Actual source code: glee.c
1: /*
2: Code for time stepping with the General Linear with Error Estimation method
4: Notes:
5: The general system is written as
7: Udot = F(t,U)
9: */
10: #include <petsc/private/tsimpl.h>
11: #include <petscdm.h>
13: static PetscBool cited = PETSC_FALSE;
14: static const char citation[] = "@ARTICLE{Constantinescu_TR2016b,\n"
15: " author = {Constantinescu, E.M.},\n"
16: " title = {Estimating Global Errors in Time Stepping},\n"
17: " journal = {ArXiv e-prints},\n"
18: " year = 2016,\n"
19: " adsurl = {http://adsabs.harvard.edu/abs/2015arXiv150305166C}\n}\n";
21: static TSGLEEType TSGLEEDefaultType = TSGLEE35;
22: static PetscBool TSGLEERegisterAllCalled;
23: static PetscBool TSGLEEPackageInitialized;
24: static PetscInt explicit_stage_time_id;
26: typedef struct _GLEETableau *GLEETableau;
27: struct _GLEETableau {
28: char *name;
29: PetscInt order; /* Classical approximation order of the method i*/
30: PetscInt s; /* Number of stages */
31: PetscInt r; /* Number of steps */
32: PetscReal gamma; /* LTE ratio */
33: PetscReal *A, *B, *U, *V, *S, *F, *c; /* Tableau */
34: PetscReal *Fembed; /* Embedded final method coefficients */
35: PetscReal *Ferror; /* Coefficients for computing error */
36: PetscReal *Serror; /* Coefficients for initializing the error */
37: PetscInt pinterp; /* Interpolation order */
38: PetscReal *binterp; /* Interpolation coefficients */
39: PetscReal ccfl; /* Placeholder for CFL coefficient relative to forward Euler */
40: };
41: typedef struct _GLEETableauLink *GLEETableauLink;
42: struct _GLEETableauLink {
43: struct _GLEETableau tab;
44: GLEETableauLink next;
45: };
46: static GLEETableauLink GLEETableauList;
48: typedef struct {
49: GLEETableau tableau;
50: Vec *Y; /* Solution vector (along with auxiliary solution y~ or eps) */
51: Vec *X; /* Temporary solution vector */
52: Vec *YStage; /* Stage values */
53: Vec *YdotStage; /* Stage right-hand side */
54: Vec W; /* Right-hand-side for implicit stage solve */
55: Vec Ydot; /* Work vector holding Ydot during residual evaluation */
56: Vec yGErr; /* Vector holding the global error after a step is completed */
57: PetscScalar *swork; /* Scalar work (size of the number of stages)*/
58: PetscScalar *rwork; /* Scalar work (size of the number of steps)*/
59: PetscReal scoeff; /* shift = scoeff/dt */
60: PetscReal stage_time;
61: TSStepStatus status;
62: } TS_GLEE;
64: /*MC
65: TSGLEE23 - Second order three stage GLEE method
67: This method has three stages.
68: s = 3, r = 2
70: Level: advanced
72: .seealso: [](ch_ts), `TSGLEE`
73: M*/
74: /*MC
75: TSGLEE24 - Second order four stage GLEE method
77: This method has four stages.
78: s = 4, r = 2
80: Level: advanced
82: .seealso: [](ch_ts), `TSGLEE`
83: M*/
84: /*MC
85: TSGLEE25i - Second order five stage GLEE method
87: This method has five stages.
88: s = 5, r = 2
90: Level: advanced
92: .seealso: [](ch_ts), `TSGLEE`
93: M*/
94: /*MC
95: TSGLEE35 - Third order five stage GLEE method
97: This method has five stages.
98: s = 5, r = 2
100: Level: advanced
102: .seealso: [](ch_ts), `TSGLEE`
103: M*/
104: /*MC
105: TSGLEEEXRK2A - Second order six stage GLEE method
107: This method has six stages.
108: s = 6, r = 2
110: Level: advanced
112: .seealso: [](ch_ts), `TSGLEE`
113: M*/
114: /*MC
115: TSGLEERK32G1 - Third order eight stage GLEE method
117: This method has eight stages.
118: s = 8, r = 2
120: Level: advanced
122: .seealso: [](ch_ts), `TSGLEE`
123: M*/
124: /*MC
125: TSGLEERK285EX - Second order nine stage GLEE method
127: This method has nine stages.
128: s = 9, r = 2
130: Level: advanced
132: .seealso: [](ch_ts), `TSGLEE`
133: M*/
135: /*@C
136: TSGLEERegisterAll - Registers all of the General Linear with Error Estimation methods in `TSGLEE`
138: Not Collective, but should be called by all processes which will need the schemes to be registered
140: Level: advanced
142: .seealso: [](ch_ts), `TSGLEERegisterDestroy()`
143: @*/
144: PetscErrorCode TSGLEERegisterAll(void)
145: {
146: PetscFunctionBegin;
147: if (TSGLEERegisterAllCalled) PetscFunctionReturn(PETSC_SUCCESS);
148: TSGLEERegisterAllCalled = PETSC_TRUE;
150: {
151: #define GAMMA 0.5
152: /* y-eps form */
153: const PetscInt p = 1, s = 3, r = 2;
154: const PetscReal A[3][3] =
155: {
156: {1.0, 0, 0 },
157: {0, 0.5, 0 },
158: {0, 0.5, 0.5}
159: },
160: B[2][3] = {{1.0, 0, 0}, {-2.0, 1.0, 1.0}}, U[3][2] = {{1.0, 0}, {1.0, 0.5}, {1.0, 0.5}}, V[2][2] = {{1, 0}, {0, 1}}, S[2] = {1, 0}, F[2] = {1, 0}, Fembed[2] = {1, 1 - GAMMA}, Ferror[2] = {0, 1}, Serror[2] = {1, 0};
161: PetscCall(TSGLEERegister(TSGLEEi1, p, s, r, GAMMA, &A[0][0], &B[0][0], &U[0][0], &V[0][0], S, F, NULL, Fembed, Ferror, Serror, 0, NULL));
162: }
163: {
164: #undef GAMMA
165: #define GAMMA 0.0
166: /* y-eps form */
167: const PetscInt p = 2, s = 3, r = 2;
168: const PetscReal A[3][3] =
