Actual source code: chwirut2f.F90

  1: !  Program usage: mpiexec -n 1 chwirut1f [-help] [all TAO options]
  2: !
  3: !  Description:  This example demonstrates use of the TAO package to solve a
  4: !  nonlinear least-squares problem on a single processor.  We minimize the
  5: !  Chwirut function:
  6: !       sum_{i=0}^{n/2-1} ( alpha*(x_{2i+1}-x_{2i}^2)^2 + (1-x_{2i})^2)
  7: !
  8: !  The C version of this code is chwirut1.c
  9: !
 10: #include <petsc/finclude/petsctao.h>
 11: module chwirut2fmodule
 12:   use petscmpi              ! or mpi or mpi_f08
 13:   use petsctao
 14:   implicit none
 15:   PetscReal t(0:213)
 16:   PetscReal y(0:213)
 17:   PetscInt, parameter :: m = 214, n = 3
 18:   PetscMPIInt, parameter :: nn = n
 19:   PetscMPIInt rank
 20:   PetscMPIInt size
 21:   PetscMPIInt, parameter :: idle_tag = 2000, die_tag = 3000
 22:   PetscMPIInt, parameter :: zero = 0, one = 1

 24: contains
 25:   subroutine InitializeData()

 27:     PetscInt i
 28:     i = 0
 29:     y(i) = 92.9000; t(i) = 0.5000; i = i + 1
 30:     y(i) = 78.7000; t(i) = 0.6250; i = i + 1
 31:     y(i) = 64.2000; t(i) = 0.7500; i = i + 1
 32:     y(i) = 64.9000; t(i) = 0.8750; i = i + 1
 33:     y(i) = 57.1000; t(i) = 1.0000; i = i + 1
 34:     y(i) = 43.3000; t(i) = 1.2500; i = i + 1
 35:     y(i) = 31.1000; t(i) = 1.7500; i = i + 1
 36:     y(i) = 23.6000; t(i) = 2.2500; i = i + 1
 37:     y(i) = 31.0500; t(i) = 1.7500; i = i + 1
 38:     y(i) = 23.7750; t(i) = 2.2500; i = i + 1
 39:     y(i) = 17.7375; t(i) = 2.7500; i = i + 1
 40:     y(i) = 13.8000; t(i) = 3.2500; i = i + 1
 41:     y(i) = 11.5875; t(i) = 3.7500; i = i + 1
 42:     y(i) = 9.4125; t(i) = 4.2500; i = i + 1
 43:     y(i) = 7.7250; t(i) = 4.7500; i = i + 1
 44:     y(i) = 7.3500; t(i) = 5.2500; i = i + 1
 45:     y(i) = 8.0250; t(i) = 5.7500; i = i + 1
 46:     y(i) = 90.6000; t(i) = 0.5000; i = i + 1
 47:     y(i) = 76.9000; t(i) = 0.6250; i = i + 1
 48:     y(i) = 71.6000; t(i) = 0.7500; i = i + 1
 49:     y(i) = 63.6000; t(i) = 0.8750; i = i + 1
 50:     y(i) = 54.0000; t(i) = 1.0000; i = i + 1
 51:     y(i) = 39.2000; t(i) = 1.2500; i = i + 1
 52:     y(i) = 29.3000; t(i) = 1.7500; i = i + 1
 53:     y(i) = 21.4000; t(i) = 2.2500; i = i + 1
 54:     y(i) = 29.1750; t(i) = 1.7500; i = i + 1
 55:     y(i) = 22.1250; t(i) = 2.2500; i = i + 1
 56:     y(i) = 17.5125; t(i) = 2.7500; i = i + 1
 57:     y(i) = 14.2500; t(i) = 3.2500; i = i + 1
 58:     y(i) = 9.4500; t(i) = 3.7500; i = i + 1
 59:     y(i) = 9.1500; t(i) = 4.2500; i = i + 1
 60:     y(i) = 7.9125; t(i) = 4.7500; i = i + 1
 61:     y(i) = 8.4750; t(i) = 5.2500; i = i + 1
 62:     y(i) = 6.1125; t(i) = 5.7500; i = i + 1
 63:     y(i) = 80.0000; t(i) = 0.5000; i = i + 1
 64:     y(i) = 79.0000; t(i) = 0.6250; i = i + 1
 65:     y(i) = 63.8000; t(i) = 0.7500; i = i + 1
 66:     y(i) = 57.2000; t(i) = 0.8750; i = i + 1
