Actual source code: tsdiscgrad.c

  1: /*
  2:   Code for timestepping with discrete gradient integrators
  3: */
  4: #include <petsc/private/tsimpl.h>
  5: #include <petscdm.h>

  7: PetscBool  DGCite       = PETSC_FALSE;
  8: const char DGCitation[] = "@article{Gonzalez1996,\n"
  9:                           "  title   = {Time integration and discrete Hamiltonian systems},\n"
 10:                           "  author  = {Oscar Gonzalez},\n"
 11:                           "  journal = {Journal of Nonlinear Science},\n"
 12:                           "  volume  = {6},\n"
 13:                           "  pages   = {449--467},\n"
 14:                           "  doi     = {10.1007/978-1-4612-1246-1_10},\n"
 15:                           "  year    = {1996}\n}\n";

 17: const char *DGTypes[] = {"gonzalez", "average", "none", "TSDGType", "DG_", NULL};

 19: typedef struct {
 20:   PetscReal stage_time;
 21:   Vec       X0, X, Xdot;
 22:   void     *funcCtx;
 23:   TSDGType  discgrad; /* Type of electrostatic model */
 24:   PetscErrorCode (*Sfunc)(TS, PetscReal, Vec, Mat, void *);
 25:   PetscErrorCode (*Ffunc)(TS, PetscReal, Vec, PetscScalar *, void *);
 26:   PetscErrorCode (*Gfunc)(TS, PetscReal, Vec, Vec, void *);
 27: } TS_DiscGrad;

 29: static PetscErrorCode TSDiscGradGetX0AndXdot(TS ts, DM dm, Vec *X0, Vec *Xdot)
 30: {
 31:   TS_DiscGrad *dg = (TS_DiscGrad *)ts->data;

 33:   PetscFunctionBegin;
 34:   if (X0) {
 35:     if (dm && dm != ts->dm) PetscCall(DMGetNamedGlobalVector(dm, "TSDiscGrad_X0", X0));
 36:     else *X0 = ts->vec_sol;
 37:   }
 38:   if (Xdot) {
 39:     if (dm && dm != ts->dm) PetscCall(DMGetNamedGlobalVector(dm, "TSDiscGrad_Xdot", Xdot));
 40:     else *Xdot = dg->Xdot;
 41:   }
 42:   PetscFunctionReturn(PETSC_SUCCESS);
 43: }

 45: static PetscErrorCode TSDiscGradRestoreX0AndXdot(TS ts, DM dm, Vec *X0, Vec *Xdot)
 46: {
 47:   PetscFunctionBegin;
 48:   if (X0) {
 49:     if (dm && dm != ts->dm) PetscCall(DMRestoreNamedGlobalVector(dm, "TSDiscGrad_X0", X0));
 50:   }
 51:   if (Xdot) {
 52:     if (dm && dm != ts->dm) PetscCall(DMRestoreNamedGlobalVector(dm, "TSDiscGrad_Xdot", Xdot));
 53:   }
 54:   PetscFunctionReturn(PETSC_SUCCESS);
 55: }

 57: static PetscErrorCode DMCoarsenHook_TSDiscGrad(DM fine, DM coarse, void *ctx)
 58: {
 59:   PetscFunctionBegin;
 60:   PetscFunctionReturn(PETSC_SUCCESS);
 61: }

 63: static PetscErrorCode DMRestrictHook_TSDiscGrad(DM fine, Mat restrct, Vec rscale, Mat inject, DM coarse, void *ctx)
 64: {
 65:   TS  ts = (TS)ctx;
 66:   Vec X0, Xdot, X0_c, Xdot_c;

 68:   PetscFunctionBegin;
 69:   PetscCall(TSDiscGradGetX0AndXdot(ts, fine, &X0, &Xdot));
 70:   PetscCall(TSDiscGradGetX0AndXdot(ts, coarse, &X0_c, &Xdot_c));
 71:   PetscCall(MatRestrict(restrct, X0, X0_c));
 72:   PetscCall(MatRestrict(restrct, Xdot, Xdot_c));
 73:   PetscCall(VecPointwiseMult(X0_c, rscale, X0_c));
 74:   PetscCall(VecPointwiseMult(Xdot_c, rscale, Xdot_c));
 75:   PetscCall(TSDiscGradRestoreX0AndXdot(ts, fine, &X0, &Xdot));
 76:   PetscCall(TSDiscGradRestoreX0AndXdot(ts, coarse, &X0_c, &Xdot_c));
 77:   PetscFunctionReturn(PETSC_SUCCESS);
 78: }

