Actual source code: gpcglinesearch.c

  1: #include <petsc/private/taolinesearchimpl.h>
  2: #include <../src/tao/linesearch/impls/gpcglinesearch/gpcglinesearch.h>

  4: static PetscErrorCode TaoLineSearchDestroy_GPCG(TaoLineSearch ls)
  5: {
  6:   TaoLineSearch_GPCG *ctx = (TaoLineSearch_GPCG *)ls->data;

  8:   PetscFunctionBegin;
  9:   PetscCall(VecDestroy(&ctx->W1));
 10:   PetscCall(VecDestroy(&ctx->W2));
 11:   PetscCall(VecDestroy(&ctx->Gold));
 12:   PetscCall(VecDestroy(&ctx->x));
 13:   PetscCall(PetscFree(ls->data));
 14:   PetscFunctionReturn(PETSC_SUCCESS);
 15: }

 17: static PetscErrorCode TaoLineSearchView_GPCG(TaoLineSearch ls, PetscViewer viewer)
 18: {
 19:   PetscBool isascii;

 21:   PetscFunctionBegin;
 22:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &isascii));
 23:   if (isascii) PetscCall(PetscViewerASCIIPrintf(viewer, " GPCG Line search"));
 24:   PetscFunctionReturn(PETSC_SUCCESS);
 25: }

 27: static PetscErrorCode TaoLineSearchApply_GPCG(TaoLineSearch ls, Vec x, PetscReal *f, Vec g, Vec s)
 28: {
 29:   TaoLineSearch_GPCG *neP = (TaoLineSearch_GPCG *)ls->data;
 30:   PetscInt            i;
 31:   PetscBool           g_computed = PETSC_FALSE; /* to prevent extra gradient computation */
 32:   PetscReal           d1, finit, actred, prered, rho, gdx;

 34:   PetscFunctionBegin;
 35:   /* ls->stepmin - lower bound for step */
 36:   /* ls->stepmax - upper bound for step */
 37:   /* ls->rtol     - relative tolerance for an acceptable step */
 38:   /* ls->ftol     - tolerance for sufficient decrease condition */
 39:   /* ls->gtol     - tolerance for curvature condition */
 40:   /* ls->nfeval   - number of function evaluations */
 41:   /* ls->nfeval   - number of function/gradient evaluations */
 42:   /* ls->max_funcs  - maximum number of function evaluations */

 44:   PetscCall(TaoLineSearchMonitor(ls, 0, *f, 0.0));

 46:   ls->reason = TAOLINESEARCH_CONTINUE_ITERATING;
 47:   ls->step   = ls->initstep;
 48:   if (!neP->W2) {
 49:     PetscCall(VecDuplicate(x, &neP->W2));
 50:     PetscCall(VecDuplicate(x, &neP->W1));
 51:     PetscCall(VecDuplicate(x, &neP->Gold));
 52:     neP->x = x;
 53:     PetscCall(PetscObjectReference((PetscObject)neP->x));
 54:   } else if (x != neP->x) {
 55:     PetscCall(VecDestroy(&neP->x));
 56:     PetscCall(VecDestroy(&neP->W1));
 57:     PetscCall(VecDestroy(&neP->W2));
 58:     PetscCall(VecDestroy(&neP->Gold));
 59:     PetscCall(VecDuplicate(x, &neP->W1));
 60:     PetscCall(VecDuplicate(x, &neP->W2));
 61:     PetscCall(VecDuplicate(x, &neP->Gold));
 62:     PetscCall(PetscObjectDereference((PetscObject)neP->x));
 63:     neP->x = x;
 64:     PetscCall(PetscObjectReference((PetscObject)neP->x));
 65:   }

 67:   PetscCall(VecDot(g, s, &gdx));
 68:   if (gdx > 0) {
 69:     PetscCall(PetscInfo(ls, "Line search error: search direction is not descent direction. dot(g,s) = %g\n", (double)gdx));
 70:     ls->reason = TAOLINESEARCH_FAILED_ASCENT;
 71:     PetscFunctionReturn(PETSC_SUCCESS);
 72:   }
 73:   PetscCall(VecCopy(x, neP->W2));
 74:   PetscCall(VecCopy(g, neP->Gold));
 75:   if (ls->bounded) {
 76:     /* Compute the smallest steplength that will make one nonbinding variable  equal the bound */
 77:     PetscCall(VecStepBoundInfo(x, s, ls->lower, ls->upper, &rho, &actred, &d1));
 78:     ls->step = PetscMin(ls->step, d1);
 79:   }
 80:   rho    = 0;
 81:   actred = 0;

 83:   if (ls->step < 0) {
 84:     PetscCall(PetscInfo(ls, "Line search error: initial step parameter %g< 0\n", (double)ls->step));
 85:     ls->reason = TAOLINESEARCH_HALTED_OTHER;
 86:     PetscFunctionReturn(PETSC_SUCCESS);
 87:   }

 89:   /* Initialization */
 90:   finit = *f;
 91:   for (i = 0; i < ls->max_funcs; i++) {
 92:     /* Force the step to be within the bounds */
 93:     ls->step = PetscMax(ls->step, ls->stepmin);
 94:     ls->step = PetscMin(ls->step, ls->stepmax);

 96:     PetscCall(VecWAXPY(neP->W2, ls->step, s, x));
 97:     if (ls->bounded) {
 98:       /* Make sure new vector is numerically within bounds */
 99:       PetscCall(VecMedian(neP->W2, ls->lower, ls->upper, neP->W2));
100:     }