 67:     y(i) = 53.2000; t(i) = 1.0000; i = i + 1
 68:     y(i) = 42.5000; t(i) = 1.2500; i = i + 1
 69:     y(i) = 26.8000; t(i) = 1.7500; i = i + 1
 70:     y(i) = 20.4000; t(i) = 2.2500; i = i + 1
 71:     y(i) = 26.8500; t(i) = 1.7500; i = i + 1
 72:     y(i) = 21.0000; t(i) = 2.2500; i = i + 1
 73:     y(i) = 16.4625; t(i) = 2.7500; i = i + 1
 74:     y(i) = 12.5250; t(i) = 3.2500; i = i + 1
 75:     y(i) = 10.5375; t(i) = 3.7500; i = i + 1
 76:     y(i) = 8.5875; t(i) = 4.2500; i = i + 1
 77:     y(i) = 7.1250; t(i) = 4.7500; i = i + 1
 78:     y(i) = 6.1125; t(i) = 5.2500; i = i + 1
 79:     y(i) = 5.9625; t(i) = 5.7500; i = i + 1
 80:     y(i) = 74.1000; t(i) = 0.5000; i = i + 1
 81:     y(i) = 67.3000; t(i) = 0.6250; i = i + 1
 82:     y(i) = 60.8000; t(i) = 0.7500; i = i + 1
 83:     y(i) = 55.5000; t(i) = 0.8750; i = i + 1
 84:     y(i) = 50.3000; t(i) = 1.0000; i = i + 1
 85:     y(i) = 41.0000; t(i) = 1.2500; i = i + 1
 86:     y(i) = 29.4000; t(i) = 1.7500; i = i + 1
 87:     y(i) = 20.4000; t(i) = 2.2500; i = i + 1
 88:     y(i) = 29.3625; t(i) = 1.7500; i = i + 1
 89:     y(i) = 21.1500; t(i) = 2.2500; i = i + 1
 90:     y(i) = 16.7625; t(i) = 2.7500; i = i + 1
 91:     y(i) = 13.2000; t(i) = 3.2500; i = i + 1
 92:     y(i) = 10.8750; t(i) = 3.7500; i = i + 1
 93:     y(i) = 8.1750; t(i) = 4.2500; i = i + 1
 94:     y(i) = 7.3500; t(i) = 4.7500; i = i + 1
 95:     y(i) = 5.9625; t(i) = 5.2500; i = i + 1
 96:     y(i) = 5.6250; t(i) = 5.7500; i = i + 1
 97:     y(i) = 81.5000; t(i) = .5000; i = i + 1
 98:     y(i) = 62.4000; t(i) = .7500; i = i + 1
 99:     y(i) = 32.5000; t(i) = 1.5000; i = i + 1
100:     y(i) = 12.4100; t(i) = 3.0000; i = i + 1
101:     y(i) = 13.1200; t(i) = 3.0000; i = i + 1
102:     y(i) = 15.5600; t(i) = 3.0000; i = i + 1
103:     y(i) = 5.6300; t(i) = 6.0000; i = i + 1
104:     y(i) = 78.0000; t(i) = .5000; i = i + 1
105:     y(i) = 59.9000; t(i) = .7500; i = i + 1
106:     y(i) = 33.2000; t(i) = 1.5000; i = i + 1
107:     y(i) = 13.8400; t(i) = 3.0000; i = i + 1
108:     y(i) = 12.7500; t(i) = 3.0000; i = i + 1
109:     y(i) = 14.6200; t(i) = 3.0000; i = i + 1
110:     y(i) = 3.9400; t(i) = 6.0000; i = i + 1
111:     y(i) = 76.8000; t(i) = .5000; i = i + 1
112:     y(i) = 61.0000; t(i) = .7500; i = i + 1
113:     y(i) = 32.9000; t(i) = 1.5000; i = i + 1
114:     y(i) = 13.8700; t(i) = 3.0000; i = i + 1
115:     y(i) = 11.8100; t(i) = 3.0000; i = i + 1
116:     y(i) = 13.3100; t(i) = 3.0000; i = i + 1
117:     y(i) = 5.4400; t(i) = 6.0000; i = i + 1
118:     y(i) = 78.0000; t(i) = .5000; i = i + 1
119:     y(i) = 63.5000; t(i) = .7500; i = i + 1
120:     y(i) = 33.8000; t(i) = 1.5000; i = i + 1
121:     y(i) = 12.5600; t(i) = 3.0000; i = i + 1
122:     y(i) = 5.6300; t(i) = 6.0000; i = i + 1
123:     y(i) = 12.7500; t(i) = 3.0000; i = i + 1
124:     y(i) = 13.1200; t(i) = 3.0000; i = i + 1
125:     y(i) = 5.4400; t(i) = 6.0000; i = i + 1