 80: static PetscErrorCode DMSubDomainHook_TSDiscGrad(DM dm, DM subdm, void *ctx)
 81: {
 82:   PetscFunctionBegin;
 83:   PetscFunctionReturn(PETSC_SUCCESS);
 84: }

 86: static PetscErrorCode DMSubDomainRestrictHook_TSDiscGrad(DM dm, VecScatter gscat, VecScatter lscat, DM subdm, void *ctx)
 87: {
 88:   TS  ts = (TS)ctx;
 89:   Vec X0, Xdot, X0_sub, Xdot_sub;

 91:   PetscFunctionBegin;
 92:   PetscCall(TSDiscGradGetX0AndXdot(ts, dm, &X0, &Xdot));
 93:   PetscCall(TSDiscGradGetX0AndXdot(ts, subdm, &X0_sub, &Xdot_sub));

 95:   PetscCall(VecScatterBegin(gscat, X0, X0_sub, INSERT_VALUES, SCATTER_FORWARD));
 96:   PetscCall(VecScatterEnd(gscat, X0, X0_sub, INSERT_VALUES, SCATTER_FORWARD));

 98:   PetscCall(VecScatterBegin(gscat, Xdot, Xdot_sub, INSERT_VALUES, SCATTER_FORWARD));
 99:   PetscCall(VecScatterEnd(gscat, Xdot, Xdot_sub, INSERT_VALUES, SCATTER_FORWARD));

101:   PetscCall(TSDiscGradRestoreX0AndXdot(ts, dm, &X0, &Xdot));
102:   PetscCall(TSDiscGradRestoreX0AndXdot(ts, subdm, &X0_sub, &Xdot_sub));
103:   PetscFunctionReturn(PETSC_SUCCESS);
104: }

106: static PetscErrorCode TSSetUp_DiscGrad(TS ts)
107: {
108:   TS_DiscGrad *dg = (TS_DiscGrad *)ts->data;
109:   DM           dm;

111:   PetscFunctionBegin;
112:   if (!dg->X) PetscCall(VecDuplicate(ts->vec_sol, &dg->X));
113:   if (!dg->X0) PetscCall(VecDuplicate(ts->vec_sol, &dg->X0));
114:   if (!dg->Xdot) PetscCall(VecDuplicate(ts->vec_sol, &dg->Xdot));

116:   PetscCall(TSGetDM(ts, &dm));
117:   PetscCall(DMCoarsenHookAdd(dm, DMCoarsenHook_TSDiscGrad, DMRestrictHook_TSDiscGrad, ts));
118:   PetscCall(DMSubDomainHookAdd(dm, DMSubDomainHook_TSDiscGrad, DMSubDomainRestrictHook_TSDiscGrad, ts));
119:   PetscFunctionReturn(PETSC_SUCCESS);
120: }

122: static PetscErrorCode TSSetFromOptions_DiscGrad(TS ts, PetscOptionItems PetscOptionsObject)
123: {
124:   TS_DiscGrad *dg = (TS_DiscGrad *)ts->data;

126:   PetscFunctionBegin;
127:   PetscOptionsHeadBegin(PetscOptionsObject, "Discrete Gradients ODE solver options");
128:   {
129:     PetscCall(PetscOptionsEnum("-ts_discgrad_type", "Type of discrete gradient solver", "TSDiscGradSetDGType", DGTypes, (PetscEnum)dg->discgrad, (PetscEnum *)&dg->discgrad, NULL));
130:   }
131:   PetscOptionsHeadEnd();
132:   PetscFunctionReturn(PETSC_SUCCESS);
133: }

135: static PetscErrorCode TSView_DiscGrad(TS ts, PetscViewer viewer)
136: {
137:   PetscBool isascii;

