Actual source code: pounders.c

  1: #include <../src/tao/leastsquares/impls/pounders/pounders.h>

  3: static PetscErrorCode pounders_h(Tao subtao, Vec v, Mat H, Mat Hpre, void *ctx)
  4: {
  5:   PetscFunctionBegin;
  6:   PetscFunctionReturn(PETSC_SUCCESS);
  7: }

  9: static PetscErrorCode pounders_fg(Tao subtao, Vec x, PetscReal *f, Vec g, void *ctx)
 10: {
 11:   TAO_POUNDERS *mfqP = (TAO_POUNDERS *)ctx;
 12:   PetscReal     d1, d2;

 14:   PetscFunctionBegin;
 15:   /* g = A*x  (add b later)*/
 16:   PetscCall(MatMult(mfqP->subH, x, g));

 18:   /* f = 1/2 * x'*(Ax) + b'*x  */
 19:   PetscCall(VecDot(x, g, &d1));
 20:   PetscCall(VecDot(mfqP->subb, x, &d2));
 21:   *f = 0.5 * d1 + d2;

 23:   /* now  g = g + b */
 24:   PetscCall(VecAXPY(g, 1.0, mfqP->subb));
 25:   PetscFunctionReturn(PETSC_SUCCESS);
 26: }

 28: static PetscErrorCode pounders_feval(Tao tao, Vec x, Vec F, PetscReal *fsum)
 29: {
 30:   TAO_POUNDERS *mfqP = (TAO_POUNDERS *)tao->data;
 31:   PetscInt      i, row, col;
 32:   PetscReal     fr, fc;

 34:   PetscFunctionBegin;
 35:   PetscCall(TaoComputeResidual(tao, x, F));
 36:   if (tao->res_weights_v) {
 37:     PetscCall(VecPointwiseMult(mfqP->workfvec, tao->res_weights_v, F));
 38:     PetscCall(VecDot(mfqP->workfvec, mfqP->workfvec, fsum));
 39:   } else if (tao->res_weights_w) {
 40:     *fsum = 0;
 41:     for (i = 0; i < tao->res_weights_n; i++) {
 42:       row = tao->res_weights_rows[i];
 43:       col = tao->res_weights_cols[i];
 44:       PetscCall(VecGetValues(F, 1, &row, &fr));
 45:       PetscCall(VecGetValues(F, 1, &col, &fc));
 46:       *fsum += tao->res_weights_w[i] * fc * fr;
 47:     }
 48:   } else {
 49:     PetscCall(VecDot(F, F, fsum));
 50:   }
 51:   PetscCall(PetscInfo(tao, "Least-squares residual norm: %20.19e\n", (double)*fsum));
 52:   PetscCheck(!PetscIsInfOrNanReal(*fsum), PETSC_COMM_SELF, PETSC_ERR_USER, "User provided compute function generated Inf or NaN");
 53:   PetscFunctionReturn(PETSC_SUCCESS);
 54: }

 56: static PetscErrorCode gqtwrap(Tao tao, PetscReal *gnorm, PetscReal *qmin)
 57: {
 58: #if defined(PETSC_USE_REAL_SINGLE)
 59:   PetscReal atol = 1.0e-5;
 60: #else
 61:   PetscReal atol = 1.0e-10;
 62: #endif
 63:   PetscInt      info, its;
 64:   TAO_POUNDERS *mfqP = (TAO_POUNDERS *)tao->data;

 66:   PetscFunctionBegin;
 67:   if (!mfqP->usegqt) {
 68:     PetscReal maxval;
 69:     PetscInt  i, j;

 71:     PetscCall(VecSetValues(mfqP->subb, mfqP->n, mfqP->indices, mfqP->Gres, INSERT_VALUES));
 72:     PetscCall(VecAssemblyBegin(mfqP->subb));
 73:     PetscCall(VecAssemblyEnd(mfqP->subb));

 75:     PetscCall(VecSet(mfqP->subx, 0.0));

 77:     PetscCall(VecSet(mfqP->subndel, -1.0));
 78:     PetscCall(VecSet(mfqP->subpdel, +1.0));

 80:     /* Complete the lower triangle of the Hessian matrix */
 81:     for (i = 0; i < mfqP->n; i++) {
 82:       for (j = i + 1; j < mfqP->n; j++) mfqP->Hres[j + mfqP->n * i] = mfqP->Hres[mfqP->n * j + i];
 83:     }
 84:     PetscCall(MatSetValues(mfqP->subH, mfqP->n, mfqP->indices, mfqP->n, mfqP->indices, mfqP->Hres, INSERT_VALUES));
 85:     PetscCall(MatAssemblyBegin(mfqP->subH, MAT_FINAL_ASSEMBLY));
 86:     PetscCall(MatAssemblyEnd(mfqP->subH, MAT_FINAL_ASSEMBLY));

 88:     PetscCall(TaoResetStatistics(mfqP->subtao));
 89:     /* PetscCall(TaoSetTolerances(mfqP->subtao,*gnorm,*gnorm,PETSC_CURRENT)); */
 90:     /* enforce bound constraints -- experimental */
 91:     if (tao->XU && tao->XL) {
 92:       PetscCall(VecCopy(tao->XU, mfqP->subxu));
 93:       PetscCall(VecAXPY(mfqP->subxu, -1.0, tao->solution));
 94:       PetscCall(VecScale(mfqP->subxu, 1.0 / mfqP->delta));
 95:       PetscCall(VecCopy(tao->XL, mfqP->subxl));
 96:       PetscCall(VecAXPY(mfqP->subxl, -1.0, tao->solution));
 97:       PetscCall(VecScale(mfqP->subxl, 1.0 / mfqP->delta));

 99:       PetscCall(VecPointwiseMin(mfqP->subxu, mfqP->subxu, mfqP->subpdel));
100:       PetscCall(VecPointwiseMax(mfqP->subxl, mfqP->subxl, mfqP->subndel));
101:     } else {
102:       PetscCall(VecCopy(mfqP->subpdel, mfqP->subxu));
103:       PetscCall(VecCopy(mfqP->subndel, mfqP->subxl));
104:     }
105:     /* Make sure xu > xl */
106:     PetscCall(VecCopy(mfqP->subxl, mfqP->subpdel));
107:     PetscCall(VecAXPY(mfqP->subpdel, -1.0, mfqP->subxu));
108:     PetscCall(VecMax(mfqP->subpdel, NULL, &maxval));
109:     PetscCheck(maxval <= 1e-10, PetscObjectComm((PetscObject)tao), PETSC_ERR_ARG_OUTOFRANGE, "upper bound < lower bound in subproblem");
110:     /* Make sure xu > tao->solution > xl */
111:     PetscCall(VecCopy(mfqP->subxl, mfqP->subpdel));
112:     PetscCall(VecAXPY(mfqP->subpdel, -1.0, mfqP->subx));
113:     PetscCall(VecMax(mfqP->subpdel, NULL, &maxval));
114:     PetscCheck(maxval <= 1e-10, PetscObjectComm((PetscObject)tao), PETSC_ERR_ARG_OUTOFRANGE, "initial guess < lower bound in subproblem");

116:     PetscCall(VecCopy(mfqP->subx, mfqP->subpdel));
117:     PetscCall(VecAXPY(mfqP->subpdel, -1.0, mfqP->subxu));
118:     PetscCall(VecMax(mfqP->subpdel, NULL, &maxval));
119:     PetscCheck(maxval <= 1e-10, PetscObjectComm((PetscObject)tao), PETSC_ERR_ARG_OUTOFRANGE, "initial guess > upper bound in subproblem");

121:     PetscCall(TaoSolve(mfqP->subtao));
122:     PetscCall(TaoGetSolutionStatus(mfqP->subtao, NULL, qmin, NULL, NULL, NULL, NULL));

124:     /* test bounds post-solution*/
125:     PetscCall(VecCopy(mfqP->subxl, mfqP->subpdel));
126:     PetscCall(VecAXPY(mfqP->subpdel, -1.0, mfqP->subx));
127:     PetscCall(VecMax(mfqP->subpdel, NULL, &maxval));
128:     if (maxval > 1e-5) {
129:       PetscCall(PetscInfo(tao, "subproblem solution < lower bound\n"));
130:       tao->reason = TAO_DIVERGED_TR_REDUCTION;
131:     }

133:     PetscCall(VecCopy(mfqP->subx, mfqP->subpdel));
134:     PetscCall(VecAXPY(mfqP->subpdel, -1.0, mfqP->subxu));
135:     PetscCall(VecMax(mfqP->subpdel, NULL, &maxval));
136:     if (maxval > 1e-5) {
137:       PetscCall(PetscInfo(tao, "subproblem solution > upper bound\n"));
138:       tao->reason = TAO_DIVERGED_TR_REDUCTION;
139:     }
140:   } else {
141:     PetscCall(gqt(mfqP->n, mfqP->Hres, mfqP->n, mfqP->Gres, 1.0, mfqP->gqt_rtol, atol, mfqP->gqt_maxits, gnorm, qmin, mfqP->Xsubproblem, &info, &its, mfqP->work, mfqP->work2, mfqP->work3));
142:   }
143:   *qmin *= -1;
144:   PetscFunctionReturn(PETSC_SUCCESS);
145: }

147: static PetscErrorCode pounders_update_res(Tao tao)
148: {
149:   TAO_POUNDERS *mfqP = (TAO_POUNDERS *)tao->data;
150:   PetscInt      i, row, col;
151:   PetscBLASInt  blasn = mfqP->n, blasn2 = blasn * blasn, blasm = mfqP->m, ione = 1;
152:   PetscReal     zero = 0.0, one = 1.0, wii, factor;

154:   PetscFunctionBegin;
155:   for (i = 0; i < mfqP->n; i++) mfqP->Gres[i] = 0;
156:   for (i = 0; i < mfqP->n * mfqP->n; i++) mfqP->Hres[i] = 0;

158:   /* Compute Gres= sum_ij[wij * (cjgi + cigj)] */
159:   if (tao->res_weights_v) {
160:     /* Vector(diagonal) weights: gres = sum_i(wii*ci*gi) */
161:     for (i = 0; i < mfqP->m; i++) {
162:       PetscCall(VecGetValues(tao->res_weights_v, 1, &i, &factor));
163:       factor = factor * mfqP->C[i];
164:       PetscCallBLAS("BLASaxpy", BLASaxpy_(&blasn, &factor, &mfqP->Fdiff[blasn * i], &ione, mfqP->Gres, &ione));
165:     }