126:     y(i) = 76.8000; t(i) = .5000; i = i + 1
127:     y(i) = 60.0000; t(i) = .7500; i = i + 1
128:     y(i) = 47.8000; t(i) = 1.0000; i = i + 1
129:     y(i) = 32.0000; t(i) = 1.5000; i = i + 1
130:     y(i) = 22.2000; t(i) = 2.0000; i = i + 1
131:     y(i) = 22.5700; t(i) = 2.0000; i = i + 1
132:     y(i) = 18.8200; t(i) = 2.5000; i = i + 1
133:     y(i) = 13.9500; t(i) = 3.0000; i = i + 1
134:     y(i) = 11.2500; t(i) = 4.0000; i = i + 1
135:     y(i) = 9.0000; t(i) = 5.0000; i = i + 1
136:     y(i) = 6.6700; t(i) = 6.0000; i = i + 1
137:     y(i) = 75.8000; t(i) = .5000; i = i + 1
138:     y(i) = 62.0000; t(i) = .7500; i = i + 1
139:     y(i) = 48.8000; t(i) = 1.0000; i = i + 1
140:     y(i) = 35.2000; t(i) = 1.5000; i = i + 1
141:     y(i) = 20.0000; t(i) = 2.0000; i = i + 1
142:     y(i) = 20.3200; t(i) = 2.0000; i = i + 1
143:     y(i) = 19.3100; t(i) = 2.5000; i = i + 1
144:     y(i) = 12.7500; t(i) = 3.0000; i = i + 1
145:     y(i) = 10.4200; t(i) = 4.0000; i = i + 1
146:     y(i) = 7.3100; t(i) = 5.0000; i = i + 1
147:     y(i) = 7.4200; t(i) = 6.0000; i = i + 1
148:     y(i) = 70.5000; t(i) = .5000; i = i + 1
149:     y(i) = 59.5000; t(i) = .7500; i = i + 1
150:     y(i) = 48.5000; t(i) = 1.0000; i = i + 1
151:     y(i) = 35.8000; t(i) = 1.5000; i = i + 1
152:     y(i) = 21.0000; t(i) = 2.0000; i = i + 1
153:     y(i) = 21.6700; t(i) = 2.0000; i = i + 1
154:     y(i) = 21.0000; t(i) = 2.5000; i = i + 1
155:     y(i) = 15.6400; t(i) = 3.0000; i = i + 1
156:     y(i) = 8.1700; t(i) = 4.0000; i = i + 1
157:     y(i) = 8.5500; t(i) = 5.0000; i = i + 1
158:     y(i) = 10.1200; t(i) = 6.0000; i = i + 1
159:     y(i) = 78.0000; t(i) = .5000; i = i + 1
160:     y(i) = 66.0000; t(i) = .6250; i = i + 1
161:     y(i) = 62.0000; t(i) = .7500; i = i + 1
162:     y(i) = 58.0000; t(i) = .8750; i = i + 1
163:     y(i) = 47.7000; t(i) = 1.0000; i = i + 1
164:     y(i) = 37.8000; t(i) = 1.2500; i = i + 1
165:     y(i) = 20.2000; t(i) = 2.2500; i = i + 1
166:     y(i) = 21.0700; t(i) = 2.2500; i = i + 1
167:     y(i) = 13.8700; t(i) = 2.7500; i = i + 1
168:     y(i) = 9.6700; t(i) = 3.2500; i = i + 1
169:     y(i) = 7.7600; t(i) = 3.7500; i = i + 1
170:     y(i) = 5.4400; t(i) = 4.2500; i = i + 1
171:     y(i) = 4.8700; t(i) = 4.7500; i = i + 1
172:     y(i) = 4.0100; t(i) = 5.2500; i = i + 1
173:     y(i) = 3.7500; t(i) = 5.7500; i = i + 1
174:     y(i) = 24.1900; t(i) = 3.0000; i = i + 1
175:     y(i) = 25.7600; t(i) = 3.0000; i = i + 1
176:     y(i) = 18.0700; t(i) = 3.0000; i = i + 1
177:     y(i) = 11.8100; t(i) = 3.0000; i = i + 1
178:     y(i) = 12.0700; t(i) = 3.0000; i = i + 1
179:     y(i) = 16.1200; t(i) = 3.0000; i = i + 1
180:     y(i) = 70.8000; t(i) = .5000; i = i + 1
181:     y(i) = 54.7000; t(i) = .7500; i = i + 1
182:     y(i) = 48.0000; t(i) = 1.0000; i = i + 1
183:     y(i) = 39.8000; t(i) = 1.5000; i = i + 1
184:     y(i) = 29.8000; t(i) = 2.0000; i = i + 1
