Actual source code: ex5f.F90

  1: !
  2: !  This example shows how to avoid Fortran line lengths larger than 132 characters.
  3: !  It avoids used of certain macros such as PetscCallA() and PetscCheckA() that
  4: !  generate very long lines
  5: !
  6: !  We recommend starting from src/snes/tutorials/ex5f90.F90 instead of this example
  7: !  because that does not have the restricted formatting that makes this version
  8: !  more difficult to read
  9: !
 10: !  Description: This example solves a nonlinear system in parallel with SNES.
 11: !  We solve the  Bratu (SFI - solid fuel ignition) problem in a 2D rectangular
 12: !  domain, using distributed arrays (DMDAs) to partition the parallel grid.
 13: !  The command line options include:
 14: !    -par <param>, where <param> indicates the nonlinearity of the problem
 15: !       problem SFI:  <parameter> = Bratu parameter (0 <= par <= 6.81)
 16: !
 17: !  --------------------------------------------------------------------------
 18: !
 19: !  Solid Fuel Ignition (SFI) problem.  This problem is modeled by
 20: !  the partial differential equation
 21: !
 22: !          -Laplacian u - lambda*exp(u) = 0,  0 < x,y < 1,
 23: !
 24: !  with boundary conditions
 25: !
 26: !           u = 0  for  x = 0, x = 1, y = 0, y = 1.
 27: !
 28: !  A finite difference approximation with the usual 5-point stencil
 29: !  is used to discretize the boundary value problem to obtain a nonlinear
 30: !  system of equations.
 31: !
 32: !  --------------------------------------------------------------------------
 33:       module ex5fmodule
 34:       use petscsnes
 35:       use petscdmda
 36: #include <petsc/finclude/petscsnes.h>
 37: #include <petsc/finclude/petscdmda.h>
 38:       PetscInt xs,xe,xm,gxs,gxe,gxm
 39:       PetscInt ys,ye,ym,gys,gye,gym
 40:       PetscInt mx,my
 41:       PetscMPIInt rank,size
 42:       PetscReal lambda
 43:       end module ex5fmodule

 45:       program main
 46:       use ex5fmodule
 47:       implicit none

 49: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 50: !                   Variable declarations
 51: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 52: !
 53: !  Variables:
 54: !     snes        - nonlinear solver
 55: !     x, r        - solution, residual vectors
 56: !     its         - iterations for convergence
 57: !
 58: !  See additional variable declarations in the file ex5f.h
 59: !
 60:       SNES           snes
 61:       Vec            x,r
 62:       PetscInt       its,i1,i4
 63:       PetscErrorCode ierr
 64:       PetscReal      lambda_max,lambda_min
 65:       PetscBool      flg
 66:       DM             da

 68: !  Note: Any user-defined Fortran routines (such as FormJacobianLocal)
 69: !  MUST be declared as external.

 71:       external FormInitialGuess
 72:       external FormFunctionLocal,FormJacobianLocal
 73:       external MySNESConverged

 75: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 76: !  Initialize program
 77: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

 79:       call PetscInitialize(ierr)
 80:       CHKERRA(ierr)
 81:       call MPI_Comm_size(PETSC_COMM_WORLD,size,ierr)
 82:       CHKERRMPIA(ierr)
 83:       call MPI_Comm_rank(PETSC_COMM_WORLD,rank,ierr)
 84:       CHKERRMPIA(ierr)
 85: !  Initialize problem parameters

 87:       i1 = 1
 88:       i4 = 4
 89:       lambda_max = 6.81
 90:       lambda_min = 0.0
 91:       lambda     = 6.0
 92:       call PetscOptionsGetReal(PETSC_NULL_OPTIONS,PETSC_NULL_CHARACTER,'-par',lambda,PETSC_NULL_BOOL,ierr)
 93:       CHKERRA(ierr)

 95: ! this statement is split into multiple-lines to keep lines under 132 char limit - required by 'make check'
 96:       if (lambda .ge. lambda_max .or. lambda .le. lambda_min) then
 97:          ierr = PETSC_ERR_ARG_OUTOFRANGE;
 98:          SETERRA(PETSC_COMM_WORLD,ierr,'Lambda')
 99:       endif

101: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
102: !  Create nonlinear solver context
103: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