167:     /* compute Hres = sum_ij [wij * (*ci*Hj + cj*Hi + gi gj' + gj gi') ] */
168:     /* vector(diagonal weights) Hres = sum_i(wii*(ci*Hi + gi * gi')*/
169:     for (i = 0; i < mfqP->m; i++) {
170:       PetscCall(VecGetValues(tao->res_weights_v, 1, &i, &wii));
171:       if (tao->niter > 1) {
172:         factor = wii * mfqP->C[i];
173:         /* add wii * ci * Hi */
174:         PetscCallBLAS("BLASaxpy", BLASaxpy_(&blasn2, &factor, &mfqP->H[i], &blasm, mfqP->Hres, &ione));
175:       }
176:       /* add wii * gi * gi' */
177:       PetscCallBLAS("BLASgemm", BLASgemm_("N", "T", &blasn, &blasn, &ione, &wii, &mfqP->Fdiff[blasn * i], &blasn, &mfqP->Fdiff[blasn * i], &blasn, &one, mfqP->Hres, &blasn));
178:     }
179:   } else if (tao->res_weights_w) {
180:     /* General case: .5 * Gres= sum_ij[wij * (cjgi + cigj)] */
181:     for (i = 0; i < tao->res_weights_n; i++) {
182:       row = tao->res_weights_rows[i];
183:       col = tao->res_weights_cols[i];

185:       factor = tao->res_weights_w[i] * mfqP->C[col] / 2.0;
186:       PetscCallBLAS("BLASaxpy", BLASaxpy_(&blasn, &factor, &mfqP->Fdiff[blasn * row], &ione, mfqP->Gres, &ione));
187:       factor = tao->res_weights_w[i] * mfqP->C[row] / 2.0;
188:       PetscCallBLAS("BLASaxpy", BLASaxpy_(&blasn, &factor, &mfqP->Fdiff[blasn * col], &ione, mfqP->Gres, &ione));
189:     }

191:     /* compute Hres = sum_ij [wij * (*ci*Hj + cj*Hi + gi gj' + gj gi') ] */
192:     /* .5 * sum_ij [wij * (*ci*Hj + cj*Hi + gi gj' + gj gi') ] */
193:     for (i = 0; i < tao->res_weights_n; i++) {
194:       row    = tao->res_weights_rows[i];
195:       col    = tao->res_weights_cols[i];
196:       factor = tao->res_weights_w[i] / 2.0;
197:       /* add wij * gi gj' + wij * gj gi' */
198:       PetscCallBLAS("BLASgemm", BLASgemm_("N", "T", &blasn, &blasn, &ione, &factor, &mfqP->Fdiff[blasn * row], &blasn, &mfqP->Fdiff[blasn * col], &blasn, &one, mfqP->Hres, &blasn));
199:       PetscCallBLAS("BLASgemm", BLASgemm_("N", "T", &blasn, &blasn, &ione, &factor, &mfqP->Fdiff[blasn * col], &blasn, &mfqP->Fdiff[blasn * row], &blasn, &one, mfqP->Hres, &blasn));
200:     }
201:     if (tao->niter > 1) {
202:       for (i = 0; i < tao->res_weights_n; i++) {
203:         row = tao->res_weights_rows[i];
204:         col = tao->res_weights_cols[i];

206:         /* add  wij*cj*Hi */
207:         factor = tao->res_weights_w[i] * mfqP->C[col] / 2.0;
208:         PetscCallBLAS("BLASaxpy", BLASaxpy_(&blasn2, &factor, &mfqP->H[row], &blasm, mfqP->Hres, &ione));

210:         /* add wij*ci*Hj */
211:         factor = tao->res_weights_w[i] * mfqP->C[row] / 2.0;
212:         PetscCallBLAS("BLASaxpy", BLASaxpy_(&blasn2, &factor, &mfqP->H[col], &blasm, mfqP->Hres, &ione));
213:       }
214:     }
215:   } else {
216:     /* Default: Gres= sum_i[cigi] = G*c' */
217:     PetscCall(PetscInfo(tao, "Identity weights\n"));
218:     PetscCallBLAS("BLASgemv", BLASgemv_("N", &blasn, &blasm, &one, mfqP->Fdiff, &blasn, mfqP->C, &ione, &zero, mfqP->Gres, &ione));

220:     /* compute Hres = sum_ij [wij * (*ci*Hj + cj*Hi + gi gj' + gj gi') ] */
221:     /*  Hres = G*G' + 0.5 sum {F(xkin,i)*H(:,:,i)}  */
222:     PetscCallBLAS("BLASgemm", BLASgemm_("N", "T", &blasn, &blasn, &blasm, &one, mfqP->Fdiff, &blasn, mfqP->Fdiff, &blasn, &zero, mfqP->Hres, &blasn));

224:     /* sum(F(xkin,i)*H(:,:,i)) */
225:     if (tao->niter > 1) {
226:       for (i = 0; i < mfqP->m; i++) {
227:         factor = mfqP->C[i];
228:         PetscCallBLAS("BLASaxpy", BLASaxpy_(&blasn2, &factor, &mfqP->H[i], &blasm, mfqP->Hres, &ione));
229:       }
230:     }
231:   }
232:   PetscFunctionReturn(PETSC_SUCCESS);
233: }

235: static PetscErrorCode phi2eval(PetscReal *x, PetscInt n, PetscReal *phi)
236: {
237:   /* Phi = .5*[x(1)^2  sqrt(2)*x(1)*x(2) ... sqrt(2)*x(1)*x(n) ... x(2)^2 sqrt(2)*x(2)*x(3) .. x(n)^2] */
238:   PetscInt  i, j, k;
239:   PetscReal sqrt2 = PetscSqrtReal(2.0);

241:   PetscFunctionBegin;
242:   j = 0;
243:   for (i = 0; i < n; i++) {
244:     phi[j] = 0.5 * x[i] * x[i];
245:     j++;
246:     for (k = i + 1; k < n; k++) {
247:       phi[j] = x[i] * x[k] / sqrt2;
248:       j++;
249:     }
250:   }
251:   PetscFunctionReturn(PETSC_SUCCESS);
252: }

254: static PetscErrorCode getquadpounders(TAO_POUNDERS *mfqP)
255: {
256:   /* Computes the parameters of the quadratic Q(x) = c + g'*x + 0.5*x*G*x'
257:    that satisfies the interpolation conditions Q(X[:,j]) = f(j)
258:    for j=1,...,m and with a Hessian matrix of least Frobenius norm */

260:   /* NB --we are ignoring c */
261:   PetscInt     i, j, k, num, np = mfqP->nmodelpoints;
262:   PetscReal    one = 1.0, zero = 0.0, negone = -1.0;
263:   PetscBLASInt blasnpmax  = mfqP->npmax;
264:   PetscBLASInt blasnplus1 = mfqP->n + 1;
265:   PetscBLASInt blasnp     = np;
266:   PetscBLASInt blasint    = mfqP->n * (mfqP->n + 1) / 2;
267:   PetscBLASInt blasint2   = np - mfqP->n - 1;
268:   PetscBLASInt info, ione = 1;
269:   PetscReal    sqrt2 = PetscSqrtReal(2.0);

271:   PetscFunctionBegin;
272:   for (i = 0; i < mfqP->n * mfqP->m; i++) mfqP->Gdel[i] = 0;
273:   for (i = 0; i < mfqP->n * mfqP->n * mfqP->m; i++) mfqP->Hdel[i] = 0;

275:   /* factor M */
276:   PetscCallBLAS("LAPACKgetrf", LAPACKgetrf_(&blasnplus1, &blasnp, mfqP->M, &blasnplus1, mfqP->npmaxiwork, &info));
277:   PetscCheck(info == 0, PETSC_COMM_SELF, PETSC_ERR_LIB, "LAPACK routine getrf returned with value %" PetscBLASInt_FMT, info);

279:   if (np == mfqP->n + 1) {
280:     for (i = 0; i < mfqP->npmax - mfqP->n - 1; i++) mfqP->omega[i] = 0.0;
281:     for (i = 0; i < mfqP->n * (mfqP->n + 1) / 2; i++) mfqP->beta[i] = 0.0;
282:   } else {
283:     /* Let Ltmp = (L'*L) */
284:     PetscCallBLAS("BLASgemm", BLASgemm_("T", "N", &blasint2, &blasint2, &blasint, &one, &mfqP->L[(mfqP->n + 1) * blasint], &blasint, &mfqP->L[(mfqP->n + 1) * blasint], &blasint, &zero, mfqP->L_tmp, &blasint));

286:     /* factor Ltmp */
287:     PetscCallBLAS("LAPACKpotrf", LAPACKpotrf_("L", &blasint2, mfqP->L_tmp, &blasint, &info));
288:     PetscCheck(info == 0, PETSC_COMM_SELF, PETSC_ERR_LIB, "LAPACK routine potrf returned with value %" PetscBLASInt_FMT, info);
289:   }

291:   for (k = 0; k < mfqP->m; k++) {
292:     if (np != mfqP->n + 1) {
293:       /* Solve L'*L*Omega = Z' * RESk*/
294:       PetscCallBLAS("BLASgemv", BLASgemv_("T", &blasnp, &blasint2, &one, mfqP->Z, &blasnpmax, &mfqP->RES[mfqP->npmax * k], &ione, &zero, mfqP->omega, &ione));
295:       PetscCallBLAS("LAPACKpotrs", LAPACKpotrs_("L", &blasint2, &ione, mfqP->L_tmp, &blasint, mfqP->omega, &blasint2, &info));
296:       PetscCheck(info == 0, PETSC_COMM_SELF, PETSC_ERR_LIB, "LAPACK routine potrs returned with value %" PetscBLASInt_FMT, info);

298:       /* Beta = L*Omega */
299:       PetscCallBLAS("BLASgemv", BLASgemv_("N", &blasint, &blasint2, &one, &mfqP->L[(mfqP->n + 1) * blasint], &blasint, mfqP->omega, &ione, &zero, mfqP->beta, &ione));
300:     }