102:     /* Gradient is not needed here.  Unless there is a separate
103:        gradient routine, compute it here anyway to prevent recomputing at
104:        the end of the line search */
105:     PetscCall(VecLockReadPush(x));
106:     if (ls->hasobjective) {
107:       PetscCall(TaoLineSearchComputeObjective(ls, neP->W2, f));
108:       g_computed = PETSC_FALSE;
109:     } else if (ls->usegts) {
110:       PetscCall(TaoLineSearchComputeObjectiveAndGTS(ls, neP->W2, f, &gdx));
111:       g_computed = PETSC_FALSE;
112:     } else {
113:       PetscCall(TaoLineSearchComputeObjectiveAndGradient(ls, neP->W2, f, g));
114:       g_computed = PETSC_TRUE;
115:     }
116:     PetscCall(VecLockReadPop(x));

118:     PetscCall(TaoLineSearchMonitor(ls, i + 1, *f, ls->step));

120:     if (0 == i) ls->f_fullstep = *f;

122:     actred = *f - finit;
123:     PetscCall(VecWAXPY(neP->W1, -1.0, x, neP->W2)); /* W1 = W2 - X */
124:     PetscCall(VecDot(neP->W1, neP->Gold, &prered));

126:     if (PetscAbsReal(prered) < 1.0e-100) prered = 1.0e-12;
127:     rho = actred / prered;

129:     /*
130:        If sufficient progress has been obtained, accept the
131:        point.  Otherwise, backtrack.
132:     */

134:     if (actred > 0) {
135:       PetscCall(PetscInfo(ls, "Step resulted in ascent, rejecting.\n"));
136:       ls->step = (ls->step) / 2;
137:     } else if (rho > ls->ftol) {
138:       break;
139:     } else {
140:       ls->step = (ls->step) / 2;
141:     }

143:     /* Convergence testing */

145:     if (ls->step <= ls->stepmin || ls->step >= ls->stepmax) {
146:       ls->reason = TAOLINESEARCH_HALTED_OTHER;
147:       PetscCall(PetscInfo(ls, "Rounding errors may prevent further progress.  May not be a step satisfying\n"));
148:       PetscCall(PetscInfo(ls, "sufficient decrease and curvature conditions. Tolerances may be too small.\n"));
149:       break;
150:     }
151:     if (ls->step == ls->stepmax) {
152:       PetscCall(PetscInfo(ls, "Step is at the upper bound, stepmax (%g)\n", (double)ls->stepmax));
153:       ls->reason = TAOLINESEARCH_HALTED_UPPERBOUND;
154:       break;
155:     }
156:     if (ls->step == ls->stepmin) {
157:       PetscCall(PetscInfo(ls, "Step is at the lower bound, stepmin (%g)\n", (double)ls->stepmin));
158:       ls->reason = TAOLINESEARCH_HALTED_LOWERBOUND;
159:       break;
160:     }
161:     if ((ls->nfeval + ls->nfgeval) >= ls->max_funcs) {
162:       PetscCall(PetscInfo(ls, "Number of line search function evals (%" PetscInt_FMT ") > maximum (%" PetscInt_FMT ")\n", ls->nfeval + ls->nfgeval, ls->max_funcs));
163:       ls->reason = TAOLINESEARCH_HALTED_MAXFCN;
164:       break;
165:     }
166:     if (neP->bracket && (ls->stepmax - ls->stepmin <= ls->rtol * ls->stepmax)) {
167:       PetscCall(PetscInfo(ls, "Relative width of interval of uncertainty is at most rtol (%g)\n", (double)ls->rtol));
168:       ls->reason = TAOLINESEARCH_HALTED_RTOL;
169:       break;
170:     }
171:   }
172:   PetscCall(PetscInfo(ls, "%" PetscInt_FMT " function evals in line search, step = %g\n", ls->nfeval + ls->nfgeval, (double)ls->step));
173:   /* set new solution vector and compute gradient if necessary */
174:   PetscCall(VecCopy(neP->W2, x));
175:   if (ls->reason == TAOLINESEARCH_CONTINUE_ITERATING) ls->reason = TAOLINESEARCH_SUCCESS;
176:   if (!g_computed) PetscCall(TaoLineSearchComputeGradient(ls, x, g));
177:   PetscFunctionReturn(PETSC_SUCCESS);
178: }

180: /*MC
181:    TAOLINESEARCHGPCG - Special line-search method for the Gradient-Projected Conjugate Gradient (`TAOGPCG`) algorithm.
182:    Should not be used with any other algorithm.

184:    Level: developer

186: .seealso: `TAOGPCG`, `TaoLineSearch`, `Tao`
187: M*/
188: PETSC_EXTERN PetscErrorCode TaoLineSearchCreate_GPCG(TaoLineSearch ls)
189: {
190:   TaoLineSearch_GPCG *neP;

192:   PetscFunctionBegin;
193:   ls->ftol      = 0.05;
194:   ls->rtol      = 0.0;
195:   ls->gtol      = 0.0;
196:   ls->stepmin   = 1.0e-20;
197:   ls->stepmax   = 1.0e+20;
198:   ls->nfeval    = 0;
199:   ls->max_funcs = 30;
200:   ls->step      = 1.0;

202:   PetscCall(PetscNew(&neP));
203:   neP->bracket = 0;
204:   neP->infoc   = 1;
205:   ls->data     = (void *)neP;

207:   ls->ops->setup          = NULL;
208:   ls->ops->reset          = NULL;
209:   ls->ops->apply          = TaoLineSearchApply_GPCG;
210:   ls->ops->view           = TaoLineSearchView_GPCG;
211:   ls->ops->destroy        = TaoLineSearchDestroy_GPCG;
212:   ls->ops->setfromoptions = NULL;
213:   ls->ops->monitor        = NULL;
214:   PetscFunctionReturn(PETSC_SUCCESS);
215: }