185:     y(i) = 23.7000; t(i) = 2.5000; i = i + 1
186:     y(i) = 29.6200; t(i) = 2.0000; i = i + 1
187:     y(i) = 23.8100; t(i) = 2.5000; i = i + 1
188:     y(i) = 17.7000; t(i) = 3.0000; i = i + 1
189:     y(i) = 11.5500; t(i) = 4.0000; i = i + 1
190:     y(i) = 12.0700; t(i) = 5.0000; i = i + 1
191:     y(i) = 8.7400; t(i) = 6.0000; i = i + 1
192:     y(i) = 80.7000; t(i) = .5000; i = i + 1
193:     y(i) = 61.3000; t(i) = .7500; i = i + 1
194:     y(i) = 47.5000; t(i) = 1.0000; i = i + 1
195:     y(i) = 29.0000; t(i) = 1.5000; i = i + 1
196:     y(i) = 24.0000; t(i) = 2.0000; i = i + 1
197:     y(i) = 17.7000; t(i) = 2.5000; i = i + 1
198:     y(i) = 24.5600; t(i) = 2.0000; i = i + 1
199:     y(i) = 18.6700; t(i) = 2.5000; i = i + 1
200:     y(i) = 16.2400; t(i) = 3.0000; i = i + 1
201:     y(i) = 8.7400; t(i) = 4.0000; i = i + 1
202:     y(i) = 7.8700; t(i) = 5.0000; i = i + 1
203:     y(i) = 8.5100; t(i) = 6.0000; i = i + 1
204:     y(i) = 66.7000; t(i) = .5000; i = i + 1
205:     y(i) = 59.2000; t(i) = .7500; i = i + 1
206:     y(i) = 40.8000; t(i) = 1.0000; i = i + 1
207:     y(i) = 30.7000; t(i) = 1.5000; i = i + 1
208:     y(i) = 25.7000; t(i) = 2.0000; i = i + 1
209:     y(i) = 16.3000; t(i) = 2.5000; i = i + 1
210:     y(i) = 25.9900; t(i) = 2.0000; i = i + 1
211:     y(i) = 16.9500; t(i) = 2.5000; i = i + 1
212:     y(i) = 13.3500; t(i) = 3.0000; i = i + 1
213:     y(i) = 8.6200; t(i) = 4.0000; i = i + 1
214:     y(i) = 7.2000; t(i) = 5.0000; i = i + 1
215:     y(i) = 6.6400; t(i) = 6.0000; i = i + 1
216:     y(i) = 13.6900; t(i) = 3.0000; i = i + 1
217:     y(i) = 81.0000; t(i) = .5000; i = i + 1
218:     y(i) = 64.5000; t(i) = .7500; i = i + 1
219:     y(i) = 35.5000; t(i) = 1.5000; i = i + 1
220:     y(i) = 13.3100; t(i) = 3.0000; i = i + 1
221:     y(i) = 4.8700; t(i) = 6.0000; i = i + 1
222:     y(i) = 12.9400; t(i) = 3.0000; i = i + 1
223:     y(i) = 5.0600; t(i) = 6.0000; i = i + 1
224:     y(i) = 15.1900; t(i) = 3.0000; i = i + 1
225:     y(i) = 14.6200; t(i) = 3.0000; i = i + 1
226:     y(i) = 15.6400; t(i) = 3.0000; i = i + 1
227:     y(i) = 25.5000; t(i) = 1.7500; i = i + 1
228:     y(i) = 25.9500; t(i) = 1.7500; i = i + 1
229:     y(i) = 81.7000; t(i) = .5000; i = i + 1
230:     y(i) = 61.6000; t(i) = .7500; i = i + 1
231:     y(i) = 29.8000; t(i) = 1.7500; i = i + 1
232:     y(i) = 29.8100; t(i) = 1.7500; i = i + 1
233:     y(i) = 17.1700; t(i) = 2.7500; i = i + 1
234:     y(i) = 10.3900; t(i) = 3.7500; i = i + 1
235:     y(i) = 28.4000; t(i) = 1.7500; i = i + 1
236:     y(i) = 28.6900; t(i) = 1.7500; i = i + 1
237:     y(i) = 81.3000; t(i) = .5000; i = i + 1
238:     y(i) = 60.9000; t(i) = .7500; i = i + 1
239:     y(i) = 16.6500; t(i) = 2.7500; i = i + 1
240:     y(i) = 10.0500; t(i) = 3.7500; i = i + 1
241:     y(i) = 28.9000; t(i) = 1.7500; i = i + 1
242:     y(i) = 28.9500; t(i) = 1.7500; i = i + 1