169: {
170: {0, 0, 0},
171: {1, 0, 0},
172: {0.25, 0.25, 0}
173: },
174: B[2][3] = {{1.0 / 12.0, 1.0 / 12.0, 5.0 / 6.0}, {1.0 / 12.0, 1.0 / 12.0, -1.0 / 6.0}}, U[3][2] = {{1, 0}, {1, 10}, {1, -1}}, V[2][2] = {{1, 0}, {0, 1}}, S[2] = {1, 0}, F[2] = {1, 0}, Fembed[2] = {1, 1 - GAMMA}, Ferror[2] = {0, 1}, Serror[2] = {1, 0};
175: PetscCall(TSGLEERegister(TSGLEE23, p, s, r, GAMMA, &A[0][0], &B[0][0], &U[0][0], &V[0][0], S, F, NULL, Fembed, Ferror, Serror, 0, NULL));
176: }
177: {
178: #undef GAMMA
179: #define GAMMA 0.0
180: /* y-y~ form */
181: const PetscInt p = 2, s = 4, r = 2;
182: const PetscReal A[4][4] =
183: {
184: {0, 0, 0, 0},
185: {0.75, 0, 0, 0},
186: {0.25, 29.0 / 60.0, 0, 0},
187: {-21.0 / 44.0, 145.0 / 44.0, -20.0 / 11.0, 0}
188: },
189: B[2][4] = {{109.0 / 275.0, 58.0 / 75.0, -37.0 / 110.0, 1.0 / 6.0}, {3.0 / 11.0, 0, 75.0 / 88.0, -1.0 / 8.0}}, U[4][2] = {{0, 1}, {75.0 / 58.0, -17.0 / 58.0}, {0, 1}, {0, 1}}, V[2][2] = {{1, 0}, {0, 1}}, S[2] = {1, 1}, F[2] = {1, 0}, Fembed[2] = {0, 1}, Ferror[2] = {-1.0 / (1.0 - GAMMA), 1.0 / (1.0 - GAMMA)}, Serror[2] = {1.0 - GAMMA, 1.0};
190: PetscCall(TSGLEERegister(TSGLEE24, p, s, r, GAMMA, &A[0][0], &B[0][0], &U[0][0], &V[0][0], S, F, NULL, Fembed, Ferror, Serror, 0, NULL));
191: }
192: {
193: #undef GAMMA
194: #define GAMMA 0.0
195: /* y-y~ form */
196: const PetscInt p = 2, s = 5, r = 2;
197: const PetscReal A[5][5] =
198: {
199: {0, 0, 0, 0, 0},
200: {-0.94079244066783383269, 0, 0, 0, 0},
201: {0.64228187778301907108, 0.10915356933958500042, 0, 0, 0},
202: {-0.51764297742287450812, 0.74414270351096040738, -0.71404164927824538121, 0, 0},
203: {-0.44696561556825969206, -0.76768425657590196518, 0.20111608138142987881, 0.93828186737840469796, 0}
204: },
205: B[2][5] = {{-0.029309178948150356153, -0.49671981884013874923, 0.34275801517650053274, 0.32941112623949194988, 0.85385985637229662276}, {0.78133219686062535272, 0.074238691892675897635, 0.57957363498384957966, -0.24638502829674959968, -0.18875949544040123033}}, U[5][2] = {{0.16911424754448327735, 0.83088575245551672265}, {0.53638465733199574340, 0.46361534266800425660}, {0.39901579167169582526, 0.60098420832830417474}, {0.87689005530618575480, 0.12310994469381424520}, {0.99056100455550913009, 0.0094389954444908699092}}, V[2][2] = {{1, 0}, {0, 1}}, S[2] = {1, 1}, F[2] = {1, 0}, Fembed[2] = {0, 1}, Ferror[2] = {-1.0 / (1.0 - GAMMA), 1.0 / (1.0 - GAMMA)}, Serror[2] = {1.0 - GAMMA, 1.0};
206: PetscCall(TSGLEERegister(TSGLEE25I, p, s, r, GAMMA, &A[0][0], &B[0][0], &U[0][0], &V[0][0], S, F, NULL, Fembed, Ferror, Serror, 0, NULL));
207: }
208: {
209: #undef GAMMA
210: #define GAMMA 0.0
211: /* y-y~ form */
212: const PetscInt p = 3, s = 5, r = 2;
213: const PetscReal A[5][5] =
214: {
215: {0, 0, 0, 0, 0},
216: {-2169604947363702313.0 / 24313474998937147335.0, 0, 0, 0, 0},
217: {46526746497697123895.0 / 94116917485856474137.0, -10297879244026594958.0 / 49199457603717988219.0, 0, 0, 0},
218: {23364788935845982499.0 / 87425311444725389446.0, -79205144337496116638.0 / 148994349441340815519.0, 40051189859317443782.0 / 36487615018004984309.0, 0, 0},
219: {42089522664062539205.0 / 124911313006412840286.0, -15074384760342762939.0 / 137927286865289746282.0, -62274678522253371016.0 / 125918573676298591413.0, 13755475729852471739.0 / 79257927066651693390.0, 0}
220: },
221: B[2][5] = {{61546696837458703723.0 / 56982519523786160813.0, -55810892792806293355.0 / 206957624151308356511.0, 24061048952676379087.0 / 158739347956038723465.0, 3577972206874351339.0 / 7599733370677197135.0, -59449832954780563947.0 / 137360038685338563670.0}, {-9738262186984159168.0 / 99299082461487742983.0, -32797097931948613195.0 / 61521565616362163366.0, 42895514606418420631.0 / 71714201188501437336.0, 22608567633166065068.0 / 55371917805607957003.0, 94655809487476459565.0 / 151517167160302729021.0}}, U[5][2] = {{70820309139834661559.0 / 80863923579509469826.0, 10043614439674808267.0 / 80863923579509469826.0}, {161694774978034105510.0 / 106187653640211060371.0, -55507121337823045139.0 / 106187653640211060371.0}, {78486094644566264568.0 / 88171030896733822981.0, 9684936252167558413.0 / 88171030896733822981.0}, {65394922146334854435.0 / 84570853840405479554.0, 19175931694070625119.0 / 84570853840405479554.0}, {8607282770183754108.0 / 108658046436496925911.0, 100050763666313171803.0 / 108658046436496925911.0}}, V[2][2] = {{1, 0}, {0, 1}}, S[2] = {1, 1}, F[2] = {1, 0}, Fembed[2] = {0, 1}, Ferror[2] = {-1.0 / (1.0 - GAMMA), 1.0 / (1.0 - GAMMA)}, Serror[2] = {1.0 - GAMMA, 1.0};
222: PetscCall(TSGLEERegister(TSGLEE35, p, s, r, GAMMA, &A[0][0], &B[0][0], &U[0][0], &V[0][0], S, F, NULL, Fembed, Ferror, Serror, 0, NULL));
223: }
224: {
225: #undef GAMMA
226: #define GAMMA 0.25
227: /* y-eps form */
228: const PetscInt p = 2, s = 6, r = 2;
229: const PetscReal A[6][6] =
230: {
231: {0, 0, 0, 0, 0, 0},