139:   PetscFunctionBegin;
140:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &isascii));
141:   if (isascii) PetscCall(PetscViewerASCIIPrintf(viewer, "  Discrete Gradients\n"));
142:   PetscFunctionReturn(PETSC_SUCCESS);
143: }

145: static PetscErrorCode TSDiscGradGetType_DiscGrad(TS ts, TSDGType *dgtype)
146: {
147:   TS_DiscGrad *dg = (TS_DiscGrad *)ts->data;

149:   PetscFunctionBegin;
150:   *dgtype = dg->discgrad;
151:   PetscFunctionReturn(PETSC_SUCCESS);
152: }

154: static PetscErrorCode TSDiscGradSetType_DiscGrad(TS ts, TSDGType dgtype)
155: {
156:   TS_DiscGrad *dg = (TS_DiscGrad *)ts->data;

158:   PetscFunctionBegin;
159:   dg->discgrad = dgtype;
160:   PetscFunctionReturn(PETSC_SUCCESS);
161: }

163: static PetscErrorCode TSReset_DiscGrad(TS ts)
164: {
165:   TS_DiscGrad *dg = (TS_DiscGrad *)ts->data;

167:   PetscFunctionBegin;
168:   PetscCall(VecDestroy(&dg->X));
169:   PetscCall(VecDestroy(&dg->X0));
170:   PetscCall(VecDestroy(&dg->Xdot));
171:   PetscFunctionReturn(PETSC_SUCCESS);
172: }

174: static PetscErrorCode TSDestroy_DiscGrad(TS ts)
175: {
176:   DM dm;

178:   PetscFunctionBegin;
179:   PetscCall(TSReset_DiscGrad(ts));
180:   PetscCall(TSGetDM(ts, &dm));
181:   if (dm) {
182:     PetscCall(DMCoarsenHookRemove(dm, DMCoarsenHook_TSDiscGrad, DMRestrictHook_TSDiscGrad, ts));
183:     PetscCall(DMSubDomainHookRemove(dm, DMSubDomainHook_TSDiscGrad, DMSubDomainRestrictHook_TSDiscGrad, ts));
184:   }
185:   PetscCall(PetscFree(ts->data));
186:   PetscCall(PetscObjectComposeFunction((PetscObject)ts, "TSDiscGradGetFormulation_C", NULL));
187:   PetscCall(PetscObjectComposeFunction((PetscObject)ts, "TSDiscGradSetFormulation_C", NULL));
188:   PetscCall(PetscObjectComposeFunction((PetscObject)ts, "TSDiscGradGetType_C", NULL));
189:   PetscCall(PetscObjectComposeFunction((PetscObject)ts, "TSDiscGradSetType_C", NULL));
190:   PetscFunctionReturn(PETSC_SUCCESS);
191: }

193: static PetscErrorCode TSInterpolate_DiscGrad(TS ts, PetscReal t, Vec X)
194: {
195:   TS_DiscGrad *dg = (TS_DiscGrad *)ts->data;
196:   PetscReal    dt = t - ts->ptime;

198:   PetscFunctionBegin;
199:   PetscCall(VecCopy(ts->vec_sol, dg->X));
200:   PetscCall(VecWAXPY(X, dt, dg->Xdot, dg->X));
201:   PetscFunctionReturn(PETSC_SUCCESS);
202: }

204: static PetscErrorCode TSDiscGrad_SNESSolve(TS ts, Vec b, Vec x)
205: {
206:   SNES     snes;
207:   PetscInt nits, lits;

209:   PetscFunctionBegin;
210:   PetscCall(TSGetSNES(ts, &snes));
211:   PetscCall(SNESSolve(snes, b, x));
212:   PetscCall(SNESGetIterationNumber(snes, &nits));
213:   PetscCall(SNESGetLinearSolveIterations(snes, &lits));
214:   ts->snes_its += nits;
215:   ts->ksp_its += lits;
216:   PetscFunctionReturn(PETSC_SUCCESS);
217: }