302:     /* solve M'*Alpha = RESk - N'*Beta */
303:     PetscCallBLAS("BLASgemv", BLASgemv_("T", &blasint, &blasnp, &negone, mfqP->N, &blasint, mfqP->beta, &ione, &one, &mfqP->RES[mfqP->npmax * k], &ione));
304:     PetscCallBLAS("LAPACKgetrs", LAPACKgetrs_("T", &blasnplus1, &ione, mfqP->M, &blasnplus1, mfqP->npmaxiwork, &mfqP->RES[mfqP->npmax * k], &blasnplus1, &info));
305:     PetscCheck(info == 0, PETSC_COMM_SELF, PETSC_ERR_LIB, "LAPACK routine getrs returned with value %" PetscBLASInt_FMT, info);

307:     /* Gdel(:,k) = Alpha(2:n+1) */
308:     for (i = 0; i < mfqP->n; i++) mfqP->Gdel[i + mfqP->n * k] = mfqP->RES[mfqP->npmax * k + i + 1];

310:     /* Set Hdels */
311:     num = 0;
312:     for (i = 0; i < mfqP->n; i++) {
313:       /* H[i,i,k] = Beta(num) */
314:       mfqP->Hdel[(i * mfqP->n + i) * mfqP->m + k] = mfqP->beta[num];
315:       num++;
316:       for (j = i + 1; j < mfqP->n; j++) {
317:         /* H[i,j,k] = H[j,i,k] = Beta(num)/sqrt(2) */
318:         mfqP->Hdel[(j * mfqP->n + i) * mfqP->m + k] = mfqP->beta[num] / sqrt2;
319:         mfqP->Hdel[(i * mfqP->n + j) * mfqP->m + k] = mfqP->beta[num] / sqrt2;
320:         num++;
321:       }
322:     }
323:   }
324:   PetscFunctionReturn(PETSC_SUCCESS);
325: }

327: static PetscErrorCode morepoints(TAO_POUNDERS *mfqP)
328: {
329:   /* Assumes mfqP->model_indices[0]  is minimum index
330:    Finishes adding points to mfqP->model_indices (up to npmax)
331:    Computes L,Z,M,N
332:    np is actual number of points in model (should equal npmax?) */
333:   PetscInt         point, i, j, offset;
334:   PetscInt         reject;
335:   PetscBLASInt     blasn = mfqP->n, blasnpmax = mfqP->npmax, blasnplus1 = mfqP->n + 1, info, blasnmax = mfqP->nmax, blasint, blasint2, blasnp, blasmaxmn;
336:   const PetscReal *x;
337:   PetscReal        normd;

339:   PetscFunctionBegin;
340:   /* Initialize M,N */
341:   for (i = 0; i < mfqP->n + 1; i++) {
342:     PetscCall(VecGetArrayRead(mfqP->Xhist[mfqP->model_indices[i]], &x));
343:     mfqP->M[(mfqP->n + 1) * i] = 1.0;
344:     for (j = 0; j < mfqP->n; j++) mfqP->M[j + 1 + ((mfqP->n + 1) * i)] = (x[j] - mfqP->xmin[j]) / mfqP->delta;
345:     PetscCall(VecRestoreArrayRead(mfqP->Xhist[mfqP->model_indices[i]], &x));
346:     PetscCall(phi2eval(&mfqP->M[1 + ((mfqP->n + 1) * i)], mfqP->n, &mfqP->N[mfqP->n * (mfqP->n + 1) / 2 * i]));
347:   }

349:   /* Now we add points until we have npmax starting with the most recent ones */
350:   point              = mfqP->nHist - 1;
351:   mfqP->nmodelpoints = mfqP->n + 1;
352:   while (mfqP->nmodelpoints < mfqP->npmax && point >= 0) {
353:     /* Reject any points already in the model */
354:     reject = 0;
355:     for (j = 0; j < mfqP->n + 1; j++) {
356:       if (point == mfqP->model_indices[j]) {
357:         reject = 1;
358:         break;
359:       }
360:     }

362:     /* Reject if norm(d) >c2 */
363:     if (!reject) {
364:       PetscCall(VecCopy(mfqP->Xhist[point], mfqP->workxvec));
365:       PetscCall(VecAXPY(mfqP->workxvec, -1.0, mfqP->Xhist[mfqP->minindex]));
366:       PetscCall(VecNorm(mfqP->workxvec, NORM_2, &normd));
367:       normd /= mfqP->delta;
368:       if (normd > mfqP->c2) reject = 1;
369:     }
370:     if (reject) {
371:       point--;
372:       continue;
373:     }

375:     PetscCall(VecGetArrayRead(mfqP->Xhist[point], &x));
376:     mfqP->M[(mfqP->n + 1) * mfqP->nmodelpoints] = 1.0;
377:     for (j = 0; j < mfqP->n; j++) mfqP->M[j + 1 + ((mfqP->n + 1) * mfqP->nmodelpoints)] = (x[j] - mfqP->xmin[j]) / mfqP->delta;
378:     PetscCall(VecRestoreArrayRead(mfqP->Xhist[point], &x));
379:     PetscCall(phi2eval(&mfqP->M[1 + (mfqP->n + 1) * mfqP->nmodelpoints], mfqP->n, &mfqP->N[mfqP->n * (mfqP->n + 1) / 2 * (mfqP->nmodelpoints)]));

381:     /* Update QR factorization */
382:     /* Copy M' to Q_tmp */
383:     for (i = 0; i < mfqP->n + 1; i++) {
384:       for (j = 0; j < mfqP->npmax; j++) mfqP->Q_tmp[j + mfqP->npmax * i] = mfqP->M[i + (mfqP->n + 1) * j];
385:     }
386:     blasnp = mfqP->nmodelpoints + 1;
387:     /* Q_tmp,R = qr(M') */
388:     blasmaxmn = PetscMax(mfqP->m, mfqP->n + 1);
389:     PetscCallBLAS("LAPACKgeqrf", LAPACKgeqrf_(&blasnp, &blasnplus1, mfqP->Q_tmp, &blasnpmax, mfqP->tau_tmp, mfqP->mwork, &blasmaxmn, &info));
390:     PetscCheck(info == 0, PETSC_COMM_SELF, PETSC_ERR_LIB, "LAPACK routine geqrf returned with value %" PetscBLASInt_FMT, info);

392:     /* Reject if min(svd(N*Q(:,n+2:np+1)) <= theta2 */
393:     /* L = N*Qtmp */
394:     blasint2 = mfqP->n * (mfqP->n + 1) / 2;
395:     /* Copy N to L_tmp */
396:     for (i = 0; i < mfqP->n * (mfqP->n + 1) / 2 * mfqP->npmax; i++) mfqP->L_tmp[i] = mfqP->N[i];
397:     /* Copy L_save to L_tmp */

399:     /* L_tmp = N*Qtmp' */
400:     PetscCallBLAS("LAPACKormqr", LAPACKormqr_("R", "N", &blasint2, &blasnp, &blasnplus1, mfqP->Q_tmp, &blasnpmax, mfqP->tau_tmp, mfqP->L_tmp, &blasint2, mfqP->npmaxwork, &blasnmax, &info));
401:     PetscCheck(info == 0, PETSC_COMM_SELF, PETSC_ERR_LIB, "LAPACK routine ormqr returned with value %" PetscBLASInt_FMT, info);

403:     /* Copy L_tmp to L_save */
404:     for (i = 0; i < mfqP->npmax * mfqP->n * (mfqP->n + 1) / 2; i++) mfqP->L_save[i] = mfqP->L_tmp[i];

406:     /* Get svd for L_tmp(:,n+2:np+1) (L_tmp is modified in process) */
407:     blasint = mfqP->nmodelpoints - mfqP->n;
408:     PetscCall(PetscFPTrapPush(PETSC_FP_TRAP_OFF));
409:     PetscCallBLAS("LAPACKgesvd", LAPACKgesvd_("N", "N", &blasint2, &blasint, &mfqP->L_tmp[(mfqP->n + 1) * blasint2], &blasint2, mfqP->beta, mfqP->work, &blasn, mfqP->work, &blasn, mfqP->npmaxwork, &blasnmax, &info));
410:     PetscCall(PetscFPTrapPop());
411:     PetscCheck(info == 0, PETSC_COMM_SELF, PETSC_ERR_LIB, "LAPACK routine gesvd returned with value %" PetscBLASInt_FMT, info);

413:     if (mfqP->beta[PetscMin(blasint, blasint2) - 1] > mfqP->theta2) {
414:       /* accept point */
415:       mfqP->model_indices[mfqP->nmodelpoints] = point;
416:       /* Copy Q_tmp to Q */
417:       for (i = 0; i < mfqP->npmax * mfqP->npmax; i++) mfqP->Q[i] = mfqP->Q_tmp[i];
418:       for (i = 0; i < mfqP->npmax; i++) mfqP->tau[i] = mfqP->tau_tmp[i];
419:       mfqP->nmodelpoints++;
420:       blasnp = mfqP->nmodelpoints;

422:       /* Copy L_save to L */
423:       for (i = 0; i < mfqP->npmax * mfqP->n * (mfqP->n + 1) / 2; i++) mfqP->L[i] = mfqP->L_save[i];
424:     }
425:     point--;
426:   }

428:   blasnp = mfqP->nmodelpoints;
429:   /* Copy Q(:,n+2:np) to Z */
430:   /* First set Q_tmp to I */
431:   for (i = 0; i < mfqP->npmax * mfqP->npmax; i++) mfqP->Q_tmp[i] = 0.0;
432:   for (i = 0; i < mfqP->npmax; i++) mfqP->Q_tmp[i + mfqP->npmax * i] = 1.0;

434:   /* Q_tmp = I * Q */
435:   PetscCallBLAS("LAPACKormqr", LAPACKormqr_("R", "N", &blasnp, &blasnp, &blasnplus1, mfqP->Q, &blasnpmax, mfqP->tau, mfqP->Q_tmp, &blasnpmax, mfqP->npmaxwork, &blasnmax, &info));
436:   PetscCheck(info == 0, PETSC_COMM_SELF, PETSC_ERR_LIB, "LAPACK routine ormqr returned with value %" PetscBLASInt_FMT, info);

438:   /* Copy Q_tmp(:,n+2:np) to Z) */
439:   offset = mfqP->npmax * (mfqP->n + 1);
440:   for (i = offset; i < mfqP->npmax * mfqP->npmax; i++) mfqP->Z[i - offset] = mfqP->Q_tmp[i];