244:   end

246:   subroutine TaskWorker(ierr)

248:     PetscErrorCode ierr
249:     PetscReal x(n), f(1)
250:     PetscMPIInt tag
251:     PetscInt index
252:     PetscMPIInt status(MPI_STATUS_SIZE)

254:     tag = IDLE_TAG
255:     f = 0.0
256:     ! Send check-in message to rank-0
257:     PetscCallMPI(MPI_Send(f, one, MPIU_SCALAR, zero, IDLE_TAG, PETSC_COMM_WORLD, ierr))
258:     do while (tag /= DIE_TAG)
259:       PetscCallMPI(MPI_Recv(x, nn, MPIU_SCALAR, zero, MPI_ANY_TAG, PETSC_COMM_WORLD, status, ierr))
260:       tag = status(MPI_TAG)
261:       if (tag == IDLE_TAG) then
262:         PetscCallMPI(MPI_Send(f, one, MPIU_SCALAR, zero, IDLE_TAG, PETSC_COMM_WORLD, ierr))
263:       else if (tag /= DIE_TAG) then
264:         index = tag
265:         ! Compute local part of residual
266:         PetscCall(RunSimulation(x, index, f(1), ierr))

268:         ! Return residual to rank-0
269:         PetscCallMPI(MPI_Send(f, one, MPIU_SCALAR, zero, tag, PETSC_COMM_WORLD, ierr))
270:       end if
271:     end do
272:     ierr = 0
273:   end

275:   subroutine RunSimulation(x, i, f, ierr)

277:     PetscReal x(n), f
278:     PetscInt i
279:     PetscErrorCode ierr
280:     f = y(i) - exp(-x(1)*t(i))/(x(2) + x(3)*t(i))
281:     ierr = 0
282:   end

284:   subroutine StopWorkers(ierr)

286:     integer checkedin
287:     PetscMPIInt status(MPI_STATUS_SIZE)
288:     PetscMPIInt source
289:     PetscReal f(1), x(n)
290:     PetscErrorCode ierr
291:     PetscInt i

293:     checkedin = 0
294:     do while (checkedin < size - 1)
295:       PetscCallMPI(MPI_Recv(f, one, MPIU_SCALAR, MPI_ANY_SOURCE, MPI_ANY_TAG, PETSC_COMM_WORLD, status, ierr))
296:       checkedin = checkedin + 1
297:       source = status(MPI_SOURCE)
298:       do i = 1, n
299:         x(i) = 0.0
300:       end do
301:       PetscCallMPI(MPI_Send(x, nn, MPIU_SCALAR, source, DIE_TAG, PETSC_COMM_WORLD, ierr))
302:     end do
303:     ierr = 0
304:   end

306: ! --------------------------------------------------------------------
307: !  FormFunction - Evaluates the function f(X) and gradient G(X)
308: !
309: !  Input Parameters:
310: !  tao - the Tao context
311: !  X   - input vector
312: !  dummy - not used
313: !
314: !  Output Parameters:
315: !  f - function vector

317:   subroutine FormFunction(ta, x, f, dummy, ierr)

319:     Tao ta
320:     Vec x, f
321:     PetscErrorCode ierr

323:     PetscInt i, checkedin
324:     PetscInt finished_tasks
325:     PetscMPIInt next_task
326:     PetscMPIInt status(MPI_STATUS_SIZE), tag, source
327:     PetscInt dummy

329:     PetscReal, pointer :: f_v(:), x_v(:)
330:     PetscReal fval(1)

332:     ierr = 0

334: !     Get pointers to vector data
335:     PetscCall(VecGetArrayRead(x, x_v, ierr))
336:     PetscCall(VecGetArray(f, f_v, ierr))

338: !     Compute F(X)
339:     if (size == 1) then
340:       ! Single processor
341:       do i = 1, m
342:         PetscCall(RunSimulation(x_v, i, f_v(i), ierr))
343:       end do
344:     else
345:       ! Multiprocessor main
346:       next_task = zero
347:       finished_tasks = 0
348:       checkedin = 0