219: static PetscErrorCode TSStep_DiscGrad(TS ts)
220: {
221:   TS_DiscGrad *dg = (TS_DiscGrad *)ts->data;
222:   TSAdapt      adapt;
223:   TSStepStatus status     = TS_STEP_INCOMPLETE;
224:   PetscInt     rejections = 0;
225:   PetscBool    stageok, accept = PETSC_TRUE;
226:   PetscReal    next_time_step = ts->time_step;

228:   PetscFunctionBegin;
229:   PetscCall(TSGetAdapt(ts, &adapt));
230:   if (!ts->steprollback) PetscCall(VecCopy(ts->vec_sol, dg->X0));

232:   while (!ts->reason && status != TS_STEP_COMPLETE) {
233:     PetscReal shift = 1 / (0.5 * ts->time_step);

235:     dg->stage_time = ts->ptime + 0.5 * ts->time_step;

237:     PetscCall(VecCopy(dg->X0, dg->X));
238:     PetscCall(TSPreStage(ts, dg->stage_time));
239:     PetscCall(TSDiscGrad_SNESSolve(ts, NULL, dg->X));
240:     PetscCall(TSPostStage(ts, dg->stage_time, 0, &dg->X));
241:     PetscCall(TSAdaptCheckStage(adapt, ts, dg->stage_time, dg->X, &stageok));
242:     if (!stageok) goto reject_step;

244:     status = TS_STEP_PENDING;
245:     PetscCall(VecAXPBYPCZ(dg->Xdot, -shift, shift, 0, dg->X0, dg->X));
246:     PetscCall(VecAXPY(ts->vec_sol, ts->time_step, dg->Xdot));
247:     PetscCall(TSAdaptChoose(adapt, ts, ts->time_step, NULL, &next_time_step, &accept));
248:     status = accept ? TS_STEP_COMPLETE : TS_STEP_INCOMPLETE;
249:     if (!accept) {
250:       PetscCall(VecCopy(dg->X0, ts->vec_sol));
251:       ts->time_step = next_time_step;
252:       goto reject_step;
253:     }
254:     ts->ptime += ts->time_step;
255:     ts->time_step = next_time_step;
256:     break;

258:   reject_step:
259:     ts->reject++;
260:     accept = PETSC_FALSE;
261:     if (!ts->reason && ts->max_reject >= 0 && ++rejections > ts->max_reject) {
262:       ts->reason = TS_DIVERGED_STEP_REJECTED;
263:       PetscCall(PetscInfo(ts, "Step=%" PetscInt_FMT ", step rejections %" PetscInt_FMT " greater than current TS allowed, stopping solve\n", ts->steps, rejections));
264:     }
265:   }
266:   PetscFunctionReturn(PETSC_SUCCESS);
267: }

269: static PetscErrorCode TSGetStages_DiscGrad(TS ts, PetscInt *ns, Vec **Y)
270: {
271:   TS_DiscGrad *dg = (TS_DiscGrad *)ts->data;

273:   PetscFunctionBegin;
274:   if (ns) *ns = 1;
275:   if (Y) *Y = &dg->X;
276:   PetscFunctionReturn(PETSC_SUCCESS);
277: }

279: /*
280:   This defines the nonlinear equation that is to be solved with SNES
281:     G(U) = F[t0 + 0.5*dt, U, (U-U0)/dt] = 0
282: */

284: /* x = (x+x')/2 */
285: /* NEED TO CALCULATE x_{n+1} from x and x_{n}*/
286: static PetscErrorCode SNESTSFormFunction_DiscGrad(SNES snes, Vec x, Vec y, TS ts)
287: {
288:   TS_DiscGrad *dg = (TS_DiscGrad *)ts->data;
289:   PetscReal    norm, shift = 1 / (0.5 * ts->time_step);
290:   PetscInt     n, dim;
291:   Vec          X0, Xdot, Xp, Xdiff;
292:   Mat          S;
293:   PetscScalar  F = 0, F0 = 0, Gp;
294:   Vec          G, SgF;
295:   DM           dm, dmsave;

297:   PetscFunctionBegin;
298:   PetscCall(SNESGetDM(snes, &dm));
299:   PetscCall(DMGetDimension(dm, &dim));

