1537: bs2 = stash->bs * stash->bs;
1539: /* first count number of contributors to each processor */
1540: PetscCall(PetscCalloc1(size, &nlengths));
1541: PetscCall(PetscMalloc1(stash->n + 1, &owner));
1543: ii = j = 0;
1544: space = stash->space_head;
1545: while (space) {
1546: space_next = space->next;
1547: for (l = 0; l < space->local_used; l++) {
1548: PetscCall(PetscBLASIntCast(space->idx[l] + 1, &gridx));
1549: PetscCall(PetscBLASIntCast(space->idy[l] + 1, &gcidx));
1550: PetscCallBLAS("SCALAPACKinfog2l", SCALAPACKinfog2l_(&gridx, &gcidx, a->desc, &a->grid->nprow, &a->grid->npcol, &a->grid->myrow, &a->grid->mycol, &lridx, &lcidx, &rsrc, &csrc));
1551: j = Cblacs_pnum(a->grid->ictxt, rsrc, csrc);
1552: nlengths[j]++;
1553: owner[ii] = j;
1554: ii++;
1555: }
1556: space = space_next;
1557: }
1559: /* Now check what procs get messages - and compute nsends. */
1560: PetscCall(PetscCalloc1(size, &sizes));
1561: nsends = 0;
1562: for (PetscMPIInt i = 0; i < size; i++) {
1563: if (nlengths[i]) {
1564: sizes[i] = 1;
1565: nsends++;
1566: }
1567: }
1569: {
1570: PetscMPIInt *onodes, *olengths;
1572: /* Determine the number of messages to expect, their lengths, from from-ids */
1573: PetscCall(PetscGatherNumberOfMessages(comm, sizes, nlengths, &nreceives));
1574: PetscCall(PetscMPIIntCast(nsends, &insends));
1575: PetscCall(PetscGatherMessageLengths(comm, insends, nreceives, nlengths, &onodes, &olengths));
1576: /* since clubbing row,col - lengths are multiplied by 2 */
1577: for (PetscMPIInt i = 0; i < nreceives; i++) olengths[i] *= 2;
1578: PetscCall(PetscPostIrecvInt(comm, tag1, nreceives, onodes, olengths, &rindices, &recv_waits1));
1579: /* values are size 'bs2' lengths (and remove earlier factor 2 */
1580: for (PetscMPIInt i = 0; i < nreceives; i++) olengths[i] = (PetscMPIInt)(olengths[i] * bs2 / 2);
1581: PetscCall(PetscPostIrecvScalar(comm, tag2, nreceives, onodes, olengths, &rvalues, &recv_waits2));
1582: PetscCall(PetscFree(onodes));
1583: PetscCall(PetscFree(olengths));
1584: }
1586: /* do sends:
1587: 1) starts[i] gives the starting index in svalues for stuff going to
1588: the ith processor
1589: */
1590: PetscCall(PetscMalloc2(bs2 * stash->n, &svalues, 2 * (stash->n + 1), &sindices));
1591: PetscCall(PetscMalloc1(2 * nsends, &send_waits));
1592: PetscCall(PetscMalloc2(size, &startv, size, &starti));
1593: /* use 2 sends the first with all_a, the next with all_i and all_j */
1594: startv[0] = 0;
1595: starti[0] = 0;
1596: for (PetscMPIInt i = 1; i < size; i++) {
1597: startv[i] = startv[i - 1] + nlengths[i - 1];
1598: starti[i] = starti[i - 1] + 2 * nlengths[i - 1];
1599: }
1601: ii = 0;
1602: space = stash->space_head;
1603: while (space) {
1604: space_next = space->next;
1605: sp_idx = space->idx;
1606: sp_idy = space->idy;
1607: sp_val = space->val;
1608: for (l = 0; l < space->local_used; l++) {
1609: j = owner[ii];
1610: if (bs2 == 1) {
1611: svalues[startv[j]] = sp_val[l];