232: {1, 0, 0, 0, 0, 0},
233: {0, 0, 0, 0, 0, 0},
234: {0, 0, 0.5, 0, 0, 0},
235: {0, 0, 0.25, 0.25, 0, 0},
236: {0, 0, 0.25, 0.25, 0.5, 0}
237: },
238: B[2][6] = {{0.5, 0.5, 0, 0, 0, 0}, {-2.0 / 3.0, -2.0 / 3.0, 1.0 / 3.0, 1.0 / 3.0, 1.0 / 3.0, 1.0 / 3.0}}, U[6][2] = {{1, 0}, {1, 0}, {1, 0.75}, {1, 0.75}, {1, 0.75}, {1, 0.75}}, V[2][2] = {{1, 0}, {0, 1}}, S[2] = {1, 0}, F[2] = {1, 0}, Fembed[2] = {1, 1 - GAMMA}, Ferror[2] = {0, 1}, Serror[2] = {1, 0};
239: PetscCall(TSGLEERegister(TSGLEEEXRK2A, p, s, r, GAMMA, &A[0][0], &B[0][0], &U[0][0], &V[0][0], S, F, NULL, Fembed, Ferror, Serror, 0, NULL));
240: }
241: {
242: #undef GAMMA
243: #define GAMMA 0.0
244: /* y-eps form */
245: const PetscInt p = 3, s = 8, r = 2;
246: const PetscReal A[8][8] =
247: {
248: {0, 0, 0, 0, 0, 0, 0, 0},
249: {0.5, 0, 0, 0, 0, 0, 0, 0},
250: {-1, 2, 0, 0, 0, 0, 0, 0},
251: {1.0 / 6.0, 2.0 / 3.0, 1.0 / 6.0, 0, 0, 0, 0, 0},
252: {0, 0, 0, 0, 0, 0, 0, 0},
253: {-7.0 / 24.0, 1.0 / 3.0, 1.0 / 12.0, -1.0 / 8.0, 0.5, 0, 0, 0},
254: {7.0 / 6.0, -4.0 / 3.0, -1.0 / 3.0, 0.5, -1.0, 2.0, 0, 0},
255: {0, 0, 0, 0, 1.0 / 6.0, 2.0 / 3.0, 1.0 / 6.0, 0}
256: },
257: B[2][8] = {{1.0 / 6.0, 2.0 / 3.0, 1.0 / 6.0, 0, 0, 0, 0, 0}, {-1.0 / 6.0, -2.0 / 3.0, -1.0 / 6.0, 0, 1.0 / 6.0, 2.0 / 3.0, 1.0 / 6.0, 0}}, U[8][2] = {{1, 0}, {1, 0}, {1, 0}, {1, 0}, {1, 1}, {1, 1}, {1, 1}, {1, 1}}, V[2][2] = {{1, 0}, {0, 1}}, S[2] = {1, 0}, F[2] = {1, 0}, Fembed[2] = {1, 1 - GAMMA}, Ferror[2] = {0, 1}, Serror[2] = {1, 0};
258: PetscCall(TSGLEERegister(TSGLEERK32G1, p, s, r, GAMMA, &A[0][0], &B[0][0], &U[0][0], &V[0][0], S, F, NULL, Fembed, Ferror, Serror, 0, NULL));
259: }
260: {
261: #undef GAMMA
262: #define GAMMA 0.25
263: /* y-eps form */
264: const PetscInt p = 2, s = 9, r = 2;
265: const PetscReal A[9][9] =
266: {
267: {0, 0, 0, 0, 0, 0, 0, 0, 0},
268: {0.585786437626904966, 0, 0, 0, 0, 0, 0, 0, 0},
269: {0.149999999999999994, 0.849999999999999978, 0, 0, 0, 0, 0, 0, 0},
270: {0, 0, 0, 0, 0, 0, 0, 0, 0},
271: {0, 0, 0, 0.292893218813452483, 0, 0, 0, 0, 0},
272: {0, 0, 0, 0.0749999999999999972, 0.424999999999999989, 0, 0, 0, 0},
273: {0, 0, 0, 0.176776695296636893, 0.176776695296636893, 0.146446609406726241, 0, 0, 0},
274: {0, 0, 0, 0.176776695296636893, 0.176776695296636893, 0.146446609406726241, 0.292893218813452483, 0, 0},
275: {0, 0, 0, 0.176776695296636893, 0.176776695296636893, 0.146446609406726241, 0.0749999999999999972, 0.424999999999999989, 0}
276: },
277: B[2][9] = {{0.353553390593273786, 0.353553390593273786, 0.292893218813452483, 0, 0, 0, 0, 0, 0}, {-0.471404520791031678, -0.471404520791031678, -0.390524291751269959, 0.235702260395515839, 0.235702260395515839, 0.195262145875634979, 0.235702260395515839, 0.235702260395515839, 0.195262145875634979}}, U[9][2] = {{1, 0}, {1, 0}, {1, 0}, {1, 0.75}, {1, 0.75}, {1, 0.75}, {1, 0.75}, {1, 0.75}, {1, 0.75}}, V[2][2] = {{1, 0}, {0, 1}}, S[2] = {1, 0}, F[2] = {1, 0}, Fembed[2] = {1, 1 - GAMMA}, Ferror[2] = {0, 1}, Serror[2] = {1, 0};
278: PetscCall(TSGLEERegister(TSGLEERK285EX, p, s, r, GAMMA, &A[0][0], &B[0][0], &U[0][0], &V[0][0], S, F, NULL, Fembed, Ferror, Serror, 0, NULL));
279: }
280: PetscFunctionReturn(PETSC_SUCCESS);
281: }
283: /*@C
284: TSGLEERegisterDestroy - Frees the list of schemes that were registered by `TSGLEERegister()`.
286: Not Collective
288: Level: advanced
290: .seealso: [](ch_ts), `TSGLEERegister()`, `TSGLEERegisterAll()`
291: @*/
292: PetscErrorCode TSGLEERegisterDestroy(void)
293: {
294: GLEETableauLink link;
296: PetscFunctionBegin;
297: while ((link = GLEETableauList)) {
298: GLEETableau t = &link->tab;
299: GLEETableauList = link->next;
300: PetscCall(PetscFree5(t->A, t->B, t->U, t->V, t->c));
301: PetscCall(PetscFree2(t->S, t->F));
302: PetscCall(PetscFree(t->Fembed));
303: PetscCall(PetscFree(t->Ferror));
304: PetscCall(PetscFree(t->Serror));
305: PetscCall(PetscFree(t->binterp));
306: PetscCall(PetscFree(t->name));
307: PetscCall(PetscFree(link));
308: }
309: TSGLEERegisterAllCalled = PETSC_FALSE;
310: PetscFunctionReturn(PETSC_SUCCESS);
311: }
313: /*@C
314: TSGLEEInitializePackage - This function initializes everything in the `TSGLEE` package. It is called
315: from `TSInitializePackage()`.
317: Level: developer
319: .seealso: [](ch_ts), `PetscInitialize()`
320: @*/
321: PetscErrorCode TSGLEEInitializePackage(void)
322: {
323: PetscFunctionBegin;
324: if (TSGLEEPackageInitialized) PetscFunctionReturn(PETSC_SUCCESS);
325: TSGLEEPackageInitialized = PETSC_TRUE;
326: PetscCall(TSGLEERegisterAll());
327: PetscCall(PetscObjectComposedDataRegister(&explicit_stage_time_id));
328: PetscCall(PetscRegisterFinalize(TSGLEEFinalizePackage));
329: PetscFunctionReturn(PETSC_SUCCESS);
330: }
332: /*@C
333: TSGLEEFinalizePackage - This function destroys everything in the `TSGLEE` package. It is
334: called from `PetscFinalize()`.