105:       call SNESCreate(PETSC_COMM_WORLD,snes,ierr)
106:       CHKERRA(ierr)

108: !  Set convergence test routine if desired

110:       call PetscOptionsHasName(PETSC_NULL_OPTIONS,PETSC_NULL_CHARACTER,'-my_snes_convergence',flg,ierr)
111:       CHKERRA(ierr)
112:       if (flg) then
113:         call SNESSetConvergenceTest(snes,MySNESConverged,0,PETSC_NULL_FUNCTION,ierr)
114:         CHKERRA(ierr)
115:       endif

117: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
118: !  Create vector data structures; set function evaluation routine
119: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

121: !  Create distributed array (DMDA) to manage parallel grid and vectors

123: !     This really needs only the star-type stencil, but we use the box stencil

125:       call DMDACreate2d(PETSC_COMM_WORLD,DM_BOUNDARY_NONE,DM_BOUNDARY_NONE,DMDA_STENCIL_STAR,i4,i4,PETSC_DECIDE,PETSC_DECIDE, &
126:                         i1,i1, PETSC_NULL_INTEGER_ARRAY,PETSC_NULL_INTEGER_ARRAY,da,ierr)
127:       CHKERRA(ierr)
128:       call DMSetFromOptions(da,ierr)
129:       CHKERRA(ierr)
130:       call DMSetUp(da,ierr)
131:       CHKERRA(ierr)

133: !  Extract global and local vectors from DMDA; then duplicate for remaining
134: !  vectors that are the same types

136:       call DMCreateGlobalVector(da,x,ierr)
137:       CHKERRA(ierr)
138:       call VecDuplicate(x,r,ierr)
139:       CHKERRA(ierr)

141: !  Get local grid boundaries (for 2-dimensional DMDA)

143:       call DMDAGetInfo(da,PETSC_NULL_INTEGER,mx,my,PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,PETSC_NULL_INTEGER, &
144:                        PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,PETSC_NULL_DMBOUNDARYTYPE,PETSC_NULL_DMBOUNDARYTYPE, &
145:                        PETSC_NULL_DMBOUNDARYTYPE,PETSC_NULL_DMDASTENCILTYPE,ierr)
146:       CHKERRA(ierr)
147:       call DMDAGetCorners(da,xs,ys,PETSC_NULL_INTEGER,xm,ym,PETSC_NULL_INTEGER,ierr)
148:       CHKERRA(ierr)
149:       call DMDAGetGhostCorners(da,gxs,gys,PETSC_NULL_INTEGER,gxm,gym,PETSC_NULL_INTEGER,ierr)
150:       CHKERRA(ierr)

152: !  Here we shift the starting indices up by one so that we can easily
153: !  use the Fortran convention of 1-based indices (rather 0-based indices).

155:       xs  = xs+1
156:       ys  = ys+1
157:       gxs = gxs+1
158:       gys = gys+1

160:       ye  = ys+ym-1
161:       xe  = xs+xm-1
162:       gye = gys+gym-1
163:       gxe = gxs+gxm-1

165: !  Set function evaluation routine and vector

167:       call DMDASNESSetFunctionLocal(da,INSERT_VALUES,FormFunctionLocal,da,ierr)
168:       CHKERRA(ierr)
169:       call DMDASNESSetJacobianLocal(da,FormJacobianLocal,da,ierr)
170:       CHKERRA(ierr)
171:       call SNESSetDM(snes,da,ierr)
172:       CHKERRA(ierr)

174: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
175: !  Customize nonlinear solver; set runtime options
176: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

178: !  Set runtime options (e.g., -snes_monitor -snes_rtol <rtol> -ksp_type <type>)

180:       call SNESSetFromOptions(snes,ierr)
181:       CHKERRA(ierr)
182: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
183: !  Evaluate initial guess; then solve nonlinear system.
184: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

186: !  Note: The user should initialize the vector, x, with the initial guess
187: !  for the nonlinear solver prior to calling SNESSolve().  In particular,
188: !  to employ an initial guess of zero, the user should explicitly set
189: !  this vector to zero by calling VecSet().