1612: } else {
1613: PetscInt k;
1614: PetscScalar *buf1, *buf2;
1615: buf1 = svalues + bs2 * startv[j];
1616: buf2 = space->val + bs2 * l;
1617: for (k = 0; k < bs2; k++) buf1[k] = buf2[k];
1618: }
1619: sindices[starti[j]] = sp_idx[l];
1620: sindices[starti[j] + nlengths[j]] = sp_idy[l];
1621: startv[j]++;
1622: starti[j]++;
1623: ii++;
1624: }
1625: space = space_next;
1626: }
1627: startv[0] = 0;
1628: for (PetscMPIInt i = 1; i < size; i++) startv[i] = startv[i - 1] + nlengths[i - 1];
1630: for (PetscMPIInt i = 0, count = 0; i < size; i++) {
1631: if (sizes[i]) {
1632: PetscCallMPI(MPIU_Isend(sindices + 2 * startv[i], 2 * nlengths[i], MPIU_INT, i, tag1, comm, send_waits + count++));
1633: PetscCallMPI(MPIU_Isend(svalues + bs2 * startv[i], bs2 * nlengths[i], MPIU_SCALAR, i, tag2, comm, send_waits + count++));
1634: }
1635: }
1636: #if defined(PETSC_USE_INFO)
1637: PetscCall(PetscInfo(NULL, "No of messages: %" PetscInt_FMT "\n", nsends));
1638: for (PetscMPIInt i = 0; i < size; i++) {
1639: if (sizes[i]) PetscCall(PetscInfo(NULL, "Mesg_to: %d: size: %zu bytes\n", i, (size_t)(nlengths[i] * (bs2 * sizeof(PetscScalar) + 2 * sizeof(PetscInt)))));
1640: }
1641: #endif
1642: PetscCall(PetscFree(nlengths));
1643: PetscCall(PetscFree(owner));
1644: PetscCall(PetscFree2(startv, starti));
1645: PetscCall(PetscFree(sizes));
1647: /* recv_waits need to be contiguous for MatStashScatterGetMesg_Private() */
1648: PetscCall(PetscMalloc1(2 * nreceives, &recv_waits));
1650: for (PetscMPIInt i = 0; i < nreceives; i++) {
1651: recv_waits[2 * i] = recv_waits1[i];
1652: recv_waits[2 * i + 1] = recv_waits2[i];
1653: }
1654: stash->recv_waits = recv_waits;
1656: PetscCall(PetscFree(recv_waits1));
1657: PetscCall(PetscFree(recv_waits2));
1659: stash->svalues = svalues;
1660: stash->sindices = sindices;
1661: stash->rvalues = rvalues;
1662: stash->rindices = rindices;
1663: stash->send_waits = send_waits;
1664: stash->nsends = (PetscMPIInt)nsends;
1665: stash->nrecvs = nreceives;
1666: stash->reproduce_count = 0;
1667: PetscFunctionReturn(PETSC_SUCCESS);
1668: }
1670: static PetscErrorCode MatScaLAPACKSetBlockSizes_ScaLAPACK(Mat A, PetscInt mb, PetscInt nb)
1671: {
1672: Mat_ScaLAPACK *a = (Mat_ScaLAPACK *)A->data;
1674: PetscFunctionBegin;
1675: PetscCheck(!A->preallocated, PETSC_COMM_SELF, PETSC_ERR_ORDER, "Cannot change block sizes after MatSetUp");
1676: PetscCheck(mb >= 1 || mb == PETSC_DECIDE, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "mb %" PetscInt_FMT " must be at least 1", mb);
1677: PetscCheck(nb >= 1 || nb == PETSC_DECIDE, PETSC_COMM_SELF, PETSC_ERR_ARG_SIZ, "nb %" PetscInt_FMT " must be at least 1", nb);
1678: PetscCall(PetscBLASIntCast((mb == PETSC_DECIDE) ? DEFAULT_BLOCKSIZE : mb, &a->mb));
1679: PetscCall(PetscBLASIntCast((nb == PETSC_DECIDE) ? a->mb : nb, &a->nb));
1680: PetscFunctionReturn(PETSC_SUCCESS);
1681: }
1683: /*@
1684: MatScaLAPACKSetBlockSizes - Sets the block sizes to be used for the distribution of