336: Level: developer
338: .seealso: [](ch_ts), `PetscFinalize()`
339: @*/
340: PetscErrorCode TSGLEEFinalizePackage(void)
341: {
342: PetscFunctionBegin;
343: TSGLEEPackageInitialized = PETSC_FALSE;
344: PetscCall(TSGLEERegisterDestroy());
345: PetscFunctionReturn(PETSC_SUCCESS);
346: }
348: /*@C
349: TSGLEERegister - register a new `TSGLEE` scheme by providing the entries in the Butcher tableau
351: Not Collective, but the same schemes should be registered on all processes on which they will be used, No Fortran Support
353: Input Parameters:
354: + name - identifier for method
355: . order - order of method
356: . s - number of stages
357: . r - number of steps
358: . gamma - LTE ratio
359: . A - stage coefficients (dimension s*s, row-major)
360: . B - step completion coefficients (dimension r*s, row-major)
361: . U - method coefficients (dimension s*r, row-major)
362: . V - method coefficients (dimension r*r, row-major)
363: . S - starting coefficients
364: . F - finishing coefficients
365: . c - abscissa (dimension s; NULL to use row sums of A)
366: . Fembed - step completion coefficients for embedded method
367: . Ferror - error computation coefficients
368: . Serror - error initialization coefficients
369: . pinterp - order of interpolation (0 if unavailable)
370: - binterp - array of interpolation coefficients (NULL if unavailable)
372: Level: advanced
374: Note:
375: Several `TSGLEE` methods are provided, this function is only needed to create new methods.
377: .seealso: [](ch_ts), `TSGLEE`
378: @*/
379: PetscErrorCode TSGLEERegister(TSGLEEType name, PetscInt order, PetscInt s, PetscInt r, PetscReal gamma, const PetscReal A[], const PetscReal B[], const PetscReal U[], const PetscReal V[], const PetscReal S[], const PetscReal F[], const PetscReal c[], const PetscReal Fembed[], const PetscReal Ferror[], const PetscReal Serror[], PetscInt pinterp, const PetscReal binterp[])
380: {
381: GLEETableauLink link;
382: GLEETableau t;
383: PetscInt i, j;
385: PetscFunctionBegin;
386: PetscCall(TSGLEEInitializePackage());
387: PetscCall(PetscNew(&link));
388: t = &link->tab;
389: PetscCall(PetscStrallocpy(name, &t->name));
390: t->order = order;
391: t->s = s;
392: t->r = r;
393: t->gamma = gamma;
394: PetscCall(PetscMalloc5(s * s, &t->A, r * r, &t->V, s, &t->c, r * s, &t->B, s * r, &t->U));
395: PetscCall(PetscMalloc2(r, &t->S, r, &t->F));
396: PetscCall(PetscArraycpy(t->A, A, s * s));
397: PetscCall(PetscArraycpy(t->B, B, r * s));
398: PetscCall(PetscArraycpy(t->U, U, s * r));
399: PetscCall(PetscArraycpy(t->V, V, r * r));
400: PetscCall(PetscArraycpy(t->S, S, r));
401: PetscCall(PetscArraycpy(t->F, F, r));
402: if (c) {
403: PetscCall(PetscArraycpy(t->c, c, s));
404: } else {
405: for (i = 0; i < s; i++)
406: for (j = 0, t->c[i] = 0; j < s; j++) t->c[i] += A[i * s + j];
407: }
408: PetscCall(PetscMalloc1(r, &t->Fembed));
409: PetscCall(PetscMalloc1(r, &t->Ferror));
410: PetscCall(PetscMalloc1(r, &t->Serror));
411: PetscCall(PetscArraycpy(t->Fembed, Fembed, r));
412: PetscCall(PetscArraycpy(t->Ferror, Ferror, r));
413: PetscCall(PetscArraycpy(t->Serror, Serror, r));
414: t->pinterp = pinterp;
415: PetscCall(PetscMalloc1(s * pinterp, &t->binterp));
416: PetscCall(PetscArraycpy(t->binterp, binterp, s * pinterp));
418: link->next = GLEETableauList;
419: GLEETableauList = link;
420: PetscFunctionReturn(PETSC_SUCCESS);
421: }
423: static PetscErrorCode TSEvaluateStep_GLEE(TS ts, PetscInt order, Vec X, PetscBool *done)
424: {
425: TS_GLEE *glee = (TS_GLEE *)ts->data;
426: GLEETableau tab = glee->tableau;
427: PetscReal h, *B = tab->B, *V = tab->V, *F = tab->F, *Fembed = tab->Fembed;
428: PetscInt s = tab->s, r = tab->r, i, j;
429: Vec *Y = glee->Y, *YdotStage = glee->YdotStage;
430: PetscScalar *ws = glee->swork, *wr = glee->rwork;
432: PetscFunctionBegin;
433: switch (glee->status) {
434: case TS_STEP_INCOMPLETE:
435: case TS_STEP_PENDING:
436: h = ts->time_step;
437: break;
438: case TS_STEP_COMPLETE:
439: h = ts->ptime - ts->ptime_prev;
440: break;
441: default:
442: SETERRQ(PetscObjectComm((PetscObject)ts), PETSC_ERR_PLIB, "Invalid TSStepStatus");
443: }
445: if (order == tab->order) {
446: /* Note: Irrespective of whether status is TS_STEP_INCOMPLETE
447: or TS_STEP_COMPLETE, glee->X has the solution at the
448: beginning of the time step. So no need to roll-back.