301:   PetscCall(VecDuplicate(y, &Xp));
302:   PetscCall(VecDuplicate(y, &Xdiff));
303:   PetscCall(VecDuplicate(y, &SgF));
304:   PetscCall(VecDuplicate(y, &G));

306:   PetscCall(PetscObjectSetName((PetscObject)x, "x"));
307:   PetscCall(VecViewFromOptions(x, NULL, "-x_view"));

309:   PetscCall(VecGetLocalSize(y, &n));
310:   PetscCall(MatCreate(PETSC_COMM_WORLD, &S));
311:   PetscCall(MatSetSizes(S, n, n, PETSC_DECIDE, PETSC_DECIDE));
312:   PetscCall(MatSetFromOptions(S));
313:   PetscInt *S_prealloc_arr;
314:   PetscCall(PetscMalloc1(n, &S_prealloc_arr));
315:   for (PetscInt i = 0; i < n; ++i) S_prealloc_arr[i] = 2;
316:   PetscCall(MatXAIJSetPreallocation(S, 1, S_prealloc_arr, NULL, NULL, NULL));
317:   PetscCall(MatSetUp(S));
318:   PetscCall((*dg->Sfunc)(ts, dg->stage_time, x, S, dg->funcCtx));
319:   PetscCall(PetscFree(S_prealloc_arr));
320:   PetscCall(PetscObjectSetName((PetscObject)S, "S"));
321:   PetscCall(MatViewFromOptions(S, NULL, "-S_view"));
322:   PetscCall(TSDiscGradGetX0AndXdot(ts, dm, &X0, &Xdot));
323:   PetscCall(VecAXPBYPCZ(Xdot, -shift, shift, 0, X0, x)); /* Xdot = shift (x - X0) */

325:   PetscCall(VecAXPBYPCZ(Xp, -1, 2, 0, X0, x));     /* Xp = 2*x - X0 + (0)*Xp */
326:   PetscCall(VecAXPBYPCZ(Xdiff, -1, 1, 0, X0, Xp)); /* Xdiff = xp - X0 + (0)*Xdiff */

328:   PetscCall(PetscObjectSetName((PetscObject)X0, "X0"));
329:   PetscCall(PetscObjectSetName((PetscObject)Xp, "Xp"));
330:   PetscCall(VecViewFromOptions(X0, NULL, "-X0_view"));
331:   PetscCall(VecViewFromOptions(Xp, NULL, "-Xp_view"));

333:   if (dg->discgrad == TS_DG_AVERAGE) {
334:     /* Average Value DG:
335:     \overline{\nabla} F (x_{n+1},x_{n}) = \int_0^1 \nabla F ((1-\xi)*x_{n+1} + \xi*x_{n}) d \xi */
336:     PetscQuadrature  quad;
337:     PetscInt         Nq;
338:     const PetscReal *wq, *xq;
339:     Vec              Xquad, den;

341:     PetscCall(PetscObjectSetName((PetscObject)G, "G"));
342:     PetscCall(VecDuplicate(G, &Xquad));
343:     PetscCall(VecDuplicate(G, &den));
344:     PetscCall(VecZeroEntries(G));

346:     /* \overline{\nabla} F = \nabla F ((1-\xi) x_{n} + \xi x_{n+1})*/
347:     PetscCall(PetscDTGaussTensorQuadrature(dim, 1, 2, 0.0, 1.0, &quad));
348:     PetscCall(PetscQuadratureGetData(quad, NULL, NULL, &Nq, &xq, &wq));
349:     for (PetscInt q = 0; q < Nq; ++q) {
350:       PetscReal xi = xq[q], xim1 = 1 - xq[q];
351:       PetscCall(VecZeroEntries(Xquad));
352:       PetscCall(VecAXPBYPCZ(Xquad, xi, xim1, 1.0, X0, Xp));
353:       PetscCall((*dg->Gfunc)(ts, dg->stage_time, Xquad, den, dg->funcCtx));
354:       PetscCall(VecAXPY(G, wq[q], den));
355:       PetscCall(PetscObjectSetName((PetscObject)den, "den"));
356:       PetscCall(VecViewFromOptions(den, NULL, "-den_view"));
357:     }
358:     PetscCall(VecDestroy(&Xquad));
359:     PetscCall(VecDestroy(&den));
360:     PetscCall(PetscQuadratureDestroy(&quad));
361:   } else if (dg->discgrad == TS_DG_GONZALEZ) {
362:     PetscCall((*dg->Ffunc)(ts, dg->stage_time, Xp, &F, dg->funcCtx));
363:     PetscCall((*dg->Ffunc)(ts, dg->stage_time, X0, &F0, dg->funcCtx));
364:     PetscCall((*dg->Gfunc)(ts, dg->stage_time, x, G, dg->funcCtx));