1685: the `MATSCALAPACK` matrix
1687: Logically Collective
1689: Input Parameters:
1690: + A - a `MATSCALAPACK` matrix
1691: . mb - the row block size
1692: - nb - the column block size
1694: Level: intermediate
1696: Note:
1697: This block size has a different meaning from the block size associated with `MatSetBlockSize()` used for sparse matrices
1699: .seealso: [](ch_matrices), `Mat`, `MATSCALAPACK`, `MatCreateScaLAPACK()`, `MatScaLAPACKGetBlockSizes()`
1700: @*/
1701: PetscErrorCode MatScaLAPACKSetBlockSizes(Mat A, PetscInt mb, PetscInt nb)
1702: {
1703: PetscFunctionBegin;
1707: PetscTryMethod(A, "MatScaLAPACKSetBlockSizes_C", (Mat, PetscInt, PetscInt), (A, mb, nb));
1708: PetscFunctionReturn(PETSC_SUCCESS);
1709: }
1711: static PetscErrorCode MatScaLAPACKGetBlockSizes_ScaLAPACK(Mat A, PetscInt *mb, PetscInt *nb)
1712: {
1713: Mat_ScaLAPACK *a = (Mat_ScaLAPACK *)A->data;
1715: PetscFunctionBegin;
1716: if (mb) *mb = a->mb;
1717: if (nb) *nb = a->nb;
1718: PetscFunctionReturn(PETSC_SUCCESS);
1719: }
1721: /*@
1722: MatScaLAPACKGetBlockSizes - Gets the block sizes used in the distribution of
1723: the `MATSCALAPACK` matrix
1725: Not Collective
1727: Input Parameter:
1728: . A - a `MATSCALAPACK` matrix
1730: Output Parameters:
1731: + mb - the row block size
1732: - nb - the column block size
1734: Level: intermediate
1736: Note:
1737: This block size has a different meaning from the block size associated with `MatSetBlockSize()` used for sparse matrices
1739: .seealso: [](ch_matrices), `Mat`, `MATSCALAPACK`, `MatCreateScaLAPACK()`, `MatScaLAPACKSetBlockSizes()`
1740: @*/
1741: PetscErrorCode MatScaLAPACKGetBlockSizes(Mat A, PetscInt *mb, PetscInt *nb)
1742: {
1743: PetscFunctionBegin;
1745: PetscUseMethod(A, "MatScaLAPACKGetBlockSizes_C", (Mat, PetscInt *, PetscInt *), (A, mb, nb));
1746: PetscFunctionReturn(PETSC_SUCCESS);
1747: }
1749: PETSC_INTERN PetscErrorCode MatStashScatterGetMesg_Ref(MatStash *, PetscMPIInt *, PetscInt **, PetscInt **, PetscScalar **, PetscInt *);
1750: PETSC_INTERN PetscErrorCode MatStashScatterEnd_Ref(MatStash *);
1752: /*MC
1753: MATSCALAPACK = "scalapack" - A matrix type for dense matrices using the ScaLAPACK package
1755: Use `./configure --download-scalapack` to install PETSc to use ScaLAPACK
1757: Options Database Keys:
1758: + -mat_type scalapack - sets the matrix type to `MATSCALAPACK`
1759: . -pc_factor_mat_solver_type scalapack - to use this direct solver with the option `-pc_type lu`
1760: . -mat_scalapack_grid_height - sets Grid Height for 2D cyclic ordering of internal matrix
1761: - -mat_scalapack_block_sizes - size of the blocks to use (one or two integers separated by comma)
1763: Level: intermediate
1765: Note:
1766: Note unlike most matrix formats, this format does not store all the matrix entries for a contiguous
1767: range of rows on an MPI rank. Use `MatGetOwnershipIS()` to determine what values are stored on
1768: the given rank.