449: */
450: if (glee->status == TS_STEP_INCOMPLETE) {
451: for (i = 0; i < r; i++) {
452: PetscCall(VecZeroEntries(Y[i]));
453: for (j = 0; j < r; j++) wr[j] = V[i * r + j];
454: PetscCall(VecMAXPY(Y[i], r, wr, glee->X));
455: for (j = 0; j < s; j++) ws[j] = h * B[i * s + j];
456: PetscCall(VecMAXPY(Y[i], s, ws, YdotStage));
457: }
458: PetscCall(VecZeroEntries(X));
459: for (j = 0; j < r; j++) wr[j] = F[j];
460: PetscCall(VecMAXPY(X, r, wr, Y));
461: } else PetscCall(VecCopy(ts->vec_sol, X));
462: PetscFunctionReturn(PETSC_SUCCESS);
464: } else if (order == tab->order - 1) {
465: /* Complete with the embedded method (Fembed) */
466: for (i = 0; i < r; i++) {
467: PetscCall(VecZeroEntries(Y[i]));
468: for (j = 0; j < r; j++) wr[j] = V[i * r + j];
469: PetscCall(VecMAXPY(Y[i], r, wr, glee->X));
470: for (j = 0; j < s; j++) ws[j] = h * B[i * s + j];
471: PetscCall(VecMAXPY(Y[i], s, ws, YdotStage));
472: }
473: PetscCall(VecZeroEntries(X));
474: for (j = 0; j < r; j++) wr[j] = Fembed[j];
475: PetscCall(VecMAXPY(X, r, wr, Y));
477: if (done) *done = PETSC_TRUE;
478: PetscFunctionReturn(PETSC_SUCCESS);
479: }
480: if (done) *done = PETSC_FALSE;
481: else SETERRQ(PetscObjectComm((PetscObject)ts), PETSC_ERR_SUP, "GLEE '%s' of order %" PetscInt_FMT " cannot evaluate step at order %" PetscInt_FMT, tab->name, tab->order, order);
482: PetscFunctionReturn(PETSC_SUCCESS);
483: }
485: static PetscErrorCode TSStep_GLEE(TS ts)
486: {
487: TS_GLEE *glee = (TS_GLEE *)ts->data;
488: GLEETableau tab = glee->tableau;
489: const PetscInt s = tab->s, r = tab->r;
490: PetscReal *A = tab->A, *U = tab->U, *F = tab->F, *c = tab->c;
491: Vec *Y = glee->Y, *X = glee->X, *YStage = glee->YStage, *YdotStage = glee->YdotStage, W = glee->W;
492: SNES snes;
493: PetscScalar *ws = glee->swork, *wr = glee->rwork;
494: TSAdapt adapt;
495: PetscInt i, j, reject, next_scheme, its, lits;
496: PetscReal next_time_step;
497: PetscReal t;
498: PetscBool accept;
500: PetscFunctionBegin;
501: PetscCall(PetscCitationsRegister(citation, &cited));
503: for (i = 0; i < r; i++) PetscCall(VecCopy(Y[i], X[i]));
505: PetscCall(TSGetSNES(ts, &snes));
506: next_time_step = ts->time_step;
507: t = ts->ptime;
508: accept = PETSC_TRUE;
509: glee->status = TS_STEP_INCOMPLETE;
511: for (reject = 0; reject < ts->max_reject && !ts->reason; reject++, ts->reject++) {
512: PetscReal h = ts->time_step;
513: PetscCall(TSPreStep(ts));
515: for (i = 0; i < s; i++) {
516: glee->stage_time = t + h * c[i];
517: PetscCall(TSPreStage(ts, glee->stage_time));
519: if (A[i * s + i] == 0) { /* Explicit stage */
520: PetscCall(VecZeroEntries(YStage[i]));
521: for (j = 0; j < r; j++) wr[j] = U[i * r + j];
522: PetscCall(VecMAXPY(YStage[i], r, wr, X));
523: for (j = 0; j < i; j++) ws[j] = h * A[i * s + j];
524: PetscCall(VecMAXPY(YStage[i], i, ws, YdotStage));
525: } else { /* Implicit stage */
526: glee->scoeff = 1.0 / A[i * s + i];
527: /* compute right-hand side */
528: PetscCall(VecZeroEntries(W));
529: for (j = 0; j < r; j++) wr[j] = U[i * r + j];
530: PetscCall(VecMAXPY(W, r, wr, X));
531: for (j = 0; j < i; j++) ws[j] = h * A[i * s + j];
532: PetscCall(VecMAXPY(W, i, ws, YdotStage));
533: PetscCall(VecScale(W, glee->scoeff / h));
534: /* set initial guess */
535: PetscCall(VecCopy(i > 0 ? YStage[i - 1] : ts->vec_sol, YStage[i]));
536: /* solve for this stage */
537: PetscCall(SNESSolve(snes, W, YStage[i]));
538: PetscCall(SNESGetIterationNumber(snes, &its));
539: PetscCall(SNESGetLinearSolveIterations(snes, &lits));
540: ts->snes_its += its;
541: ts->ksp_its += lits;
542: }
543: PetscCall(TSGetAdapt(ts, &adapt));
544: PetscCall(TSAdaptCheckStage(adapt, ts, glee->stage_time, YStage[i], &accept));
545: if (!accept) goto reject_step;
546: PetscCall(TSPostStage(ts, glee->stage_time, i, YStage));
547: PetscCall(TSComputeRHSFunction(ts, t + h * c[i], YStage[i], YdotStage[i]));
548: }
549: PetscCall(TSEvaluateStep(ts, tab->order, ts->vec_sol, NULL));
550: glee->status = TS_STEP_PENDING;
552: /* Register only the current method as a candidate because we're not supporting multiple candidates yet. */
553: PetscCall(TSGetAdapt(ts, &adapt));
554: PetscCall(TSAdaptCandidatesClear(adapt));
555: PetscCall(TSAdaptCandidateAdd(adapt, tab->name, tab->order, 1, tab->ccfl, (PetscReal)tab->s, PETSC_TRUE));
556: PetscCall(TSAdaptChoose(adapt, ts, ts->time_step, &next_scheme, &next_time_step, &accept));
557: if (accept) {
558: /* ignore next_scheme for now */
559: ts->ptime += ts->time_step;
560: ts->time_step = next_time_step;
561: glee->status = TS_STEP_COMPLETE;
562: /* compute and store the global error */
563: /* Note: this is not needed if TSAdaptGLEE is not used */
564: PetscCall(TSGetTimeError(ts, 0, &glee->yGErr));
565: PetscCall(PetscObjectComposedDataSetReal((PetscObject)ts->vec_sol, explicit_stage_time_id, ts->ptime));
566: break;
567: } else { /* Roll back the current step */
568: for (j = 0; j < r; j++) wr[j] = F[j];
569: PetscCall(VecMAXPY(ts->vec_sol, r, wr, X));
570: ts->time_step = next_time_step;
571: glee->status = TS_STEP_INCOMPLETE;
572: }
573: reject_step:
574: continue;
575: }
576: if (glee->status != TS_STEP_COMPLETE && !ts->reason) ts->reason = TS_DIVERGED_STEP_REJECTED;
577: PetscFunctionReturn(PETSC_SUCCESS);
578: }