366:     /* Adding Extra Gonzalez Term */
367:     PetscCall(VecDot(Xdiff, G, &Gp));
368:     PetscCall(VecNorm(Xdiff, NORM_2, &norm));
369:     if (norm < PETSC_SQRT_MACHINE_EPSILON) {
370:       Gp = 0;
371:     } else {
372:       /* Gp = (1/|xn+1 - xn|^2) * (F(xn+1) - F(xn) - Gp) */
373:       Gp = (F - F0 - Gp) / PetscSqr(norm);
374:     }
375:     PetscCall(VecAXPY(G, Gp, Xdiff));
376:   } else if (dg->discgrad == TS_DG_NONE) {
377:     PetscCall((*dg->Gfunc)(ts, dg->stage_time, x, G, dg->funcCtx));
378:   } else {
379:     SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "DG type not supported.");
380:   }
381:   PetscCall(MatMult(S, G, SgF)); /* Xdot = S*gradF */

383:   PetscCall(PetscObjectSetName((PetscObject)G, "G"));
384:   PetscCall(VecViewFromOptions(G, NULL, "-G_view"));
385:   PetscCall(PetscObjectSetName((PetscObject)SgF, "SgF"));
386:   PetscCall(VecViewFromOptions(SgF, NULL, "-SgF_view"));
387:   /* DM monkey-business allows user code to call TSGetDM() inside of functions evaluated on levels of FAS */
388:   dmsave = ts->dm;
389:   ts->dm = dm;
390:   PetscCall(VecAXPBYPCZ(y, 1, -1, 0, Xdot, SgF));

392:   ts->dm = dmsave;
393:   PetscCall(TSDiscGradRestoreX0AndXdot(ts, dm, &X0, &Xdot));

395:   PetscCall(VecDestroy(&Xp));
396:   PetscCall(VecDestroy(&Xdiff));
397:   PetscCall(VecDestroy(&SgF));
398:   PetscCall(VecDestroy(&G));
399:   PetscCall(MatDestroy(&S));
400:   PetscFunctionReturn(PETSC_SUCCESS);
401: }

403: static PetscErrorCode SNESTSFormJacobian_DiscGrad(SNES snes, Vec x, Mat A, Mat B, TS ts)
404: {
405:   TS_DiscGrad *dg    = (TS_DiscGrad *)ts->data;
406:   PetscReal    shift = 1 / (0.5 * ts->time_step);
407:   Vec          Xdot;
408:   DM           dm, dmsave;

410:   PetscFunctionBegin;
411:   PetscCall(SNESGetDM(snes, &dm));
412:   /* Xdot has already been computed in SNESTSFormFunction_DiscGrad (SNES guarantees this) */
413:   PetscCall(TSDiscGradGetX0AndXdot(ts, dm, NULL, &Xdot));

415:   dmsave = ts->dm;
416:   ts->dm = dm;
417:   PetscCall(TSComputeIJacobian(ts, dg->stage_time, x, Xdot, shift, A, B, PETSC_FALSE));
418:   ts->dm = dmsave;
419:   PetscCall(TSDiscGradRestoreX0AndXdot(ts, dm, NULL, &Xdot));
420:   PetscFunctionReturn(PETSC_SUCCESS);
421: }

423: static PetscErrorCode TSDiscGradGetFormulation_DiscGrad(TS ts, PetscErrorCode (**Sfunc)(TS, PetscReal, Vec, Mat, void *), PetscErrorCode (**Ffunc)(TS, PetscReal, Vec, PetscScalar *, void *), PetscErrorCode (**Gfunc)(TS, PetscReal, Vec, Vec, void *), void *ctx)
424: {
425:   TS_DiscGrad *dg = (TS_DiscGrad *)ts->data;