1770: .seealso: [](ch_matrices), `Mat`, `MATSCALAPACK`, `MATDENSE`, `MATELEMENTAL`, `MatGetOwnershipIS()`, `MatCreateScaLAPACK()`
1771: M*/
1773: PETSC_EXTERN PetscErrorCode MatCreate_ScaLAPACK(Mat A)
1774: {
1775: Mat_ScaLAPACK *a;
1776: PetscBool flg;
1777: PetscMPIInt iflg;
1778: Mat_ScaLAPACK_Grid *grid;
1779: MPI_Comm icomm;
1780: PetscBLASInt nprow, npcol, myrow, mycol;
1781: PetscInt optv1, k = 2, array[2] = {0, 0};
1782: PetscMPIInt size;
1784: PetscFunctionBegin;
1785: A->ops[0] = MatOps_Values;
1786: A->insertmode = NOT_SET_VALUES;
1788: PetscCall(MatStashCreate_Private(PetscObjectComm((PetscObject)A), 1, &A->stash));
1789: A->stash.ScatterBegin = MatStashScatterBegin_ScaLAPACK;
1790: A->stash.ScatterGetMesg = MatStashScatterGetMesg_Ref;
1791: A->stash.ScatterEnd = MatStashScatterEnd_Ref;
1792: A->stash.ScatterDestroy = NULL;
1794: PetscCall(PetscNew(&a));
1795: A->data = (void *)a;
1797: /* Grid needs to be shared between multiple Mats on the same communicator, implement by attribute caching on the MPI_Comm */
1798: if (Petsc_ScaLAPACK_keyval == MPI_KEYVAL_INVALID) {
1799: PetscCallMPI(MPI_Comm_create_keyval(MPI_COMM_NULL_COPY_FN, MPI_COMM_NULL_DELETE_FN, &Petsc_ScaLAPACK_keyval, NULL));
1800: PetscCall(PetscRegisterFinalize(Petsc_ScaLAPACK_keyval_free));
1801: PetscCall(PetscCitationsRegister(ScaLAPACKCitation, &ScaLAPACKCite));
1802: }
1803: PetscCall(PetscCommDuplicate(PetscObjectComm((PetscObject)A), &icomm, NULL));
1804: PetscCallMPI(MPI_Comm_get_attr(icomm, Petsc_ScaLAPACK_keyval, (void **)&grid, &iflg));
1805: if (!iflg) {
1806: PetscCall(PetscNew(&grid));
1808: PetscCallMPI(MPI_Comm_size(icomm, &size));
1809: PetscCall(PetscBLASIntCast(PetscSqrtReal((PetscReal)size) + 0.001, &grid->nprow));
1811: PetscOptionsBegin(PetscObjectComm((PetscObject)A), ((PetscObject)A)->prefix, "ScaLAPACK Grid Options", "Mat");
1812: PetscCall(PetscOptionsInt("-mat_scalapack_grid_height", "Grid Height", "None", grid->nprow, &optv1, &flg));
1813: if (flg) {
1814: PetscCheck(size % optv1 == 0, PetscObjectComm((PetscObject)A), PETSC_ERR_ARG_INCOMP, "Grid Height %" PetscInt_FMT " must evenly divide CommSize %d", optv1, size);
1815: PetscCall(PetscBLASIntCast(optv1, &grid->nprow));
1816: }
1817: PetscOptionsEnd();
1819: if (size % grid->nprow) grid->nprow = 1; /* cannot use a squarish grid, use a 1d grid */
1820: grid->npcol = size / grid->nprow;
1821: PetscCall(PetscBLASIntCast(grid->nprow, &nprow));
1822: PetscCall(PetscBLASIntCast(grid->npcol, &npcol));
1823: grid->ictxt = Csys2blacs_handle(icomm);
1824: Cblacs_gridinit(&grid->ictxt, "R", nprow, npcol);
1825: Cblacs_gridinfo(grid->ictxt, &nprow, &npcol, &myrow, &mycol);
1826: grid->grid_refct = 1;
1827: grid->nprow = nprow;
1828: grid->npcol = npcol;
1829: grid->myrow = myrow;
1830: grid->mycol = mycol;
1831: /* auxiliary 1d BLACS contexts for 1xsize and sizex1 grids */
1832: grid->ictxrow = Csys2blacs_handle(icomm);
1833: Cblacs_gridinit(&grid->ictxrow, "R", 1, size);
1834: grid->ictxcol = Csys2blacs_handle(icomm);
1835: Cblacs_gridinit(&grid->ictxcol, "R", size, 1);
1836: PetscCallMPI(MPI_Comm_set_attr(icomm, Petsc_ScaLAPACK_keyval, (void *)grid));
1838: } else grid->grid_refct++;
1839: PetscCall(PetscCommDestroy(&icomm));
1840: a->grid = grid;
1841: a->mb = DEFAULT_BLOCKSIZE;
1842: a->nb = DEFAULT_BLOCKSIZE;
1844: PetscOptionsBegin(PetscObjectComm((PetscObject)A), NULL, "ScaLAPACK Options", "Mat");
1845: PetscCall(PetscOptionsIntArray("-mat_scalapack_block_sizes", "Size of the blocks to use (one or two comma-separated integers)", "MatCreateScaLAPACK", array, &k, &flg));