580: static PetscErrorCode TSInterpolate_GLEE(TS ts, PetscReal itime, Vec X)
581: {
582: TS_GLEE *glee = (TS_GLEE *)ts->data;
583: PetscInt s = glee->tableau->s, pinterp = glee->tableau->pinterp, i, j;
584: PetscReal h, tt, t;
585: PetscScalar *b;
586: const PetscReal *B = glee->tableau->binterp;
588: PetscFunctionBegin;
589: PetscCheck(B, PetscObjectComm((PetscObject)ts), PETSC_ERR_SUP, "TSGLEE %s does not have an interpolation formula", glee->tableau->name);
590: switch (glee->status) {
591: case TS_STEP_INCOMPLETE:
592: case TS_STEP_PENDING:
593: h = ts->time_step;
594: t = (itime - ts->ptime) / h;
595: break;
596: case TS_STEP_COMPLETE:
597: h = ts->ptime - ts->ptime_prev;
598: t = (itime - ts->ptime) / h + 1; /* In the interval [0,1] */
599: break;
600: default:
601: SETERRQ(PetscObjectComm((PetscObject)ts), PETSC_ERR_PLIB, "Invalid TSStepStatus");
602: }
603: PetscCall(PetscMalloc1(s, &b));
604: for (i = 0; i < s; i++) b[i] = 0;
605: for (j = 0, tt = t; j < pinterp; j++, tt *= t) {
606: for (i = 0; i < s; i++) b[i] += h * B[i * pinterp + j] * tt;
607: }
608: PetscCall(VecCopy(glee->YStage[0], X));
609: PetscCall(VecMAXPY(X, s, b, glee->YdotStage));
610: PetscCall(PetscFree(b));
611: PetscFunctionReturn(PETSC_SUCCESS);
612: }
614: /*------------------------------------------------------------*/
615: static PetscErrorCode TSReset_GLEE(TS ts)
616: {
617: TS_GLEE *glee = (TS_GLEE *)ts->data;
618: PetscInt s, r;
620: PetscFunctionBegin;
621: if (!glee->tableau) PetscFunctionReturn(PETSC_SUCCESS);
622: s = glee->tableau->s;
623: r = glee->tableau->r;
624: PetscCall(VecDestroyVecs(r, &glee->Y));
625: PetscCall(VecDestroyVecs(r, &glee->X));
626: PetscCall(VecDestroyVecs(s, &glee->YStage));
627: PetscCall(VecDestroyVecs(s, &glee->YdotStage));
628: PetscCall(VecDestroy(&glee->Ydot));
629: PetscCall(VecDestroy(&glee->yGErr));
630: PetscCall(VecDestroy(&glee->W));
631: PetscCall(PetscFree2(glee->swork, glee->rwork));
632: PetscFunctionReturn(PETSC_SUCCESS);
633: }
635: static PetscErrorCode TSGLEEGetVecs(TS ts, DM dm, Vec *Ydot)
636: {
637: TS_GLEE *glee = (TS_GLEE *)ts->data;
639: PetscFunctionBegin;
640: if (Ydot) {
641: if (dm && dm != ts->dm) {
642: PetscCall(DMGetNamedGlobalVector(dm, "TSGLEE_Ydot", Ydot));
643: } else *Ydot = glee->Ydot;
644: }
645: PetscFunctionReturn(PETSC_SUCCESS);
646: }
648: static PetscErrorCode TSGLEERestoreVecs(TS ts, DM dm, Vec *Ydot)
649: {
650: PetscFunctionBegin;
651: if (Ydot) {
652: if (dm && dm != ts->dm) PetscCall(DMRestoreNamedGlobalVector(dm, "TSGLEE_Ydot", Ydot));
653: }
654: PetscFunctionReturn(PETSC_SUCCESS);
655: }
657: /*
658: This defines the nonlinear equation that is to be solved with SNES
659: */
660: static PetscErrorCode SNESTSFormFunction_GLEE(SNES snes, Vec X, Vec F, TS ts)
661: {
662: TS_GLEE *glee = (TS_GLEE *)ts->data;
663: DM dm, dmsave;
664: Vec Ydot;
665: PetscReal shift = glee->scoeff / ts->time_step;
667: PetscFunctionBegin;
668: PetscCall(SNESGetDM(snes, &dm));
669: PetscCall(TSGLEEGetVecs(ts, dm, &Ydot));
670: /* Set Ydot = shift*X */
671: PetscCall(VecCopy(X, Ydot));
672: PetscCall(VecScale(Ydot, shift));
673: dmsave = ts->dm;
674: ts->dm = dm;
676: PetscCall(TSComputeIFunction(ts, glee->stage_time, X, Ydot, F, PETSC_FALSE));
678: ts->dm = dmsave;
679: PetscCall(TSGLEERestoreVecs(ts, dm, &Ydot));
680: PetscFunctionReturn(PETSC_SUCCESS);
681: }
683: static PetscErrorCode SNESTSFormJacobian_GLEE(SNES snes, Vec X, Mat A, Mat B, TS ts)
684: {
685: TS_GLEE *glee = (TS_GLEE *)ts->data;
686: DM dm, dmsave;
687: Vec Ydot;
688: PetscReal shift = glee->scoeff / ts->time_step;
690: PetscFunctionBegin;
691: PetscCall(SNESGetDM(snes, &dm));
692: PetscCall(TSGLEEGetVecs(ts, dm, &Ydot));
693: /* glee->Ydot has already been computed in SNESTSFormFunction_GLEE (SNES guarantees this) */
694: dmsave = ts->dm;
695: ts->dm = dm;
697: PetscCall(TSComputeIJacobian(ts, glee->stage_time, X, Ydot, shift, A, B, PETSC_FALSE));
699: ts->dm = dmsave;
700: PetscCall(TSGLEERestoreVecs(ts, dm, &Ydot));
701: PetscFunctionReturn(PETSC_SUCCESS);
702: }
704: static PetscErrorCode DMCoarsenHook_TSGLEE(DM fine, DM coarse, void *ctx)
705: {
706: PetscFunctionBegin;
707: PetscFunctionReturn(PETSC_SUCCESS);
708: }
710: static PetscErrorCode DMRestrictHook_TSGLEE(DM fine, Mat restrct, Vec rscale, Mat inject, DM coarse, void *ctx)
711: {
712: PetscFunctionBegin;
713: PetscFunctionReturn(PETSC_SUCCESS);
714: }
716: static PetscErrorCode DMSubDomainHook_TSGLEE(DM dm, DM subdm, void *ctx)
717: {
718: PetscFunctionBegin;
719: PetscFunctionReturn(PETSC_SUCCESS);
720: }
722: static PetscErrorCode DMSubDomainRestrictHook_TSGLEE(DM dm, VecScatter gscat, VecScatter lscat, DM subdm, void *ctx)
723: {
724: PetscFunctionBegin;
725: PetscFunctionReturn(PETSC_SUCCESS);
726: }
728: static PetscErrorCode TSSetUp_GLEE(TS ts)
729: {
730: TS_GLEE *glee = (TS_GLEE *)ts->data;
731: GLEETableau tab;
732: PetscInt s, r;
733: DM dm;
735: PetscFunctionBegin;
736: if (!glee->tableau) PetscCall(TSGLEESetType(ts, TSGLEEDefaultType));
737: tab = glee->tableau;
738: s = tab->s;
739: r = tab->r;
740: PetscCall(VecDuplicateVecs(ts->vec_sol, r, &glee->Y));
741: PetscCall(VecDuplicateVecs(ts->vec_sol, r, &glee->X));
742: PetscCall(VecDuplicateVecs(ts->vec_sol, s, &glee->YStage));