442:   if (mfqP->nmodelpoints == mfqP->n + 1) {
443:     /* Set L to I_{n+1} */
444:     for (i = 0; i < mfqP->npmax * mfqP->n * (mfqP->n + 1) / 2; i++) mfqP->L[i] = 0.0;
445:     for (i = 0; i < mfqP->n; i++) mfqP->L[(mfqP->n * (mfqP->n + 1) / 2) * i + i] = 1.0;
446:   }
447:   PetscFunctionReturn(PETSC_SUCCESS);
448: }

450: /* Only call from modelimprove, addpoint() needs ->Q_tmp and ->work to be set */
451: static PetscErrorCode addpoint(Tao tao, TAO_POUNDERS *mfqP, PetscInt index)
452: {
453:   PetscFunctionBegin;
454:   /* Create new vector in history: X[newidx] = X[mfqP->index] + delta*X[index]*/
455:   PetscCall(VecDuplicate(mfqP->Xhist[0], &mfqP->Xhist[mfqP->nHist]));
456:   PetscCall(VecSetValues(mfqP->Xhist[mfqP->nHist], mfqP->n, mfqP->indices, &mfqP->Q_tmp[index * mfqP->npmax], INSERT_VALUES));
457:   PetscCall(VecAssemblyBegin(mfqP->Xhist[mfqP->nHist]));
458:   PetscCall(VecAssemblyEnd(mfqP->Xhist[mfqP->nHist]));
459:   PetscCall(VecAYPX(mfqP->Xhist[mfqP->nHist], mfqP->delta, mfqP->Xhist[mfqP->minindex]));

461:   /* Project into feasible region */
462:   if (tao->XU && tao->XL) PetscCall(VecMedian(mfqP->Xhist[mfqP->nHist], tao->XL, tao->XU, mfqP->Xhist[mfqP->nHist]));

464:   /* Compute value of new vector */
465:   PetscCall(VecDuplicate(mfqP->Fhist[0], &mfqP->Fhist[mfqP->nHist]));
466:   CHKMEMQ;
467:   PetscCall(pounders_feval(tao, mfqP->Xhist[mfqP->nHist], mfqP->Fhist[mfqP->nHist], &mfqP->Fres[mfqP->nHist]));

469:   /* Add new vector to model */
470:   mfqP->model_indices[mfqP->nmodelpoints] = mfqP->nHist;
471:   mfqP->nmodelpoints++;
472:   mfqP->nHist++;
473:   PetscFunctionReturn(PETSC_SUCCESS);
474: }

476: static PetscErrorCode modelimprove(Tao tao, TAO_POUNDERS *mfqP, PetscInt addallpoints)
477: {
478:   /* modeld = Q(:,np+1:n)' */
479:   PetscInt     i, j, minindex = 0;
480:   PetscReal    dp, half = 0.5, one = 1.0, minvalue = PETSC_INFINITY;
481:   PetscBLASInt blasn = mfqP->n, blasnpmax = mfqP->npmax, blask, info;
482:   PetscBLASInt blas1 = 1, blasnmax = mfqP->nmax;

484:   PetscFunctionBegin;
485:   blask = mfqP->nmodelpoints;
486:   /* Qtmp = I(n x n) */
487:   for (i = 0; i < mfqP->n; i++) {
488:     for (j = 0; j < mfqP->n; j++) mfqP->Q_tmp[i + mfqP->npmax * j] = 0.0;
489:   }
490:   for (j = 0; j < mfqP->n; j++) mfqP->Q_tmp[j + mfqP->npmax * j] = 1.0;

492:   /* Qtmp = Q * I */
493:   PetscCallBLAS("LAPACKormqr", LAPACKormqr_("R", "N", &blasn, &blasn, &blask, mfqP->Q, &blasnpmax, mfqP->tau, mfqP->Q_tmp, &blasnpmax, mfqP->npmaxwork, &blasnmax, &info));

495:   for (i = mfqP->nmodelpoints; i < mfqP->n; i++) {
496:     PetscCallBLAS("BLASdot", dp = BLASdot_(&blasn, &mfqP->Q_tmp[i * mfqP->npmax], &blas1, mfqP->Gres, &blas1));
497:     if (dp > 0.0) { /* Model says use the other direction! */
498:       for (j = 0; j < mfqP->n; j++) mfqP->Q_tmp[i * mfqP->npmax + j] *= -1;
499:     }
500:     /* mfqP->work[i] = Cres+Modeld(i,:)*(Gres+.5*Hres*Modeld(i,:)') */
501:     for (j = 0; j < mfqP->n; j++) mfqP->work2[j] = mfqP->Gres[j];
502:     PetscCallBLAS("BLASgemv", BLASgemv_("N", &blasn, &blasn, &half, mfqP->Hres, &blasn, &mfqP->Q_tmp[i * mfqP->npmax], &blas1, &one, mfqP->work2, &blas1));
503:     PetscCallBLAS("BLASdot", mfqP->work[i] = BLASdot_(&blasn, &mfqP->Q_tmp[i * mfqP->npmax], &blas1, mfqP->work2, &blas1));
504:     if (i == mfqP->nmodelpoints || mfqP->work[i] < minvalue) {
505:       minindex = i;
506:       minvalue = mfqP->work[i];
507:     }
508:     if (addallpoints != 0) PetscCall(addpoint(tao, mfqP, i));
509:   }
510:   if (!addallpoints) PetscCall(addpoint(tao, mfqP, minindex));
511:   PetscFunctionReturn(PETSC_SUCCESS);
512: }

514: static PetscErrorCode affpoints(TAO_POUNDERS *mfqP, PetscReal *xmin, PetscReal c)
515: {
516:   PetscInt         i, j;
517:   PetscBLASInt     blasm = mfqP->m, blasj, blask, blasn = mfqP->n, ione = 1, info;
518:   PetscBLASInt     blasnpmax = mfqP->npmax, blasmaxmn;
519:   PetscReal        proj, normd;
520:   const PetscReal *x;

522:   PetscFunctionBegin;
523:   for (i = mfqP->nHist - 1; i >= 0; i--) {
524:     PetscCall(VecGetArrayRead(mfqP->Xhist[i], &x));
525:     for (j = 0; j < mfqP->n; j++) mfqP->work[j] = (x[j] - xmin[j]) / mfqP->delta;
526:     PetscCall(VecRestoreArrayRead(mfqP->Xhist[i], &x));
527:     PetscCallBLAS("BLAScopy", BLAScopy_(&blasn, mfqP->work, &ione, mfqP->work2, &ione));
528:     PetscCallBLAS("BLASnrm2", normd = BLASnrm2_(&blasn, mfqP->work, &ione));
529:     if (normd <= c) {
530:       blasj = PetscMax((mfqP->n - mfqP->nmodelpoints), 0);
531:       if (!mfqP->q_is_I) {
532:         /* project D onto null */
533:         blask = (mfqP->nmodelpoints);
534:         PetscCallBLAS("LAPACKormqr", LAPACKormqr_("R", "N", &ione, &blasn, &blask, mfqP->Q, &blasnpmax, mfqP->tau, mfqP->work2, &ione, mfqP->mwork, &blasm, &info));
535:         PetscCheck(info >= 0, PETSC_COMM_SELF, PETSC_ERR_LIB, "ormqr returned value %" PetscBLASInt_FMT, info);
536:       }
537:       PetscCallBLAS("BLASnrm2", proj = BLASnrm2_(&blasj, &mfqP->work2[mfqP->nmodelpoints], &ione));

539:       if (proj >= mfqP->theta1) { /* add this index to model */
540:         mfqP->model_indices[mfqP->nmodelpoints] = i;
541:         mfqP->nmodelpoints++;
542:         PetscCallBLAS("BLAScopy", BLAScopy_(&blasn, mfqP->work, &ione, &mfqP->Q_tmp[mfqP->npmax * (mfqP->nmodelpoints - 1)], &ione));
543:         blask = mfqP->npmax * (mfqP->nmodelpoints);
544:         PetscCallBLAS("BLAScopy", BLAScopy_(&blask, mfqP->Q_tmp, &ione, mfqP->Q, &ione));
545:         blask     = mfqP->nmodelpoints;
546:         blasmaxmn = PetscMax(mfqP->m, mfqP->n);
547:         PetscCallBLAS("LAPACKgeqrf", LAPACKgeqrf_(&blasn, &blask, mfqP->Q, &blasnpmax, mfqP->tau, mfqP->mwork, &blasmaxmn, &info));
548:         PetscCheck(info >= 0, PETSC_COMM_SELF, PETSC_ERR_LIB, "geqrf returned value %" PetscBLASInt_FMT, info);
549:         mfqP->q_is_I = 0;
550:       }
551:       if (mfqP->nmodelpoints == mfqP->n) break;
552:     }
553:   }
554:   PetscFunctionReturn(PETSC_SUCCESS);
555: }

557: static PetscErrorCode TaoSolve_POUNDERS(Tao tao)
558: {
559:   TAO_POUNDERS    *mfqP = (TAO_POUNDERS *)tao->data;
560:   PetscInt         i, ii, j, k, l;
561:   PetscReal        step = 1.0;
562:   PetscInt         low, high;
563:   PetscReal        minnorm;
564:   PetscReal       *x, *f;
565:   const PetscReal *xmint, *fmin;
566:   PetscReal        deltaold;
567:   PetscReal        gnorm;
568:   PetscBLASInt     info, ione = 1, iblas;
569:   PetscBool        valid, same;
570:   PetscReal        mdec, rho, normxsp;
571:   PetscReal        one = 1.0, zero = 0.0, ratio;
572:   PetscBLASInt     blasm, blasn, blasncopy, blasnpmax;
573:   static PetscBool set = PETSC_FALSE;

575:   /* n = # of parameters
576:      m = dimension (components) of function  */
577:   PetscFunctionBegin;
578:   PetscCall(PetscCitationsRegister("@article{UNEDF0,\n"
579:                                    "title = {Nuclear energy density optimization},\n"
580:                                    "author = {Kortelainen, M.  and Lesinski, T.  and Mor\'e, J.  and Nazarewicz, W.\n"
581:                                    "          and Sarich, J.  and Schunck, N.  and Stoitsov, M. V. and Wild, S. },\n"
582:                                    "journal = {Phys. Rev. C},\n"
583:                                    "volume = {82},\n"
584:                                    "number = {2},\n"
585:                                    "pages = {024313},\n"
586:                                    "numpages = {18},\n"
587:                                    "year = {2010},\n"
588:                                    "month = {Aug},\n"
589:                                    "doi = {10.1103/PhysRevC.82.024313}\n}\n",
590:                                    &set));
591:   tao->niter = 0;
592:   if (tao->XL && tao->XU) {
593:     /* Check x0 <= XU */
594:     PetscReal val;