350:       do while (finished_tasks < m .or. checkedin < size - 1)
351:         PetscCallMPI(MPI_Recv(fval, one, MPIU_SCALAR, MPI_ANY_SOURCE, MPI_ANY_TAG, PETSC_COMM_WORLD, status, ierr))
352:         tag = status(MPI_TAG)
353:         source = status(MPI_SOURCE)
354:         if (tag == IDLE_TAG) then
355:           checkedin = checkedin + 1
356:         else
357:           f_v(tag + 1) = fval(1)
358:           finished_tasks = finished_tasks + 1
359:         end if
360:         if (next_task < m) then
361:           ! Send task to worker
362:           PetscCallMPI(MPI_Send(x_v, nn, MPIU_SCALAR, source, next_task, PETSC_COMM_WORLD, ierr))
363:           next_task = next_task + one
364:         else
365:           ! Send idle message to worker
366:           PetscCallMPI(MPI_Send(x_v, nn, MPIU_SCALAR, source, IDLE_TAG, PETSC_COMM_WORLD, ierr))
367:         end if
368:       end do
369:     end if

371: !     Restore vectors
372:     PetscCall(VecRestoreArrayRead(x, x_v, ierr))
373:     PetscCall(VecRestoreArray(F, f_v, ierr))
374:   end

376:   subroutine FormStartingPoint(x)

378:     Vec x
379:     PetscReal, pointer :: x_v(:)
380:     PetscErrorCode ierr

382:     PetscCall(VecGetArray(x, x_v, ierr))
383:     x_v(1) = 0.15
384:     x_v(2) = 0.008
385:     x_v(3) = 0.01
386:     PetscCall(VecRestoreArray(x, x_v, ierr))
387:   end
388: end module chwirut2fmodule

390: program main
391:   use chwirut2fmodule
392:   implicit none
393: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
394: !                   Variable declarations
395: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
396: !
397: !  See additional variable declarations in the file chwirut2f.h

399:   PetscErrorCode ierr    ! used to check for functions returning nonzeros
400:   Vec x       ! solution vector
401:   Vec f       ! vector of functions
402:   Tao ta     ! Tao context

404: !  Initialize TAO and PETSc
405:   PetscCallA(PetscInitialize(ierr))
406:   PetscCallMPIA(MPI_Comm_size(PETSC_COMM_WORLD, size, ierr))
407:   PetscCallMPIA(MPI_Comm_rank(PETSC_COMM_WORLD, rank, ierr))

409: !  Initialize problem parameters
410:   call InitializeData()

412:   if (rank == 0) then
413: !  Allocate vectors for the solution and gradient
414:     PetscCallA(VecCreateSeq(PETSC_COMM_SELF, n, x, ierr))
415:     PetscCallA(VecCreateSeq(PETSC_COMM_SELF, m, f, ierr))

417: !     The TAO code begins here

419: !     Create TAO solver
420:     PetscCallA(TaoCreate(PETSC_COMM_SELF, ta, ierr))
421:     PetscCallA(TaoSetType(ta, TAOPOUNDERS, ierr))

423: !     Set routines for function, gradient, and hessian evaluation
424:     PetscCallA(TaoSetResidualRoutine(ta, f, FormFunction, 0, ierr))

426: !     Optional: Set initial guess
427:     call FormStartingPoint(x)
428:     PetscCallA(TaoSetSolution(ta, x, ierr))

430: !     Check for TAO command line options
431:     PetscCallA(TaoSetFromOptions(ta, ierr))
432: !     SOLVE THE APPLICATION
433:     PetscCallA(TaoSolve(ta, ierr))

435: !     Free TAO data structures
436:     PetscCallA(TaoDestroy(ta, ierr))

438: !     Free PETSc data structures
439:     PetscCallA(VecDestroy(x, ierr))
440:     PetscCallA(VecDestroy(f, ierr))
441:     PetscCallA(StopWorkers(ierr))

443:   else
444:     PetscCallA(TaskWorker(ierr))
445:   end if

447:   PetscCallA(PetscFinalize(ierr))
448: end
449: !/*TEST
450: !
451: !   build:
452: !      requires: !complex
453: !
454: !   test:
455: !      nsize: 3
456: !      args: -tao_monitor_short -tao_max_it 100 -tao_type pounders -tao_gatol 1.e-5
457: !      requires: !single
458: !
459: !
460: !TEST*/