1846: if (flg) {
1847: a->mb = (PetscMPIInt)array[0];
1848: a->nb = (k > 1) ? (PetscMPIInt)array[1] : a->mb;
1849: }
1850: PetscOptionsEnd();
1852: a->roworiented = PETSC_TRUE;
1853: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatGetOwnershipIS_C", MatGetOwnershipIS_ScaLAPACK));
1854: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatScaLAPACKSetBlockSizes_C", MatScaLAPACKSetBlockSizes_ScaLAPACK));
1855: PetscCall(PetscObjectComposeFunction((PetscObject)A, "MatScaLAPACKGetBlockSizes_C", MatScaLAPACKGetBlockSizes_ScaLAPACK));
1856: PetscCall(PetscObjectChangeTypeName((PetscObject)A, MATSCALAPACK));
1857: PetscFunctionReturn(PETSC_SUCCESS);
1858: }
1860: /*@C
1861: MatCreateScaLAPACK - Creates a dense parallel matrix in ScaLAPACK format
1862: (2D block cyclic distribution) for a `MATSCALAPACK` matrix
1864: Collective
1866: Input Parameters:
1867: + comm - MPI communicator
1868: . mb - row block size (or `PETSC_DECIDE` to have it set)
1869: . nb - column block size (or `PETSC_DECIDE` to have it set)
1870: . M - number of global rows
1871: . N - number of global columns
1872: . rsrc - coordinate of process that owns the first row of the distributed matrix
1873: - csrc - coordinate of process that owns the first column of the distributed matrix
1875: Output Parameter:
1876: . A - the matrix
1878: Options Database Key:
1879: . -mat_scalapack_block_sizes - size of the blocks to use (one or two integers separated by comma)
1881: Level: intermediate
1883: Notes:
1884: If `PETSC_DECIDE` is used for the block sizes, then an appropriate value is chosen
1886: It is recommended that one use the `MatCreate()`, `MatSetType()` and/or `MatSetFromOptions()`,
1887: MatXXXXSetPreallocation() paradigm instead of this routine directly.
1888: [MatXXXXSetPreallocation() is, for example, `MatSeqAIJSetPreallocation()`]
1890: Storage is completely managed by ScaLAPACK, so this requires PETSc to be
1891: configured with ScaLAPACK. In particular, PETSc's local sizes lose
1892: significance and are thus ignored. The block sizes refer to the values
1893: used for the distributed matrix, not the same meaning as in `MATBAIJ`.
1895: .seealso: [](ch_matrices), `Mat`, `MATSCALAPACK`, `MATDENSE`, `MATELEMENTAL`, `MatCreate()`, `MatCreateDense()`, `MatSetValues()`
1896: @*/
1897: PetscErrorCode MatCreateScaLAPACK(MPI_Comm comm, PetscInt mb, PetscInt nb, PetscInt M, PetscInt N, PetscInt rsrc, PetscInt csrc, Mat *A)
1898: {
1899: Mat_ScaLAPACK *a;
1900: PetscInt m, n;
1902: PetscFunctionBegin;
1903: PetscCall(MatCreate(comm, A));
1904: PetscCall(MatSetType(*A, MATSCALAPACK));
1905: PetscCheck(M != PETSC_DECIDE && N != PETSC_DECIDE, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Cannot use PETSC_DECIDE for matrix dimensions");
1906: /* rows and columns are NOT distributed according to PetscSplitOwnership */
1907: m = PETSC_DECIDE;
1908: PetscCall(PetscSplitOwnershipEqual(comm, &m, &M));
1909: n = PETSC_DECIDE;
1910: PetscCall(PetscSplitOwnershipEqual(comm, &n, &N));
1911: PetscCall(MatSetSizes(*A, m, n, M, N));
1912: a = (Mat_ScaLAPACK *)(*A)->data;
1913: PetscCall(PetscBLASIntCast(M, &a->M));
1914: PetscCall(PetscBLASIntCast(N, &a->N));
1915: PetscCall(PetscBLASIntCast((mb == PETSC_DECIDE) ? DEFAULT_BLOCKSIZE : mb, &a->mb));
1916: PetscCall(PetscBLASIntCast((nb == PETSC_DECIDE) ? a->mb : nb, &a->nb));
1917: PetscCall(PetscBLASIntCast(rsrc, &a->rsrc));
1918: PetscCall(PetscBLASIntCast(csrc, &a->csrc));
1919: PetscCall(MatSetUp(*A));
1920: PetscFunctionReturn(PETSC_SUCCESS);
1921: }