427:   PetscFunctionBegin;
428:   *Sfunc = dg->Sfunc;
429:   *Ffunc = dg->Ffunc;
430:   *Gfunc = dg->Gfunc;
431:   PetscFunctionReturn(PETSC_SUCCESS);
432: }

434: static PetscErrorCode TSDiscGradSetFormulation_DiscGrad(TS ts, PetscErrorCode (*Sfunc)(TS, PetscReal, Vec, Mat, void *), PetscErrorCode (*Ffunc)(TS, PetscReal, Vec, PetscScalar *, void *), PetscErrorCode (*Gfunc)(TS, PetscReal, Vec, Vec, void *), void *ctx)
435: {
436:   TS_DiscGrad *dg = (TS_DiscGrad *)ts->data;

438:   PetscFunctionBegin;
439:   dg->Sfunc   = Sfunc;
440:   dg->Ffunc   = Ffunc;
441:   dg->Gfunc   = Gfunc;
442:   dg->funcCtx = ctx;
443:   PetscFunctionReturn(PETSC_SUCCESS);
444: }

446: /*MC
447:   TSDISCGRAD - ODE solver using the discrete gradients version of the implicit midpoint method

449:   Level: intermediate

451:   Notes:
452:   This is the implicit midpoint rule, with an optional term that guarantees the discrete
453:   gradient property. This timestepper applies to systems of the form $u_t = S(u) \nabla F(u)$
454:   where $S(u)$ is a linear operator, and $F$ is a functional of $u$.

456: .seealso: [](ch_ts), `TSCreate()`, `TSSetType()`, `TS`, `TSDISCGRAD`, `TSDiscGradSetFormulation()`
457: M*/
458: PETSC_EXTERN PetscErrorCode TSCreate_DiscGrad(TS ts)
459: {
460:   TS_DiscGrad *th;

462:   PetscFunctionBegin;
463:   PetscCall(PetscCitationsRegister(DGCitation, &DGCite));
464:   ts->ops->reset          = TSReset_DiscGrad;
465:   ts->ops->destroy        = TSDestroy_DiscGrad;
466:   ts->ops->view           = TSView_DiscGrad;
467:   ts->ops->setfromoptions = TSSetFromOptions_DiscGrad;
468:   ts->ops->setup          = TSSetUp_DiscGrad;
469:   ts->ops->step           = TSStep_DiscGrad;
470:   ts->ops->interpolate    = TSInterpolate_DiscGrad;
471:   ts->ops->getstages      = TSGetStages_DiscGrad;
472:   ts->ops->snesfunction   = SNESTSFormFunction_DiscGrad;
473:   ts->ops->snesjacobian   = SNESTSFormJacobian_DiscGrad;
474:   ts->default_adapt_type  = TSADAPTNONE;

476:   ts->usessnes = PETSC_TRUE;

478:   PetscCall(PetscNew(&th));
479:   ts->data = (void *)th;

481:   th->discgrad = TS_DG_NONE;

483:   PetscCall(PetscObjectComposeFunction((PetscObject)ts, "TSDiscGradGetFormulation_C", TSDiscGradGetFormulation_DiscGrad));
484:   PetscCall(PetscObjectComposeFunction((PetscObject)ts, "TSDiscGradSetFormulation_C", TSDiscGradSetFormulation_DiscGrad));
485:   PetscCall(PetscObjectComposeFunction((PetscObject)ts, "TSDiscGradGetType_C", TSDiscGradGetType_DiscGrad));
486:   PetscCall(PetscObjectComposeFunction((PetscObject)ts, "TSDiscGradSetType_C", TSDiscGradSetType_DiscGrad));
487:   PetscFunctionReturn(PETSC_SUCCESS);
488: }

490: /*@C
491:   TSDiscGradGetFormulation - Get the construction method for S, F, and grad F from the
492:   formulation $u_t = S \nabla F$ for `TSDISCGRAD`