596:     PetscCall(VecCopy(tao->solution, mfqP->Xhist[0]));
597:     PetscCall(VecAXPY(mfqP->Xhist[0], -1.0, tao->XU));
598:     PetscCall(VecMax(mfqP->Xhist[0], NULL, &val));
599:     PetscCheck(val <= 1e-10, PetscObjectComm((PetscObject)tao), PETSC_ERR_ARG_OUTOFRANGE, "X0 > upper bound");

601:     /* Check x0 >= xl */
602:     PetscCall(VecCopy(tao->XL, mfqP->Xhist[0]));
603:     PetscCall(VecAXPY(mfqP->Xhist[0], -1.0, tao->solution));
604:     PetscCall(VecMax(mfqP->Xhist[0], NULL, &val));
605:     PetscCheck(val <= 1e-10, PetscObjectComm((PetscObject)tao), PETSC_ERR_ARG_OUTOFRANGE, "X0 < lower bound");

607:     /* Check x0 + delta < XU  -- should be able to get around this eventually */

609:     PetscCall(VecSet(mfqP->Xhist[0], mfqP->delta));
610:     PetscCall(VecAXPY(mfqP->Xhist[0], 1.0, tao->solution));
611:     PetscCall(VecAXPY(mfqP->Xhist[0], -1.0, tao->XU));
612:     PetscCall(VecMax(mfqP->Xhist[0], NULL, &val));
613:     PetscCheck(val <= 1e-10, PetscObjectComm((PetscObject)tao), PETSC_ERR_ARG_OUTOFRANGE, "X0 + delta > upper bound");
614:   }

616:   blasm     = mfqP->m;
617:   blasn     = mfqP->n;
618:   blasnpmax = mfqP->npmax;
619:   for (i = 0; i < mfqP->n * mfqP->n * mfqP->m; ++i) mfqP->H[i] = 0;

621:   PetscCall(VecCopy(tao->solution, mfqP->Xhist[0]));

623:   /* This provides enough information to approximate the gradient of the objective */
624:   /* using a forward difference scheme. */

626:   PetscCall(PetscInfo(tao, "Initialize simplex; delta = %10.9e\n", (double)mfqP->delta));
627:   PetscCall(pounders_feval(tao, mfqP->Xhist[0], mfqP->Fhist[0], &mfqP->Fres[0]));
628:   mfqP->minindex = 0;
629:   minnorm        = mfqP->Fres[0];

631:   PetscCall(VecGetOwnershipRange(mfqP->Xhist[0], &low, &high));
632:   for (i = 1; i < mfqP->n + 1; ++i) {
633:     PetscCall(VecCopy(mfqP->Xhist[0], mfqP->Xhist[i]));

635:     if (i - 1 >= low && i - 1 < high) {
636:       PetscCall(VecGetArray(mfqP->Xhist[i], &x));
637:       x[i - 1 - low] += mfqP->delta;
638:       PetscCall(VecRestoreArray(mfqP->Xhist[i], &x));
639:     }
640:     CHKMEMQ;
641:     PetscCall(pounders_feval(tao, mfqP->Xhist[i], mfqP->Fhist[i], &mfqP->Fres[i]));
642:     if (mfqP->Fres[i] < minnorm) {
643:       mfqP->minindex = i;
644:       minnorm        = mfqP->Fres[i];
645:     }
646:   }
647:   PetscCall(VecCopy(mfqP->Xhist[mfqP->minindex], tao->solution));
648:   PetscCall(VecCopy(mfqP->Fhist[mfqP->minindex], tao->ls_res));
649:   PetscCall(PetscInfo(tao, "Finalize simplex; minnorm = %10.9e\n", (double)minnorm));

651:   /* Gather mpi vecs to one big local vec */

653:   /* Begin serial code */

655:   /* Disp[i] = Xi-xmin, i=1,..,mfqP->minindex-1,mfqP->minindex+1,..,n */
656:   /* Fdiff[i] = (Fi-Fmin)', i=1,..,mfqP->minindex-1,mfqP->minindex+1,..,n */
657:   /* (Column oriented for blas calls) */
658:   ii = 0;

660:   PetscCall(PetscInfo(tao, "Build matrix: %" PetscInt_FMT "\n", (PetscInt)mfqP->size));
661:   if (1 == mfqP->size) {
662:     PetscCall(VecGetArrayRead(mfqP->Xhist[mfqP->minindex], &xmint));
663:     for (i = 0; i < mfqP->n; i++) mfqP->xmin[i] = xmint[i];
664:     PetscCall(VecRestoreArrayRead(mfqP->Xhist[mfqP->minindex], &xmint));
665:     PetscCall(VecGetArrayRead(mfqP->Fhist[mfqP->minindex], &fmin));
666:     for (i = 0; i < mfqP->n + 1; i++) {
667:       if (i == mfqP->minindex) continue;

669:       PetscCall(VecGetArray(mfqP->Xhist[i], &x));
670:       for (j = 0; j < mfqP->n; j++) mfqP->Disp[ii + mfqP->npmax * j] = (x[j] - mfqP->xmin[j]) / mfqP->delta;
671:       PetscCall(VecRestoreArray(mfqP->Xhist[i], &x));

673:       PetscCall(VecGetArray(mfqP->Fhist[i], &f));
674:       for (j = 0; j < mfqP->m; j++) mfqP->Fdiff[ii + mfqP->n * j] = f[j] - fmin[j];
675:       PetscCall(VecRestoreArray(mfqP->Fhist[i], &f));

677:       mfqP->model_indices[ii++] = i;
678:     }
679:     for (j = 0; j < mfqP->m; j++) mfqP->C[j] = fmin[j];
680:     PetscCall(VecRestoreArrayRead(mfqP->Fhist[mfqP->minindex], &fmin));
681:   } else {
682:     PetscCall(VecSet(mfqP->localxmin, 0));
683:     PetscCall(VecScatterBegin(mfqP->scatterx, mfqP->Xhist[mfqP->minindex], mfqP->localxmin, INSERT_VALUES, SCATTER_FORWARD));
684:     PetscCall(VecScatterEnd(mfqP->scatterx, mfqP->Xhist[mfqP->minindex], mfqP->localxmin, INSERT_VALUES, SCATTER_FORWARD));

686:     PetscCall(VecGetArrayRead(mfqP->localxmin, &xmint));
687:     for (i = 0; i < mfqP->n; i++) mfqP->xmin[i] = xmint[i];
688:     PetscCall(VecRestoreArrayRead(mfqP->localxmin, &xmint));

690:     PetscCall(VecScatterBegin(mfqP->scatterf, mfqP->Fhist[mfqP->minindex], mfqP->localfmin, INSERT_VALUES, SCATTER_FORWARD));
691:     PetscCall(VecScatterEnd(mfqP->scatterf, mfqP->Fhist[mfqP->minindex], mfqP->localfmin, INSERT_VALUES, SCATTER_FORWARD));
692:     PetscCall(VecGetArrayRead(mfqP->localfmin, &fmin));
693:     for (i = 0; i < mfqP->n + 1; i++) {
694:       if (i == mfqP->minindex) continue;

696:       PetscCall(VecScatterBegin(mfqP->scatterx, mfqP->Xhist[ii], mfqP->localx, INSERT_VALUES, SCATTER_FORWARD));
697:       PetscCall(VecScatterEnd(mfqP->scatterx, mfqP->Xhist[ii], mfqP->localx, INSERT_VALUES, SCATTER_FORWARD));
698:       PetscCall(VecGetArray(mfqP->localx, &x));
699:       for (j = 0; j < mfqP->n; j++) mfqP->Disp[ii + mfqP->npmax * j] = (x[j] - mfqP->xmin[j]) / mfqP->delta;
700:       PetscCall(VecRestoreArray(mfqP->localx, &x));

702:       PetscCall(VecScatterBegin(mfqP->scatterf, mfqP->Fhist[ii], mfqP->localf, INSERT_VALUES, SCATTER_FORWARD));
703:       PetscCall(VecScatterEnd(mfqP->scatterf, mfqP->Fhist[ii], mfqP->localf, INSERT_VALUES, SCATTER_FORWARD));
704:       PetscCall(VecGetArray(mfqP->localf, &f));
705:       for (j = 0; j < mfqP->m; j++) mfqP->Fdiff[ii + mfqP->n * j] = f[j] - fmin[j];
706:       PetscCall(VecRestoreArray(mfqP->localf, &f));

708:       mfqP->model_indices[ii++] = i;
709:     }
710:     for (j = 0; j < mfqP->m; j++) mfqP->C[j] = fmin[j];
711:     PetscCall(VecRestoreArrayRead(mfqP->localfmin, &fmin));
712:   }

714:   /* Determine the initial quadratic models */
715:   /* G = D(ModelIn,:) \ (F(ModelIn,1:m)-repmat(F(xkin,1:m),n,1)); */
716:   /* D (nxn) Fdiff (nxm)  => G (nxm) */
717:   blasncopy = blasn;
718:   PetscCallBLAS("LAPACKgesv", LAPACKgesv_(&blasn, &blasm, mfqP->Disp, &blasnpmax, mfqP->iwork, mfqP->Fdiff, &blasncopy, &info));
719:   PetscCall(PetscInfo(tao, "Linear solve return: %" PetscInt_FMT "\n", (PetscInt)info));

721:   PetscCall(pounders_update_res(tao));

723:   valid = PETSC_TRUE;

725:   PetscCall(VecSetValues(tao->gradient, mfqP->n, mfqP->indices, mfqP->Gres, INSERT_VALUES));
726:   PetscCall(VecAssemblyBegin(tao->gradient));
727:   PetscCall(VecAssemblyEnd(tao->gradient));
728:   PetscCall(VecNorm(tao->gradient, NORM_2, &gnorm));
729:   gnorm *= mfqP->delta;
730:   PetscCall(VecCopy(mfqP->Xhist[mfqP->minindex], tao->solution));

732:   tao->reason = TAO_CONTINUE_ITERATING;
733:   PetscCall(TaoLogConvergenceHistory(tao, minnorm, gnorm, 0.0, tao->ksp_its));
734:   PetscCall(TaoMonitor(tao, tao->niter, minnorm, gnorm, 0.0, step));
735:   PetscUseTypeMethod(tao, convergencetest, tao->cnvP);