191:       call FormInitialGuess(x,ierr)
192:       CHKERRA(ierr)
193:       call SNESSolve(snes,PETSC_NULL_VEC,x,ierr)
194:       CHKERRA(ierr)
195:       call SNESGetIterationNumber(snes,its,ierr)
196:       CHKERRA(ierr)
197:       if (rank .eq. 0) then
198:          write(6,100) its
199:       endif
200:   100 format('Number of SNES iterations = ',i5)

202: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
203: !  Free work space.  All PETSc objects should be destroyed when they
204: !  are no longer needed.
205: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

207:       call VecDestroy(x,ierr)
208:       CHKERRA(ierr)
209:       call VecDestroy(r,ierr)
210:       CHKERRA(ierr)
211:       call SNESDestroy(snes,ierr)
212:       CHKERRA(ierr)
213:       call DMDestroy(da,ierr)
214:       CHKERRA(ierr)
215:       call PetscFinalize(ierr)
216:       CHKERRA(ierr)
217:       end

219: ! ---------------------------------------------------------------------
220: !
221: !  FormInitialGuess - Forms initial approximation.
222: !
223: !  Input Parameters:
224: !  X - vector
225: !
226: !  Output Parameter:
227: !  X - vector
228: !
229: !  Notes:
230: !  This routine serves as a wrapper for the lower-level routine
231: !  "ApplicationInitialGuess", where the actual computations are
232: !  done using the standard Fortran style of treating the local
233: !  vector data as a multidimensional array over the local mesh.
234: !  This routine merely handles ghost point scatters and accesses
235: !  the local vector data via VecGetArray() and VecRestoreArray().
236: !
237:       subroutine FormInitialGuess(X,ierr)
238:       use ex5fmodule
239:       implicit none

241: !  Input/output variables:
242:       Vec      X
243:       PetscErrorCode  ierr
244: !  Declarations for use with local arrays:
245:       PetscScalar, pointer :: lx_v(:)

247:       ierr = 0

249: !  Get a pointer to vector data.
250: !    - For default PETSc vectors, VecGetArray() returns a pointer to
251: !      the data array.  Otherwise, the routine is implementation dependent.
252: !    - You MUST call VecRestoreArray() when you no longer need access to
253: !      the array.
254: !    - Note that the Fortran interface to VecGetArray() differs from the
255: !      C version.  See the users manual for details.

257:        call VecGetArray(X,lx_v,ierr)
258:       CHKERRQ(ierr)

260: !  Compute initial guess over the locally owned part of the grid

262:       call InitialGuessLocal(lx_v,ierr)
263:       CHKERRQ(ierr)

265: !  Restore vector

267:       call VecRestoreArray(X,lx_v,ierr)
268:       CHKERRQ(ierr)

270:       end

272: ! ---------------------------------------------------------------------
273: !
274: !  InitialGuessLocal - Computes initial approximation, called by
275: !  the higher level routine FormInitialGuess().
276: !
277: !  Input Parameter:
278: !  x - local vector data
279: !
280: !  Output Parameters:
281: !  x - local vector data
282: !  ierr - error code
283: !
284: !  Notes:
285: !  This routine uses standard Fortran-style computations over a 2-dim array.
286: !
287:       subroutine InitialGuessLocal(x,ierr)
288:       use ex5fmodule
289:       implicit none

291: !  Input/output variables:
292:       PetscScalar    x(xs:xe,ys:ye)
293:       PetscErrorCode ierr

295: !  Local variables:
296:       PetscInt  i,j
297:       PetscReal temp1,temp,one,hx,hy

299: !  Set parameters

301:       ierr   = 0
302:       one    = 1.0
303:       hx     = one/((real(mx)-1))
304:       hy     = one/((real(my)-1))
305:       temp1  = lambda/(lambda + one)

307:       do 20 j=ys,ye
308:          temp = (real(min(j-1,my-j)))*hy
309:          do 10 i=xs,xe
310:             if (i .eq. 1 .or. j .eq. 1 .or. i .eq. mx .or. j .eq. my) then
311:               x(i,j) = 0.0
312:             else
313:               x(i,j) = temp1 * sqrt(min(real(min(i-1,mx-i))*hx,(temp)))
314:             endif
315:  10      continue
316:  20   continue

