Actual source code: bqnktr.c

  1: #include <../src/tao/bound/impls/bqnk/bqnk.h>
  2: #include <petscksp.h>

  4: static PetscErrorCode TaoSetUp_BQNKTR(Tao tao)
  5: {
  6:   KSP       ksp;
  7:   PetscBool valid;

  9:   PetscFunctionBegin;
 10:   PetscCall(TaoSetUp_BQNK(tao));
 11:   PetscCall(TaoGetKSP(tao, &ksp));
 12:   PetscCall(PetscObjectHasFunction((PetscObject)ksp, "KSPCGSetRadius_C", &valid));
 13:   PetscCheck(valid, PetscObjectComm((PetscObject)tao), PETSC_ERR_SUP, "Not for KSP type %s. Must use a trust-region CG method for KSP (e.g. KSPNASH, KSPSTCG, KSPGLTR)", ((PetscObject)ksp)->type_name);
 14:   PetscFunctionReturn(PETSC_SUCCESS);
 15: }

 17: /*MC
 18:   TAOBQNKTR - Bounded Quasi-Newton-Krylov Trust Region method for nonlinear minimization with
 19:               bound constraints. This method approximates the Hessian-vector product using a
 20:               limited-memory quasi-Newton formula, and iteratively inverts the Hessian with a
 21:               Krylov solver. The quasi-Newton matrix and its settings can be accessed via the
 22:               prefix `-tao_bqnk_`. For options database, see TAOBNK

 24:   Level: beginner

 26: .seealso: `Tao`, `TaoType`, `TAOBNK`, `TAOBQNKTR`, `TAOBQNKLS`
 27: M*/
 28: PETSC_EXTERN PetscErrorCode TaoCreate_BQNKTR(Tao tao)
 29: {
 30:   TAO_BNK  *bnk;
 31:   TAO_BQNK *bqnk;

 33:   PetscFunctionBegin;
 34:   PetscCall(TaoCreate_BQNK(tao));
 35:   tao->ops->setup = TaoSetUp_BQNKTR;
 36:   bnk             = (TAO_BNK *)tao->data;
 37:   bqnk            = (TAO_BQNK *)bnk->ctx;
 38:   bqnk->solve     = TaoSolve_BNTR;
 39:   PetscFunctionReturn(PETSC_SUCCESS);
 40: }