737:   mfqP->nHist        = mfqP->n + 1;
738:   mfqP->nmodelpoints = mfqP->n + 1;
739:   PetscCall(PetscInfo(tao, "Initial gradient: %20.19e\n", (double)gnorm));

741:   while (tao->reason == TAO_CONTINUE_ITERATING) {
742:     PetscReal gnm = 1e-4;
743:     /* Call general purpose update function */
744:     PetscTryTypeMethod(tao, update, tao->niter, tao->user_update);
745:     tao->niter++;
746:     /* Solve the subproblem min{Q(s): ||s|| <= 1.0} */
747:     PetscCall(gqtwrap(tao, &gnm, &mdec));
748:     /* Evaluate the function at the new point */

750:     for (i = 0; i < mfqP->n; i++) mfqP->work[i] = mfqP->Xsubproblem[i] * mfqP->delta + mfqP->xmin[i];
751:     PetscCall(VecDuplicate(tao->solution, &mfqP->Xhist[mfqP->nHist]));
752:     PetscCall(VecDuplicate(tao->ls_res, &mfqP->Fhist[mfqP->nHist]));
753:     PetscCall(VecSetValues(mfqP->Xhist[mfqP->nHist], mfqP->n, mfqP->indices, mfqP->work, INSERT_VALUES));
754:     PetscCall(VecAssemblyBegin(mfqP->Xhist[mfqP->nHist]));
755:     PetscCall(VecAssemblyEnd(mfqP->Xhist[mfqP->nHist]));

757:     PetscCall(pounders_feval(tao, mfqP->Xhist[mfqP->nHist], mfqP->Fhist[mfqP->nHist], &mfqP->Fres[mfqP->nHist]));

759:     rho = (mfqP->Fres[mfqP->minindex] - mfqP->Fres[mfqP->nHist]) / mdec;
760:     mfqP->nHist++;

762:     /* Update the center */
763:     if ((rho >= mfqP->eta1) || (rho > mfqP->eta0 && valid == PETSC_TRUE)) {
764:       /* Update model to reflect new base point */
765:       for (i = 0; i < mfqP->n; i++) mfqP->work[i] = (mfqP->work[i] - mfqP->xmin[i]) / mfqP->delta;
766:       for (j = 0; j < mfqP->m; j++) {
767:         /* C(j) = C(j) + work*G(:,j) + .5*work*H(:,:,j)*work';
768:          G(:,j) = G(:,j) + H(:,:,j)*work' */
769:         for (k = 0; k < mfqP->n; k++) {
770:           mfqP->work2[k] = 0.0;
771:           for (l = 0; l < mfqP->n; l++) mfqP->work2[k] += mfqP->H[j + mfqP->m * (k + l * mfqP->n)] * mfqP->work[l];
772:         }
773:         for (i = 0; i < mfqP->n; i++) {
774:           mfqP->C[j] += mfqP->work[i] * (mfqP->Fdiff[i + mfqP->n * j] + 0.5 * mfqP->work2[i]);
775:           mfqP->Fdiff[i + mfqP->n * j] += mfqP->work2[i];
776:         }
777:       }
778:       /* Cres += work*Gres + .5*work*Hres*work';
779:        Gres += Hres*work'; */

781:       PetscCallBLAS("BLASgemv", BLASgemv_("N", &blasn, &blasn, &one, mfqP->Hres, &blasn, mfqP->work, &ione, &zero, mfqP->work2, &ione));
782:       for (i = 0; i < mfqP->n; i++) mfqP->Gres[i] += mfqP->work2[i];
783:       mfqP->minindex = mfqP->nHist - 1;
784:       minnorm        = mfqP->Fres[mfqP->minindex];
785:       PetscCall(VecCopy(mfqP->Fhist[mfqP->minindex], tao->ls_res));
786:       /* Change current center */
787:       PetscCall(VecGetArrayRead(mfqP->Xhist[mfqP->minindex], &xmint));
788:       for (i = 0; i < mfqP->n; i++) mfqP->xmin[i] = xmint[i];
789:       PetscCall(VecRestoreArrayRead(mfqP->Xhist[mfqP->minindex], &xmint));
790:     }

792:     /* Evaluate at a model-improving point if necessary */
793:     if (valid == PETSC_FALSE) {
794:       mfqP->q_is_I       = 1;
795:       mfqP->nmodelpoints = 0;
796:       PetscCall(affpoints(mfqP, mfqP->xmin, mfqP->c1));
797:       if (mfqP->nmodelpoints < mfqP->n) {
798:         PetscCall(PetscInfo(tao, "Model not valid -- model-improving\n"));
799:         PetscCall(modelimprove(tao, mfqP, 1));
800:       }
801:     }

803:     /* Update the trust region radius */
804:     deltaold = mfqP->delta;
805:     normxsp  = 0;
806:     for (i = 0; i < mfqP->n; i++) normxsp += mfqP->Xsubproblem[i] * mfqP->Xsubproblem[i];
807:     normxsp = PetscSqrtReal(normxsp);
808:     if (rho >= mfqP->eta1 && normxsp > 0.5 * mfqP->delta) {
809:       mfqP->delta = PetscMin(mfqP->delta * mfqP->gamma1, mfqP->deltamax);
810:     } else if (valid == PETSC_TRUE) {
811:       mfqP->delta = PetscMax(mfqP->delta * mfqP->gamma0, mfqP->deltamin);
812:     }

814:     /* Compute the next interpolation set */
815:     mfqP->q_is_I       = 1;
816:     mfqP->nmodelpoints = 0;
817:     PetscCall(PetscInfo(tao, "Affine Points: xmin = %20.19e, c1 = %20.19e\n", (double)*mfqP->xmin, (double)mfqP->c1));
818:     PetscCall(affpoints(mfqP, mfqP->xmin, mfqP->c1));
819:     if (mfqP->nmodelpoints == mfqP->n) {
820:       valid = PETSC_TRUE;
821:     } else {
822:       valid = PETSC_FALSE;
823:       PetscCall(PetscInfo(tao, "Affine Points: xmin = %20.19e, c2 = %20.19e\n", (double)*mfqP->xmin, (double)mfqP->c2));
824:       PetscCall(affpoints(mfqP, mfqP->xmin, mfqP->c2));
825:       if (mfqP->n > mfqP->nmodelpoints) {
826:         PetscCall(PetscInfo(tao, "Model not valid -- adding geometry points\n"));
827:         PetscCall(modelimprove(tao, mfqP, mfqP->n - mfqP->nmodelpoints));
828:       }
829:     }
830:     for (i = mfqP->nmodelpoints; i > 0; i--) mfqP->model_indices[i] = mfqP->model_indices[i - 1];
831:     mfqP->nmodelpoints++;
832:     mfqP->model_indices[0] = mfqP->minindex;
833:     PetscCall(morepoints(mfqP));
834:     for (i = 0; i < mfqP->nmodelpoints; i++) {
835:       PetscCall(VecGetArray(mfqP->Xhist[mfqP->model_indices[i]], &x));
836:       for (j = 0; j < mfqP->n; j++) mfqP->Disp[i + mfqP->npmax * j] = (x[j] - mfqP->xmin[j]) / deltaold;
837:       PetscCall(VecRestoreArray(mfqP->Xhist[mfqP->model_indices[i]], &x));
838:       PetscCall(VecGetArray(mfqP->Fhist[mfqP->model_indices[i]], &f));
839:       for (j = 0; j < mfqP->m; j++) {
840:         for (k = 0; k < mfqP->n; k++) {
841:           mfqP->work[k] = 0.0;
842:           for (l = 0; l < mfqP->n; l++) mfqP->work[k] += mfqP->H[j + mfqP->m * (k + mfqP->n * l)] * mfqP->Disp[i + mfqP->npmax * l];
843:         }
844:         PetscCallBLAS("BLASdot", mfqP->RES[j * mfqP->npmax + i] = -mfqP->C[j] - BLASdot_(&blasn, &mfqP->Fdiff[j * mfqP->n], &ione, &mfqP->Disp[i], &blasnpmax) - 0.5 * BLASdot_(&blasn, mfqP->work, &ione, &mfqP->Disp[i], &blasnpmax) + f[j]);
845:       }
846:       PetscCall(VecRestoreArray(mfqP->Fhist[mfqP->model_indices[i]], &f));
847:     }

849:     /* Update the quadratic model */
850:     PetscCall(PetscInfo(tao, "Get Quad, size: %" PetscInt_FMT ", points: %" PetscInt_FMT "\n", mfqP->n, mfqP->nmodelpoints));
851:     PetscCall(getquadpounders(mfqP));
852:     PetscCall(VecGetArrayRead(mfqP->Fhist[mfqP->minindex], &fmin));
853:     PetscCallBLAS("BLAScopy", BLAScopy_(&blasm, fmin, &ione, mfqP->C, &ione));
854:     /* G = G*(delta/deltaold) + Gdel */
855:     ratio = mfqP->delta / deltaold;
856:     iblas = blasm * blasn;
857:     PetscCallBLAS("BLASscal", BLASscal_(&iblas, &ratio, mfqP->Fdiff, &ione));
858:     PetscCallBLAS("BLASaxpy", BLASaxpy_(&iblas, &one, mfqP->Gdel, &ione, mfqP->Fdiff, &ione));
859:     /* H = H*(delta/deltaold)^2 + Hdel */
860:     iblas = blasm * blasn * blasn;
861:     ratio *= ratio;
862:     PetscCallBLAS("BLASscal", BLASscal_(&iblas, &ratio, mfqP->H, &ione));
863:     PetscCallBLAS("BLASaxpy", BLASaxpy_(&iblas, &one, mfqP->Hdel, &ione, mfqP->H, &ione));

865:     /* Get residuals */
866:     PetscCall(pounders_update_res(tao));