318:       end

320: ! ---------------------------------------------------------------------
321: !
322: !  FormFunctionLocal - Computes nonlinear function, called by
323: !  the higher level routine FormFunction().
324: !
325: !  Input Parameter:
326: !  x - local vector data
327: !
328: !  Output Parameters:
329: !  f - local vector data, f(x)
330: !  ierr - error code
331: !
332: !  Notes:
333: !  This routine uses standard Fortran-style computations over a 2-dim array.
334: !
335: !
336:       subroutine FormFunctionLocal(info,x,f,da,ierr)
337:       use ex5fmodule
338:       implicit none

340:       DM da

342: !  Input/output variables:
343:       DMDALocalInfo info
344:       PetscScalar x(gxs:gxe,gys:gye)
345:       PetscScalar f(xs:xe,ys:ye)
346:       PetscErrorCode     ierr

348: !  Local variables:
349:       PetscScalar two,one,hx,hy
350:       PetscScalar hxdhy,hydhx,sc
351:       PetscScalar u,uxx,uyy
352:       PetscInt  i,j

354:       xs     = info%XS+1
355:       xe     = xs+info%XM-1
356:       ys     = info%YS+1
357:       ye     = ys+info%YM-1
358:       mx     = info%MX
359:       my     = info%MY

361:       one    = 1.0
362:       two    = 2.0
363:       hx     = one/(real(mx)-1)
364:       hy     = one/(real(my)-1)
365:       sc     = hx*hy*lambda
366:       hxdhy  = hx/hy
367:       hydhx  = hy/hx

369: !  Compute function over the locally owned part of the grid

371:       do 20 j=ys,ye
372:          do 10 i=xs,xe
373:             if (i .eq. 1 .or. j .eq. 1 .or. i .eq. mx .or. j .eq. my) then
374:                f(i,j) = x(i,j)
375:             else
376:                u = x(i,j)
377:                uxx = hydhx * (two*u - x(i-1,j) - x(i+1,j))
378:                uyy = hxdhy * (two*u - x(i,j-1) - x(i,j+1))
379:                f(i,j) = uxx + uyy - sc*exp(u)
380:             endif
381:  10      continue
382:  20   continue

384:       call PetscLogFlops(11.0d0*ym*xm,ierr)
385:       CHKERRQ(ierr)

387:       end

389: ! ---------------------------------------------------------------------
390: !
391: !  FormJacobianLocal - Computes Jacobian matrix, called by
392: !  the higher level routine FormJacobian().
393: !
394: !  Input Parameters:
395: !  x        - local vector data
396: !
397: !  Output Parameters:
398: !  jac      - Jacobian matrix
399: !  jac_prec - optionally different preconditioning matrix (not used here)
400: !  ierr     - error code
401: !
402: !  Notes:
403: !  This routine uses standard Fortran-style computations over a 2-dim array.
404: !
405: !  Notes:
406: !  Due to grid point reordering with DMDAs, we must always work
407: !  with the local grid points, and then transform them to the new
408: !  global numbering with the "ltog" mapping
409: !  We cannot work directly with the global numbers for the original
410: !  uniprocessor grid!
411: !
412: !  Two methods are available for imposing this transformation
413: !  when setting matrix entries:
414: !    (A) MatSetValuesLocal(), using the local ordering (including
415: !        ghost points!)
416: !          by calling MatSetValuesLocal()
417: !    (B) MatSetValues(), using the global ordering
418: !        - Use DMDAGetGlobalIndices() to extract the local-to-global map
419: !        - Then apply this map explicitly yourself
420: !        - Set matrix entries using the global ordering by calling
421: !          MatSetValues()
422: !  Option (A) seems cleaner/easier in many cases, and is the procedure
423: !  used in this example.
424: !
425:       subroutine FormJacobianLocal(info,x,A,jac,da,ierr)
426:       use ex5fmodule
427:       implicit none

429:       DM da

431: !  Input/output variables:
432:       PetscScalar x(gxs:gxe,gys:gye)
433:       Mat         A,jac
434:       PetscErrorCode  ierr
435:       DMDALocalInfo info

437: !  Local variables:
438:       PetscInt  row,col(5),i,j,i1,i5
439:       PetscScalar two,one,hx,hy,v(5)
440:       PetscScalar hxdhy,hydhx,sc

442: !  Set parameters

444:       i1     = 1
445:       i5     = 5
446:       one    = 1.0
447:       two    = 2.0
448:       hx     = one/(real(mx)-1)
449:       hy     = one/(real(my)-1)
450:       sc     = hx*hy
451:       hxdhy  = hx/hy
452:       hydhx  = hy/hx
453: ! -Wmaybe-uninitialized
454:       v      = 0.0
455:       col    = 0

