Actual source code: bnls.c

  1: #include <../src/tao/bound/impls/bnk/bnk.h>
  2: #include <petscksp.h>

  4: /*
  5:  Implements Newton's Method with a line search approach for
  6:  solving bound constrained minimization problems.

  8:  ------------------------------------------------------------

 10:  x_0 = VecMedian(x_0)
 11:  f_0, g_0 = TaoComputeObjectiveAndGradient(x_0)
 12:  pg_0 = project(g_0)
 13:  check convergence at pg_0
 14:  needH = TaoBNKInitialize(default:BNK_INIT_DIRECTION)
 15:  niter = 0
 16:  step_accepted = true

 18:  while niter < max_it
 19:     if needH
 20:       If max_cg_steps > 0
 21:         x_k, g_k, pg_k = TaoSolve(BNCG)
 22:       end

 24:       H_k = TaoComputeHessian(x_k)
 25:       if pc_type == BNK_PC_BFGS
 26:         add correction to BFGS approx
 27:         if scale_type == BNK_SCALE_AHESS
 28:           D = VecMedian(1e-6, abs(diag(H_k)), 1e6)
 29:           scale BFGS with VecReciprocal(D)
 30:         end
 31:       end
 32:       needH = False
 33:     end

 35:     if pc_type = BNK_PC_BFGS
 36:       B_k = BFGS
 37:     else
 38:       B_k = VecMedian(1e-6, abs(diag(H_k)), 1e6)
 39:       B_k = VecReciprocal(B_k)
 40:     end
 41:     w = x_k - VecMedian(x_k - 0.001*B_k*g_k)
 42:     eps = min(eps, norm2(w))
 43:     determine the active and inactive index sets such that
 44:       L = {i : (x_k)_i <= l_i + eps && (g_k)_i > 0}
 45:       U = {i : (x_k)_i >= u_i - eps && (g_k)_i < 0}
 46:       F = {i : l_i = (x_k)_i = u_i}
 47:       A = {L + U + F}
 48:       IA = {i : i not in A}

 50:     generate the reduced system Hr_k dr_k = -gr_k for variables in IA
 51:     if p > 0
 52:       Hr_k += p*
 53:     end
 54:     if pc_type == BNK_PC_BFGS && scale_type == BNK_SCALE_PHESS
 55:       D = VecMedian(1e-6, abs(diag(Hr_k)), 1e6)
 56:       scale BFGS with VecReciprocal(D)
 57:     end
 58:     solve Hr_k dr_k = -gr_k
 59:     set d_k to (l - x) for variables in L, (u - x) for variables in U, and 0 for variables in F

 61:     if dot(d_k, pg_k)) >= 0 || norm(d_k) == NaN || norm(d_k) == Inf
 62:       dr_k = -BFGS*gr_k for variables in I
 63:       if dot(d_k, pg_k)) >= 0 || norm(d_k) == NaN || norm(d_k) == Inf
 64:         reset the BFGS preconditioner
 65:         calculate scale delta and apply it to BFGS
 66:         dr_k = -BFGS*gr_k for variables in I
 67:         if dot(d_k, pg_k)) >= 0 || norm(d_k) == NaN || norm(d_k) == Inf
 68:           dr_k = -gr_k for variables in I
 69:         end
 70:       end
 71:     end

 73:     x_{k+1}, f_{k+1}, g_{k+1}, ls_failed = TaoBNKPerformLineSearch()
 74:     if ls_failed
 75:       f_{k+1} = f_k
 76:       x_{k+1} = x_k
 77:       g_{k+1} = g_k
 78:       pg_{k+1} = pg_k
 79:       terminate
 80:     else
 81:       pg_{k+1} = project(g_{k+1})
 82:       count the accepted step type (Newton, BFGS, scaled grad or grad)
 83:     end

 85:     niter += 1
 86:     check convergence at pg_{k+1}
 87:  end
 88: */

 90: PetscErrorCode TaoSolve_BNLS(Tao tao)
 91: {
 92:   TAO_BNK                     *bnk = (TAO_BNK *)tao->data;
 93:   KSPConvergedReason           ksp_reason;
 94:   TaoLineSearchConvergedReason ls_reason;
 95:   PetscReal                    steplen = 1.0, resnorm;
 96:   PetscBool                    cgTerminate, needH = PETSC_TRUE, stepAccepted, shift = PETSC_TRUE;
 97:   PetscInt                     stepType;

 99:   PetscFunctionBegin;
100:   /* Initialize the preconditioner, KSP solver and trust radius/line search */
101:   tao->reason = TAO_CONTINUE_ITERATING;
102:   PetscCall(TaoBNKInitialize(tao, bnk->init_type, &needH));
103:   if (tao->reason != TAO_CONTINUE_ITERATING) PetscFunctionReturn(PETSC_SUCCESS);

105:   /* Have not converged; continue with Newton method */
106:   while (tao->reason == TAO_CONTINUE_ITERATING) {
107:     /* Call general purpose update function */
108:     if (tao->ops->update) {
109:       PetscUseTypeMethod(tao, update, tao->niter, tao->user_update);
110:       PetscCall(TaoComputeObjective(tao, tao->solution, &bnk->f));
111:     }