743: PetscCall(VecDuplicateVecs(ts->vec_sol, s, &glee->YdotStage));
744: PetscCall(VecDuplicate(ts->vec_sol, &glee->Ydot));
745: PetscCall(VecDuplicate(ts->vec_sol, &glee->yGErr));
746: PetscCall(VecZeroEntries(glee->yGErr));
747: PetscCall(VecDuplicate(ts->vec_sol, &glee->W));
748: PetscCall(PetscMalloc2(s, &glee->swork, r, &glee->rwork));
749: PetscCall(TSGetDM(ts, &dm));
750: PetscCall(DMCoarsenHookAdd(dm, DMCoarsenHook_TSGLEE, DMRestrictHook_TSGLEE, ts));
751: PetscCall(DMSubDomainHookAdd(dm, DMSubDomainHook_TSGLEE, DMSubDomainRestrictHook_TSGLEE, ts));
752: PetscFunctionReturn(PETSC_SUCCESS);
753: }
755: static PetscErrorCode TSStartingMethod_GLEE(TS ts)
756: {
757: TS_GLEE *glee = (TS_GLEE *)ts->data;
758: GLEETableau tab = glee->tableau;
759: PetscInt r = tab->r, i;
760: PetscReal *S = tab->S;
762: PetscFunctionBegin;
763: for (i = 0; i < r; i++) {
764: PetscCall(VecZeroEntries(glee->Y[i]));
765: PetscCall(VecAXPY(glee->Y[i], S[i], ts->vec_sol));
766: }
767: PetscFunctionReturn(PETSC_SUCCESS);
768: }
770: /*------------------------------------------------------------*/
772: static PetscErrorCode TSSetFromOptions_GLEE(TS ts, PetscOptionItems *PetscOptionsObject)
773: {
774: char gleetype[256];
776: PetscFunctionBegin;
777: PetscOptionsHeadBegin(PetscOptionsObject, "GLEE ODE solver options");
778: {
779: GLEETableauLink link;
780: PetscInt count, choice;
781: PetscBool flg;
782: const char **namelist;
784: PetscCall(PetscStrncpy(gleetype, TSGLEEDefaultType, sizeof(gleetype)));
785: for (link = GLEETableauList, count = 0; link; link = link->next, count++);
786: PetscCall(PetscMalloc1(count, (char ***)&namelist));
787: for (link = GLEETableauList, count = 0; link; link = link->next, count++) namelist[count] = link->tab.name;
788: PetscCall(PetscOptionsEList("-ts_glee_type", "Family of GLEE method", "TSGLEESetType", (const char *const *)namelist, count, gleetype, &choice, &flg));
789: PetscCall(TSGLEESetType(ts, flg ? namelist[choice] : gleetype));
790: PetscCall(PetscFree(namelist));
791: }
792: PetscOptionsHeadEnd();
793: PetscFunctionReturn(PETSC_SUCCESS);
794: }
796: static PetscErrorCode TSView_GLEE(TS ts, PetscViewer viewer)
797: {
798: TS_GLEE *glee = (TS_GLEE *)ts->data;
799: GLEETableau tab = glee->tableau;
800: PetscBool iascii;
802: PetscFunctionBegin;
803: PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
804: if (iascii) {
805: TSGLEEType gleetype;
806: char buf[512];
807: PetscCall(TSGLEEGetType(ts, &gleetype));
808: PetscCall(PetscViewerASCIIPrintf(viewer, " GLEE type %s\n", gleetype));
809: PetscCall(PetscFormatRealArray(buf, sizeof(buf), "% 8.6f", tab->s, tab->c));
810: PetscCall(PetscViewerASCIIPrintf(viewer, " Abscissa c = %s\n", buf));
811: /* Note: print out r as well */
812: }
813: PetscFunctionReturn(PETSC_SUCCESS);
814: }
816: static PetscErrorCode TSLoad_GLEE(TS ts, PetscViewer viewer)
817: {
818: SNES snes;
819: TSAdapt tsadapt;
821: PetscFunctionBegin;
822: PetscCall(TSGetAdapt(ts, &tsadapt));
823: PetscCall(TSAdaptLoad(tsadapt, viewer));
824: PetscCall(TSGetSNES(ts, &snes));
825: PetscCall(SNESLoad(snes, viewer));
826: /* function and Jacobian context for SNES when used with TS is always ts object */
827: PetscCall(SNESSetFunction(snes, NULL, NULL, ts));
828: PetscCall(SNESSetJacobian(snes, NULL, NULL, NULL, ts));
829: PetscFunctionReturn(PETSC_SUCCESS);
830: }
832: /*@
833: TSGLEESetType - Set the type of `TSGLEE` scheme
835: Logically Collective
837: Input Parameters:
838: + ts - timestepping context
839: - gleetype - type of `TSGLEE` scheme
841: Level: intermediate
843: .seealso: [](ch_ts), `TSGLEEGetType()`, `TSGLEE`
844: @*/
845: PetscErrorCode TSGLEESetType(TS ts, TSGLEEType gleetype)
846: {
847: PetscFunctionBegin;
849: PetscAssertPointer(gleetype, 2);
850: PetscTryMethod(ts, "TSGLEESetType_C", (TS, TSGLEEType), (ts, gleetype));
851: PetscFunctionReturn(PETSC_SUCCESS);
852: }
854: /*@
855: TSGLEEGetType - Get the type of `TSGLEE` scheme
857: Logically Collective
859: Input Parameter:
860: . ts - timestepping context
862: Output Parameter:
863: . gleetype - type of `TSGLEE` scheme
865: Level: intermediate
867: .seealso: [](ch_ts), `TSGLEE`, `TSGLEESetType()`
868: @*/
869: PetscErrorCode TSGLEEGetType(TS ts, TSGLEEType *gleetype)
870: {
871: PetscFunctionBegin;
873: PetscUseMethod(ts, "TSGLEEGetType_C", (TS, TSGLEEType *), (ts, gleetype));
874: PetscFunctionReturn(PETSC_SUCCESS);
875: }
877: static PetscErrorCode TSGLEEGetType_GLEE(TS ts, TSGLEEType *gleetype)
878: {
879: TS_GLEE *glee = (TS_GLEE *)ts->data;
881: PetscFunctionBegin;
882: if (!glee->tableau) PetscCall(TSGLEESetType(ts, TSGLEEDefaultType));
883: *gleetype = glee->tableau->name;
884: PetscFunctionReturn(PETSC_SUCCESS);
885: }
886: static PetscErrorCode TSGLEESetType_GLEE(TS ts, TSGLEEType gleetype)
887: {
888: TS_GLEE *glee = (TS_GLEE *)ts->data;
889: PetscBool match;
890: GLEETableauLink link;
892: PetscFunctionBegin;
893: if (glee->tableau) {
894: PetscCall(PetscStrcmp(glee->tableau->name, gleetype, &match));
895: if (match) PetscFunctionReturn(PETSC_SUCCESS);
896: }
897: for (link = GLEETableauList; link; link = link->next) {
898: PetscCall(PetscStrcmp(link->tab.name, gleetype, &match));
899: if (match) {
900: PetscCall(TSReset_GLEE(ts));
901: glee->tableau = &link->tab;