457: !  Compute entries for the locally owned part of the Jacobian.
458: !   - Currently, all PETSc parallel matrix formats are partitioned by
459: !     contiguous chunks of rows across the processors.
460: !   - Each processor needs to insert only elements that it owns
461: !     locally (but any non-local elements will be sent to the
462: !     appropriate processor during matrix assembly).
463: !   - Here, we set all entries for a particular row at once.
464: !   - We can set matrix entries either using either
465: !     MatSetValuesLocal() or MatSetValues(), as discussed above.
466: !   - Note that MatSetValues() uses 0-based row and column numbers
467: !     in Fortran as well as in C.

469:       do 20 j=ys,ye
470:          row = (j - gys)*gxm + xs - gxs - 1
471:          do 10 i=xs,xe
472:             row = row + 1
473: !           boundary points
474:             if (i .eq. 1 .or. j .eq. 1 .or. i .eq. mx .or. j .eq. my) then
475: !       Some f90 compilers need 4th arg to be of same type in both calls
476:                col(1) = row
477:                v(1)   = one
478:                call MatSetValuesLocal(jac,i1,[row],i1,[col],[v],INSERT_VALUES,ierr)
479:                CHKERRQ(ierr)
480: !           interior grid points
481:             else
482:                v(1) = -hxdhy
483:                v(2) = -hydhx
484:                v(3) = two*(hydhx + hxdhy) - sc*lambda*exp(x(i,j))
485:                v(4) = -hydhx
486:                v(5) = -hxdhy
487:                col(1) = row - gxm
488:                col(2) = row - 1
489:                col(3) = row
490:                col(4) = row + 1
491:                col(5) = row + gxm
492:                call MatSetValuesLocal(jac,i1,[row],i5,[col],[v], INSERT_VALUES,ierr)
493:                CHKERRQ(ierr)
494:             endif
495:  10      continue
496:  20   continue
497:       call MatAssemblyBegin(jac,MAT_FINAL_ASSEMBLY,ierr)
498:       CHKERRQ(ierr)
499:       call MatAssemblyEnd(jac,MAT_FINAL_ASSEMBLY,ierr)
500:       CHKERRQ(ierr)
501:       if (A .ne. jac) then
502:          call MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY,ierr)
503:          CHKERRQ(ierr)
504:          call MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY,ierr)
505:          CHKERRQ(ierr)
506:       endif
507:       end

509: !
510: !     Simple convergence test based on the infinity norm of the residual being small
511: !
512:       subroutine MySNESConverged(snes,it,xnorm,snorm,fnorm,reason,dummy,ierr)
513:       use ex5fmodule
514:       implicit none

516:       SNES snes
517:       PetscInt it,dummy
518:       PetscReal xnorm,snorm,fnorm,nrm
519:       SNESConvergedReason reason
520:       Vec f
521:       PetscErrorCode ierr

523:       call SNESGetFunction(snes,f,PETSC_NULL_FUNCTION,dummy,ierr)
524:       CHKERRQ(ierr)
525:       call VecNorm(f,NORM_INFINITY,nrm,ierr)
526:       CHKERRQ(ierr)
527:       if (nrm .le. 1.e-5) reason = SNES_CONVERGED_FNORM_ABS

529:       end

531: !/*TEST
532: !
533: !   build:
534: !      requires: !complex !single
535: !
536: !   test:
537: !      nsize: 4
538: !      args: -snes_mf -pc_type none -da_processors_x 4 -da_processors_y 1 -snes_monitor_short \
539: !            -ksp_gmres_cgs_refinement_type refine_always
540: !
541: !   test:
542: !      suffix: 2
543: !      nsize: 4
544: !      args: -da_processors_x 2 -da_processors_y 2 -snes_monitor_short -ksp_gmres_cgs_refinement_type refine_always
545: !
546: !   test:
547: !      suffix: 3
548: !      nsize: 3
549: !      args: -snes_fd -snes_monitor_short -ksp_gmres_cgs_refinement_type refine_always
550: !
551: !   test:
552: !      suffix: 6
553: !      nsize: 1
554: !      args: -snes_monitor_short -my_snes_convergence
555: !
556: !TEST*/