868:     /* Export solution and gradient residual to TAO */
869:     PetscCall(VecCopy(mfqP->Xhist[mfqP->minindex], tao->solution));
870:     PetscCall(VecSetValues(tao->gradient, mfqP->n, mfqP->indices, mfqP->Gres, INSERT_VALUES));
871:     PetscCall(VecAssemblyBegin(tao->gradient));
872:     PetscCall(VecAssemblyEnd(tao->gradient));
873:     PetscCall(VecNorm(tao->gradient, NORM_2, &gnorm));
874:     gnorm *= mfqP->delta;
875:     /*  final criticality test */
876:     PetscCall(TaoLogConvergenceHistory(tao, minnorm, gnorm, 0.0, tao->ksp_its));
877:     PetscCall(TaoMonitor(tao, tao->niter, minnorm, gnorm, 0.0, step));
878:     PetscUseTypeMethod(tao, convergencetest, tao->cnvP);
879:     /* test for repeated model */
880:     if (mfqP->nmodelpoints == mfqP->last_nmodelpoints) {
881:       same = PETSC_TRUE;
882:     } else {
883:       same = PETSC_FALSE;
884:     }
885:     for (i = 0; i < mfqP->nmodelpoints; i++) {
886:       if (same) {
887:         if (mfqP->model_indices[i] == mfqP->last_model_indices[i]) {
888:           same = PETSC_TRUE;
889:         } else {
890:           same = PETSC_FALSE;
891:         }
892:       }
893:       mfqP->last_model_indices[i] = mfqP->model_indices[i];
894:     }
895:     mfqP->last_nmodelpoints = mfqP->nmodelpoints;
896:     if (same && mfqP->delta == deltaold) {
897:       PetscCall(PetscInfo(tao, "Identical model used in successive iterations\n"));
898:       tao->reason = TAO_CONVERGED_STEPTOL;
899:     }
900:   }
901:   PetscFunctionReturn(PETSC_SUCCESS);
902: }

904: static PetscErrorCode TaoSetUp_POUNDERS(Tao tao)
905: {
906:   TAO_POUNDERS *mfqP = (TAO_POUNDERS *)tao->data;
907:   PetscInt      i, j;
908:   IS            isfloc, isfglob, isxloc, isxglob;

910:   PetscFunctionBegin;
911:   if (!tao->gradient) PetscCall(VecDuplicate(tao->solution, &tao->gradient));
912:   if (!tao->stepdirection) PetscCall(VecDuplicate(tao->solution, &tao->stepdirection));
913:   PetscCall(VecGetSize(tao->solution, &mfqP->n));
914:   PetscCall(VecGetSize(tao->ls_res, &mfqP->m));
915:   mfqP->c1 = PetscSqrtReal((PetscReal)mfqP->n);
916:   if (mfqP->npmax == PETSC_CURRENT) mfqP->npmax = 2 * mfqP->n + 1;
917:   mfqP->npmax = PetscMin((mfqP->n + 1) * (mfqP->n + 2) / 2, mfqP->npmax);
918:   mfqP->npmax = PetscMax(mfqP->npmax, mfqP->n + 2);

920:   PetscCall(PetscMalloc1(tao->max_funcs + 100, &mfqP->Xhist));
921:   PetscCall(PetscMalloc1(tao->max_funcs + 100, &mfqP->Fhist));
922:   for (i = 0; i < mfqP->n + 1; i++) {
923:     PetscCall(VecDuplicate(tao->solution, &mfqP->Xhist[i]));
924:     PetscCall(VecDuplicate(tao->ls_res, &mfqP->Fhist[i]));
925:   }
926:   PetscCall(VecDuplicate(tao->solution, &mfqP->workxvec));
927:   PetscCall(VecDuplicate(tao->ls_res, &mfqP->workfvec));
928:   mfqP->nHist = 0;

930:   PetscCall(PetscMalloc1(tao->max_funcs + 100, &mfqP->Fres));
931:   PetscCall(PetscMalloc1(mfqP->npmax * mfqP->m, &mfqP->RES));
932:   PetscCall(PetscMalloc1(mfqP->n, &mfqP->work));
933:   PetscCall(PetscMalloc1(mfqP->n, &mfqP->work2));
934:   PetscCall(PetscMalloc1(mfqP->n, &mfqP->work3));
935:   PetscCall(PetscMalloc1(PetscMax(mfqP->m, mfqP->n + 1), &mfqP->mwork));
936:   PetscCall(PetscMalloc1(mfqP->npmax - mfqP->n - 1, &mfqP->omega));
937:   PetscCall(PetscMalloc1(mfqP->n * (mfqP->n + 1) / 2, &mfqP->beta));
938:   PetscCall(PetscMalloc1(mfqP->n + 1, &mfqP->alpha));

940:   PetscCall(PetscMalloc1(mfqP->n * mfqP->n * mfqP->m, &mfqP->H));
941:   PetscCall(PetscMalloc1(mfqP->npmax * mfqP->npmax, &mfqP->Q));
942:   PetscCall(PetscMalloc1(mfqP->npmax * mfqP->npmax, &mfqP->Q_tmp));
943:   PetscCall(PetscMalloc1(mfqP->n * (mfqP->n + 1) / 2 * (mfqP->npmax), &mfqP->L));
944:   PetscCall(PetscMalloc1(mfqP->n * (mfqP->n + 1) / 2 * (mfqP->npmax), &mfqP->L_tmp));
945:   PetscCall(PetscMalloc1(mfqP->n * (mfqP->n + 1) / 2 * (mfqP->npmax), &mfqP->L_save));
946:   PetscCall(PetscMalloc1(mfqP->n * (mfqP->n + 1) / 2 * (mfqP->npmax), &mfqP->N));
947:   PetscCall(PetscMalloc1(mfqP->npmax * (mfqP->n + 1), &mfqP->M));
948:   PetscCall(PetscMalloc1(mfqP->npmax * (mfqP->npmax - mfqP->n - 1), &mfqP->Z));
949:   PetscCall(PetscMalloc1(mfqP->npmax, &mfqP->tau));
950:   PetscCall(PetscMalloc1(mfqP->npmax, &mfqP->tau_tmp));
951:   mfqP->nmax = PetscMax(5 * mfqP->npmax, mfqP->n * (mfqP->n + 1) / 2);
952:   PetscCall(PetscMalloc1(mfqP->nmax, &mfqP->npmaxwork));
953:   PetscCall(PetscMalloc1(mfqP->nmax, &mfqP->npmaxiwork));
954:   PetscCall(PetscMalloc1(mfqP->n, &mfqP->xmin));
955:   PetscCall(PetscMalloc1(mfqP->m, &mfqP->C));
956:   PetscCall(PetscMalloc1(mfqP->m * mfqP->n, &mfqP->Fdiff));
957:   PetscCall(PetscMalloc1(mfqP->npmax * mfqP->n, &mfqP->Disp));
958:   PetscCall(PetscMalloc1(mfqP->n, &mfqP->Gres));
959:   PetscCall(PetscMalloc1(mfqP->n * mfqP->n, &mfqP->Hres));
960:   PetscCall(PetscMalloc1(mfqP->n * mfqP->n, &mfqP->Gpoints));
961:   PetscCall(PetscMalloc1(mfqP->npmax, &mfqP->model_indices));
962:   PetscCall(PetscMalloc1(mfqP->npmax, &mfqP->last_model_indices));
963:   PetscCall(PetscMalloc1(mfqP->n, &mfqP->Xsubproblem));
964:   PetscCall(PetscMalloc1(mfqP->m * mfqP->n, &mfqP->Gdel));
965:   PetscCall(PetscMalloc1(mfqP->n * mfqP->n * mfqP->m, &mfqP->Hdel));
966:   PetscCall(PetscMalloc1(PetscMax(mfqP->m, mfqP->n), &mfqP->indices));
967:   PetscCall(PetscMalloc1(mfqP->n, &mfqP->iwork));
968:   PetscCall(PetscMalloc1(mfqP->m * mfqP->m, &mfqP->w));
969:   for (i = 0; i < mfqP->m; i++) {
970:     for (j = 0; j < mfqP->m; j++) {
971:       if (i == j) {
972:         mfqP->w[i + mfqP->m * j] = 1.0;
973:       } else {
974:         mfqP->w[i + mfqP->m * j] = 0.0;
975:       }
976:     }
977:   }
978:   for (i = 0; i < PetscMax(mfqP->m, mfqP->n); i++) mfqP->indices[i] = i;
979:   PetscCallMPI(MPI_Comm_size(((PetscObject)tao)->comm, &mfqP->size));
980:   if (mfqP->size > 1) {
981:     PetscCall(VecCreateSeq(PETSC_COMM_SELF, mfqP->n, &mfqP->localx));
982:     PetscCall(VecCreateSeq(PETSC_COMM_SELF, mfqP->n, &mfqP->localxmin));
983:     PetscCall(VecCreateSeq(PETSC_COMM_SELF, mfqP->m, &mfqP->localf));
984:     PetscCall(VecCreateSeq(PETSC_COMM_SELF, mfqP->m, &mfqP->localfmin));
985:     PetscCall(ISCreateStride(MPI_COMM_SELF, mfqP->n, 0, 1, &isxloc));
986:     PetscCall(ISCreateStride(MPI_COMM_SELF, mfqP->n, 0, 1, &isxglob));
987:     PetscCall(ISCreateStride(MPI_COMM_SELF, mfqP->m, 0, 1, &isfloc));
988:     PetscCall(ISCreateStride(MPI_COMM_SELF, mfqP->m, 0, 1, &isfglob));

990:     PetscCall(VecScatterCreate(tao->solution, isxglob, mfqP->localx, isxloc, &mfqP->scatterx));
991:     PetscCall(VecScatterCreate(tao->ls_res, isfglob, mfqP->localf, isfloc, &mfqP->scatterf));

993:     PetscCall(ISDestroy(&isxloc));
994:     PetscCall(ISDestroy(&isxglob));
995:     PetscCall(ISDestroy(&isfloc));
996:     PetscCall(ISDestroy(&isfglob));
997:   }