113:     if (needH && bnk->inactive_idx) {
114:       /* Take BNCG steps (if enabled) to trade-off Hessian evaluations for more gradient evaluations */
115:       PetscCall(TaoBNKTakeCGSteps(tao, &cgTerminate));
116:       if (cgTerminate) {
117:         tao->reason = bnk->bncg->reason;
118:         PetscFunctionReturn(PETSC_SUCCESS);
119:       }
120:       /* Compute the hessian and update the BFGS preconditioner at the new iterate */
121:       PetscCall((*bnk->computehessian)(tao));
122:       needH = PETSC_FALSE;
123:     }

125:     /* Use the common BNK kernel to compute the safeguarded Newton step (for inactive variables only) */
126:     PetscCall((*bnk->computestep)(tao, shift, &ksp_reason, &stepType));
127:     PetscCall(TaoBNKSafeguardStep(tao, ksp_reason, &stepType));

129:     /* Store current solution before it changes */
130:     bnk->fold = bnk->f;
131:     PetscCall(VecCopy(tao->solution, bnk->Xold));
132:     PetscCall(VecCopy(tao->gradient, bnk->Gold));
133:     PetscCall(VecCopy(bnk->unprojected_gradient, bnk->unprojected_gradient_old));

135:     /* Trigger the line search */
136:     PetscCall(TaoBNKPerformLineSearch(tao, &stepType, &steplen, &ls_reason));

138:     if (ls_reason != TAOLINESEARCH_SUCCESS && ls_reason != TAOLINESEARCH_SUCCESS_USER) {
139:       /* Failed to find an improving point */
140:       needH  = PETSC_FALSE;
141:       bnk->f = bnk->fold;
142:       PetscCall(VecCopy(bnk->Xold, tao->solution));
143:       PetscCall(VecCopy(bnk->Gold, tao->gradient));
144:       PetscCall(VecCopy(bnk->unprojected_gradient_old, bnk->unprojected_gradient));
145:       steplen     = 0.0;
146:       tao->reason = TAO_DIVERGED_LS_FAILURE;
147:     } else {
148:       /* new iterate so we need to recompute the Hessian */
149:       needH = PETSC_TRUE;
150:       /* compute the projected gradient */
151:       PetscCall(TaoBNKEstimateActiveSet(tao, bnk->as_type));
152:       PetscCall(VecCopy(bnk->unprojected_gradient, tao->gradient));
153:       if (bnk->active_idx) PetscCall(VecISSet(tao->gradient, bnk->active_idx, 0.0));
154:       PetscCall(TaoGradientNorm(tao, tao->gradient, NORM_2, &bnk->gnorm));
155:       /* update the trust radius based on the step length */
156:       PetscCall(TaoBNKUpdateTrustRadius(tao, 0.0, 0.0, BNK_UPDATE_STEP, stepType, &stepAccepted));
157:       /* count the accepted step type */
158:       PetscCall(TaoBNKAddStepCounts(tao, stepType));
159:       /* active BNCG recycling for next iteration */
160:       PetscCall(TaoSetRecycleHistory(bnk->bncg, PETSC_TRUE));
161:     }

163:     /*  Check for termination */
164:     PetscCall(VecFischer(tao->solution, bnk->unprojected_gradient, tao->XL, tao->XU, bnk->W));
165:     PetscCall(VecNorm(bnk->W, NORM_2, &resnorm));
166:     PetscCheck(!PetscIsInfOrNanReal(resnorm), PetscObjectComm((PetscObject)tao), PETSC_ERR_USER, "User provided compute function generated Inf or NaN");
167:     ++tao->niter;
168:     PetscCall(TaoLogConvergenceHistory(tao, bnk->f, resnorm, 0.0, tao->ksp_its));
169:     PetscCall(TaoMonitor(tao, tao->niter, bnk->f, resnorm, 0.0, steplen));
170:     PetscUseTypeMethod(tao, convergencetest, tao->cnvP);
171:   }
172:   PetscFunctionReturn(PETSC_SUCCESS);
173: }

175: /*MC
176:   TAOBNLS - Bounded Newton Line Search for nonlinear minimization with bound constraints.

178:   Options Database Keys:
179: + -tao_bnk_max_cg_its - maximum number of bounded conjugate-gradient iterations taken in each Newton loop
180: . -tao_bnk_init_type - trust radius initialization method ("constant", "direction", "interpolation")
181: . -tao_bnk_update_type - trust radius update method ("step", "direction", "interpolation")
182: - -tao_bnk_as_type - active-set estimation method ("none", "bertsekas")

184:   Level: beginner
185: M*/
186: PETSC_EXTERN PetscErrorCode TaoCreate_BNLS(Tao tao)
187: {
188:   TAO_BNK *bnk;

190:   PetscFunctionBegin;
191:   PetscCall(TaoCreate_BNK(tao));
192:   tao->ops->solve = TaoSolve_BNLS;

194:   bnk              = (TAO_BNK *)tao->data;
195:   bnk->init_type   = BNK_INIT_DIRECTION;
196:   bnk->update_type = BNK_UPDATE_STEP; /* trust region updates based on line search step length */
197:   PetscFunctionReturn(PETSC_SUCCESS);
198: }