902: PetscFunctionReturn(PETSC_SUCCESS);
903: }
904: }
905: SETERRQ(PetscObjectComm((PetscObject)ts), PETSC_ERR_ARG_UNKNOWN_TYPE, "Could not find '%s'", gleetype);
906: }
908: static PetscErrorCode TSGetStages_GLEE(TS ts, PetscInt *ns, Vec **Y)
909: {
910: TS_GLEE *glee = (TS_GLEE *)ts->data;
912: PetscFunctionBegin;
913: if (ns) *ns = glee->tableau->s;
914: if (Y) *Y = glee->YStage;
915: PetscFunctionReturn(PETSC_SUCCESS);
916: }
918: static PetscErrorCode TSGetSolutionComponents_GLEE(TS ts, PetscInt *n, Vec *Y)
919: {
920: TS_GLEE *glee = (TS_GLEE *)ts->data;
921: GLEETableau tab = glee->tableau;
923: PetscFunctionBegin;
924: if (!Y) *n = tab->r;
925: else {
926: if ((*n >= 0) && (*n < tab->r)) {
927: PetscCall(VecCopy(glee->Y[*n], *Y));
928: } else SETERRQ(PetscObjectComm((PetscObject)ts), PETSC_ERR_ARG_OUTOFRANGE, "Second argument (%" PetscInt_FMT ") out of range[0,%" PetscInt_FMT "].", *n, tab->r - 1);
929: }
930: PetscFunctionReturn(PETSC_SUCCESS);
931: }
933: static PetscErrorCode TSGetAuxSolution_GLEE(TS ts, Vec *X)
934: {
935: TS_GLEE *glee = (TS_GLEE *)ts->data;
936: GLEETableau tab = glee->tableau;
937: PetscReal *F = tab->Fembed;
938: PetscInt r = tab->r;
939: Vec *Y = glee->Y;
940: PetscScalar *wr = glee->rwork;
941: PetscInt i;
943: PetscFunctionBegin;
944: PetscCall(VecZeroEntries(*X));
945: for (i = 0; i < r; i++) wr[i] = F[i];
946: PetscCall(VecMAXPY(*X, r, wr, Y));
947: PetscFunctionReturn(PETSC_SUCCESS);
948: }
950: static PetscErrorCode TSGetTimeError_GLEE(TS ts, PetscInt n, Vec *X)
951: {
952: TS_GLEE *glee = (TS_GLEE *)ts->data;
953: GLEETableau tab = glee->tableau;
954: PetscReal *F = tab->Ferror;
955: PetscInt r = tab->r;
956: Vec *Y = glee->Y;
957: PetscScalar *wr = glee->rwork;
958: PetscInt i;
960: PetscFunctionBegin;
961: PetscCall(VecZeroEntries(*X));
962: if (n == 0) {
963: for (i = 0; i < r; i++) wr[i] = F[i];
964: PetscCall(VecMAXPY(*X, r, wr, Y));
965: } else if (n == -1) {
966: *X = glee->yGErr;
967: }
968: PetscFunctionReturn(PETSC_SUCCESS);
969: }
971: static PetscErrorCode TSSetTimeError_GLEE(TS ts, Vec X)
972: {
973: TS_GLEE *glee = (TS_GLEE *)ts->data;
974: GLEETableau tab = glee->tableau;
975: PetscReal *S = tab->Serror;
976: PetscInt r = tab->r, i;
977: Vec *Y = glee->Y;
979: PetscFunctionBegin;
980: PetscCheck(r == 2, PetscObjectComm((PetscObject)ts), PETSC_ERR_SUP, "TSSetTimeError_GLEE not supported for '%s' with r=%" PetscInt_FMT ".", tab->name, tab->r);
981: for (i = 1; i < r; i++) {
982: PetscCall(VecCopy(ts->vec_sol, Y[i]));
983: PetscCall(VecAXPBY(Y[i], S[0], S[1], X));
984: PetscCall(VecCopy(X, glee->yGErr));
985: }
986: PetscFunctionReturn(PETSC_SUCCESS);
987: }
989: static PetscErrorCode TSDestroy_GLEE(TS ts)
990: {
991: PetscFunctionBegin;
992: PetscCall(TSReset_GLEE(ts));
993: if (ts->dm) {
994: PetscCall(DMCoarsenHookRemove(ts->dm, DMCoarsenHook_TSGLEE, DMRestrictHook_TSGLEE, ts));
995: PetscCall(DMSubDomainHookRemove(ts->dm, DMSubDomainHook_TSGLEE, DMSubDomainRestrictHook_TSGLEE, ts));
996: }
997: PetscCall(PetscFree(ts->data));
998: PetscCall(PetscObjectComposeFunction((PetscObject)ts, "TSGLEEGetType_C", NULL));
999: PetscCall(PetscObjectComposeFunction((PetscObject)ts, "TSGLEESetType_C", NULL));
1000: PetscFunctionReturn(PETSC_SUCCESS);
1001: }
1003: /* ------------------------------------------------------------ */
1004: /*MC
1005: TSGLEE - ODE and DAE solver using General Linear with Error Estimation schemes
1007: The user should provide the right-hand side of the equation using `TSSetRHSFunction()`.
1009: Level: beginner
1011: Note:
1012: The default is `TSGLEE35`, it can be changed with `TSGLEESetType()` or -ts_glee_type
1014: .seealso: [](ch_ts), `TSCreate()`, `TS`, `TSSetType()`, `TSGLEESetType()`, `TSGLEEGetType()`,
1015: `TSGLEE23`, `TTSGLEE24`, `TSGLEE35`, `TSGLEE25I`, `TSGLEEEXRK2A`,
1016: `TSGLEERK32G1`, `TSGLEERK285EX`, `TSGLEEType`, `TSGLEERegister()`, `TSType`
1017: M*/
1018: PETSC_EXTERN PetscErrorCode TSCreate_GLEE(TS ts)
1019: {
1020: TS_GLEE *th;
1022: PetscFunctionBegin;
1023: PetscCall(TSGLEEInitializePackage());
1025: ts->ops->reset = TSReset_GLEE;
1026: ts->ops->destroy = TSDestroy_GLEE;
1027: ts->ops->view = TSView_GLEE;
1028: ts->ops->load = TSLoad_GLEE;
1029: ts->ops->setup = TSSetUp_GLEE;
1030: ts->ops->step = TSStep_GLEE;
1031: ts->ops->interpolate = TSInterpolate_GLEE;
1032: ts->ops->evaluatestep = TSEvaluateStep_GLEE;
1033: ts->ops->setfromoptions = TSSetFromOptions_GLEE;
1034: ts->ops->getstages = TSGetStages_GLEE;
1035: ts->ops->snesfunction = SNESTSFormFunction_GLEE;
1036: ts->ops->snesjacobian = SNESTSFormJacobian_GLEE;
1037: ts->ops->getsolutioncomponents = TSGetSolutionComponents_GLEE;
1038: ts->ops->getauxsolution = TSGetAuxSolution_GLEE;
1039: ts->ops->gettimeerror = TSGetTimeError_GLEE;
1040: ts->ops->settimeerror = TSSetTimeError_GLEE;
1041: ts->ops->startingmethod = TSStartingMethod_GLEE;
1042: ts->default_adapt_type = TSADAPTGLEE;
1044: ts->usessnes = PETSC_TRUE;
1046: PetscCall(PetscNew(&th));
1047: ts->data = (void *)th;
1049: PetscCall(PetscObjectComposeFunction((PetscObject)ts, "TSGLEEGetType_C", TSGLEEGetType_GLEE));
1050: PetscCall(PetscObjectComposeFunction((PetscObject)ts, "TSGLEESetType_C", TSGLEESetType_GLEE));
1051: PetscFunctionReturn(PETSC_SUCCESS);
1052: }