999:   if (!mfqP->usegqt) {
1000:     KSP ksp;
1001:     PC  pc;
1002:     PetscCall(VecCreateSeqWithArray(PETSC_COMM_SELF, mfqP->n, mfqP->n, mfqP->Xsubproblem, &mfqP->subx));
1003:     PetscCall(VecCreateSeq(PETSC_COMM_SELF, mfqP->n, &mfqP->subxl));
1004:     PetscCall(VecDuplicate(mfqP->subxl, &mfqP->subb));
1005:     PetscCall(VecDuplicate(mfqP->subxl, &mfqP->subxu));
1006:     PetscCall(VecDuplicate(mfqP->subxl, &mfqP->subpdel));
1007:     PetscCall(VecDuplicate(mfqP->subxl, &mfqP->subndel));
1008:     PetscCall(TaoCreate(PETSC_COMM_SELF, &mfqP->subtao));
1009:     PetscCall(PetscObjectIncrementTabLevel((PetscObject)mfqP->subtao, (PetscObject)tao, 1));
1010:     PetscCall(TaoSetType(mfqP->subtao, TAOBNTR));
1011:     PetscCall(TaoSetOptionsPrefix(mfqP->subtao, "pounders_subsolver_"));
1012:     PetscCall(TaoSetSolution(mfqP->subtao, mfqP->subx));
1013:     PetscCall(TaoSetObjectiveAndGradient(mfqP->subtao, NULL, pounders_fg, (void *)mfqP));
1014:     PetscCall(TaoSetMaximumIterations(mfqP->subtao, mfqP->gqt_maxits));
1015:     PetscCall(TaoSetFromOptions(mfqP->subtao));
1016:     PetscCall(TaoGetKSP(mfqP->subtao, &ksp));
1017:     if (ksp) {
1018:       PetscCall(KSPGetPC(ksp, &pc));
1019:       PetscCall(PCSetType(pc, PCNONE));
1020:     }
1021:     PetscCall(TaoSetVariableBounds(mfqP->subtao, mfqP->subxl, mfqP->subxu));
1022:     PetscCall(MatCreateSeqDense(PETSC_COMM_SELF, mfqP->n, mfqP->n, mfqP->Hres, &mfqP->subH));
1023:     PetscCall(TaoSetHessian(mfqP->subtao, mfqP->subH, mfqP->subH, pounders_h, (void *)mfqP));
1024:   }
1025:   PetscFunctionReturn(PETSC_SUCCESS);
1026: }

1028: static PetscErrorCode TaoDestroy_POUNDERS(Tao tao)
1029: {
1030:   TAO_POUNDERS *mfqP = (TAO_POUNDERS *)tao->data;
1031:   PetscInt      i;

1033:   PetscFunctionBegin;
1034:   if (!mfqP->usegqt) {
1035:     PetscCall(TaoDestroy(&mfqP->subtao));
1036:     PetscCall(VecDestroy(&mfqP->subx));
1037:     PetscCall(VecDestroy(&mfqP->subxl));
1038:     PetscCall(VecDestroy(&mfqP->subxu));
1039:     PetscCall(VecDestroy(&mfqP->subb));
1040:     PetscCall(VecDestroy(&mfqP->subpdel));
1041:     PetscCall(VecDestroy(&mfqP->subndel));
1042:     PetscCall(MatDestroy(&mfqP->subH));
1043:   }
1044:   PetscCall(PetscFree(mfqP->Fres));
1045:   PetscCall(PetscFree(mfqP->RES));
1046:   PetscCall(PetscFree(mfqP->work));
1047:   PetscCall(PetscFree(mfqP->work2));
1048:   PetscCall(PetscFree(mfqP->work3));
1049:   PetscCall(PetscFree(mfqP->mwork));
1050:   PetscCall(PetscFree(mfqP->omega));
1051:   PetscCall(PetscFree(mfqP->beta));
1052:   PetscCall(PetscFree(mfqP->alpha));
1053:   PetscCall(PetscFree(mfqP->H));
1054:   PetscCall(PetscFree(mfqP->Q));
1055:   PetscCall(PetscFree(mfqP->Q_tmp));
1056:   PetscCall(PetscFree(mfqP->L));
1057:   PetscCall(PetscFree(mfqP->L_tmp));
1058:   PetscCall(PetscFree(mfqP->L_save));
1059:   PetscCall(PetscFree(mfqP->N));
1060:   PetscCall(PetscFree(mfqP->M));
1061:   PetscCall(PetscFree(mfqP->Z));
1062:   PetscCall(PetscFree(mfqP->tau));
1063:   PetscCall(PetscFree(mfqP->tau_tmp));
1064:   PetscCall(PetscFree(mfqP->npmaxwork));
1065:   PetscCall(PetscFree(mfqP->npmaxiwork));
1066:   PetscCall(PetscFree(mfqP->xmin));
1067:   PetscCall(PetscFree(mfqP->C));
1068:   PetscCall(PetscFree(mfqP->Fdiff));
1069:   PetscCall(PetscFree(mfqP->Disp));
1070:   PetscCall(PetscFree(mfqP->Gres));
1071:   PetscCall(PetscFree(mfqP->Hres));
1072:   PetscCall(PetscFree(mfqP->Gpoints));
1073:   PetscCall(PetscFree(mfqP->model_indices));
1074:   PetscCall(PetscFree(mfqP->last_model_indices));
1075:   PetscCall(PetscFree(mfqP->Xsubproblem));
1076:   PetscCall(PetscFree(mfqP->Gdel));
1077:   PetscCall(PetscFree(mfqP->Hdel));
1078:   PetscCall(PetscFree(mfqP->indices));
1079:   PetscCall(PetscFree(mfqP->iwork));
1080:   PetscCall(PetscFree(mfqP->w));
1081:   for (i = 0; i < mfqP->nHist; i++) {
1082:     PetscCall(VecDestroy(&mfqP->Xhist[i]));
1083:     PetscCall(VecDestroy(&mfqP->Fhist[i]));
1084:   }
1085:   PetscCall(VecDestroy(&mfqP->workxvec));
1086:   PetscCall(VecDestroy(&mfqP->workfvec));
1087:   PetscCall(PetscFree(mfqP->Xhist));
1088:   PetscCall(PetscFree(mfqP->Fhist));

1090:   if (mfqP->size > 1) {
1091:     PetscCall(VecDestroy(&mfqP->localx));
1092:     PetscCall(VecDestroy(&mfqP->localxmin));
1093:     PetscCall(VecDestroy(&mfqP->localf));
1094:     PetscCall(VecDestroy(&mfqP->localfmin));
1095:   }
1096:   PetscCall(PetscFree(tao->data));
1097:   PetscFunctionReturn(PETSC_SUCCESS);
1098: }

1100: static PetscErrorCode TaoSetFromOptions_POUNDERS(Tao tao, PetscOptionItems *PetscOptionsObject)
1101: {
1102:   TAO_POUNDERS *mfqP = (TAO_POUNDERS *)tao->data;

1104:   PetscFunctionBegin;
1105:   PetscOptionsHeadBegin(PetscOptionsObject, "POUNDERS method for least-squares optimization");
1106:   PetscCall(PetscOptionsReal("-tao_pounders_delta", "initial delta", "", mfqP->delta, &mfqP->delta0, NULL));
1107:   mfqP->delta = mfqP->delta0;
1108:   PetscCall(PetscOptionsInt("-tao_pounders_npmax", "max number of points in model", "", mfqP->npmax, &mfqP->npmax, NULL));
1109:   PetscCall(PetscOptionsBool("-tao_pounders_gqt", "use gqt algorithm for subproblem", "", mfqP->usegqt, &mfqP->usegqt, NULL));
1110:   PetscOptionsHeadEnd();
1111:   PetscFunctionReturn(PETSC_SUCCESS);
1112: }

1114: static PetscErrorCode TaoView_POUNDERS(Tao tao, PetscViewer viewer)
1115: {
1116:   TAO_POUNDERS *mfqP = (TAO_POUNDERS *)tao->data;
1117:   PetscBool     isascii;

1119:   PetscFunctionBegin;
1120:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &isascii));
1121:   if (isascii) {
1122:     PetscCall(PetscViewerASCIIPrintf(viewer, "initial delta: %g\n", (double)mfqP->delta0));
1123:     PetscCall(PetscViewerASCIIPrintf(viewer, "final delta: %g\n", (double)mfqP->delta));
1124:     PetscCall(PetscViewerASCIIPrintf(viewer, "model points: %" PetscInt_FMT "\n", mfqP->nmodelpoints));
1125:     if (mfqP->usegqt) {
1126:       PetscCall(PetscViewerASCIIPrintf(viewer, "subproblem solver: gqt\n"));
1127:     } else {
1128:       PetscCall(TaoView(mfqP->subtao, viewer));
1129:     }
1130:   }
1131:   PetscFunctionReturn(PETSC_SUCCESS);
1132: }
1133: /*MC
1134:   TAOPOUNDERS - POUNDERS derivate-free model-based algorithm for nonlinear least squares

1136:   Options Database Keys:
1137: + -tao_pounders_delta - initial step length
1138: . -tao_pounders_npmax - maximum number of points in model
1139: - -tao_pounders_gqt - use gqt algorithm for subproblem instead of TRON

1141:   Level: beginner

1143: M*/

1145: PETSC_EXTERN PetscErrorCode TaoCreate_POUNDERS(Tao tao)
1146: {
1147:   TAO_POUNDERS *mfqP = (TAO_POUNDERS *)tao->data;

1149:   PetscFunctionBegin;
1150:   tao->ops->setup          = TaoSetUp_POUNDERS;
1151:   tao->ops->solve          = TaoSolve_POUNDERS;
1152:   tao->ops->view           = TaoView_POUNDERS;
1153:   tao->ops->setfromoptions = TaoSetFromOptions_POUNDERS;
1154:   tao->ops->destroy        = TaoDestroy_POUNDERS;

1156:   PetscCall(PetscNew(&mfqP));
1157:   tao->data = (void *)mfqP;

1159:   /* Override default settings (unless already changed) */
1160:   PetscCall(TaoParametersInitialize(tao));
1161:   PetscObjectParameterSetDefault(tao, max_it, 2000);
1162:   PetscObjectParameterSetDefault(tao, max_funcs, 4000);

1164:   mfqP->npmax      = PETSC_CURRENT;
1165:   mfqP->delta0     = 0.1;
1166:   mfqP->delta      = 0.1;
1167:   mfqP->deltamax   = 1e3;
1168:   mfqP->deltamin   = 1e-6;
1169:   mfqP->c2         = 10.0;
1170:   mfqP->theta1     = 1e-5;
1171:   mfqP->theta2     = 1e-4;
1172:   mfqP->gamma0     = 0.5;
1173:   mfqP->gamma1     = 2.0;
1174:   mfqP->eta0       = 0.0;
1175:   mfqP->eta1       = 0.1;
1176:   mfqP->usegqt     = PETSC_FALSE;
1177:   mfqP->gqt_rtol   = 0.001;
1178:   mfqP->gqt_maxits = 50;
1179:   mfqP->workxvec   = NULL;
1180:   PetscFunctionReturn(PETSC_SUCCESS);
1181: }