494:   Not Collective

496:   Input Parameter:
497: . ts - timestepping context

499:   Output Parameters:
500: + Sfunc - constructor for the S matrix from the formulation
501: . Ffunc - functional F from the formulation
502: . Gfunc - constructor for the gradient of F from the formulation
503: - ctx   - the user context

505:   Calling sequence of `Sfunc`:
506: + ts   - the integrator
507: . time - the current time
508: . u    - the solution
509: . S    - the S-matrix from the formulation
510: - ctx  - the user context

512:   Calling sequence of `Ffunc`:
513: + ts   - the integrator
514: . time - the current time
515: . u    - the solution
516: . F    - the computed function from the formulation
517: - ctx  - the user context

519:   Calling sequence of `Gfunc`:
520: + ts   - the integrator
521: . time - the current time
522: . u    - the solution
523: . G    - the gradient of the computed function from the formulation
524: - ctx  - the user context

526:   Level: intermediate

528: .seealso: [](ch_ts), `TS`, `TSDISCGRAD`, `TSDiscGradSetFormulation()`
529: @*/
530: PetscErrorCode TSDiscGradGetFormulation(TS ts, PetscErrorCode (**Sfunc)(TS ts, PetscReal time, Vec u, Mat S, void *ctx), PetscErrorCode (**Ffunc)(TS ts, PetscReal time, Vec u, PetscScalar *F, void *ctx), PetscErrorCode (**Gfunc)(TS ts, PetscReal time, Vec u, Vec G, void *ctx), void *ctx)
531: {
532:   PetscFunctionBegin;
534:   PetscAssertPointer(Sfunc, 2);
535:   PetscAssertPointer(Ffunc, 3);
536:   PetscAssertPointer(Gfunc, 4);
537:   PetscUseMethod(ts, "TSDiscGradGetFormulation_C", (TS, PetscErrorCode (**Sfunc)(TS, PetscReal, Vec, Mat, void *), PetscErrorCode (**Ffunc)(TS, PetscReal, Vec, PetscScalar *, void *), PetscErrorCode (**Gfunc)(TS, PetscReal, Vec, Vec, void *), void *), (ts, Sfunc, Ffunc, Gfunc, ctx));
538:   PetscFunctionReturn(PETSC_SUCCESS);
539: }

541: /*@C
542:   TSDiscGradSetFormulation - Set the construction method for S, F, and grad F from the
543:   formulation $u_t = S(u) \nabla F(u)$ for `TSDISCGRAD`

545:   Not Collective

547:   Input Parameters:
548: + ts    - timestepping context
549: . Sfunc - constructor for the S matrix from the formulation
550: . Ffunc - functional F from the formulation
551: . Gfunc - constructor for the gradient of F from the formulation
552: - ctx   - optional context for the functions

554:   Calling sequence of `Sfunc`:
555: + ts   - the integrator
556: . time - the current time
557: . u    - the solution
558: . S    - the S-matrix from the formulation
559: - ctx  - the user context

561:   Calling sequence of `Ffunc`:
562: + ts   - the integrator
563: . time - the current time
564: . u    - the solution
565: . F    - the computed function from the formulation
566: - ctx  - the user context

568:   Calling sequence of `Gfunc`:
569: + ts   - the integrator
570: . time - the current time
571: . u    - the solution
572: . G    - the gradient of the computed function from the formulation
573: - ctx  - the user context

575:   Level: intermediate

577: .seealso: [](ch_ts), `TSDISCGRAD`, `TSDiscGradGetFormulation()`
578: @*/
579: PetscErrorCode TSDiscGradSetFormulation(TS ts, PetscErrorCode (*Sfunc)(TS ts, PetscReal time, Vec u, Mat S, void *ctx), PetscErrorCode (*Ffunc)(TS ts, PetscReal time, Vec u, PetscScalar *F, void *ctx), PetscErrorCode (*Gfunc)(TS ts, PetscReal time, Vec u, Vec G, void *ctx), void *ctx)
580: {
581:   PetscFunctionBegin;
586:   PetscTryMethod(ts, "TSDiscGradSetFormulation_C", (TS, PetscErrorCode (*Sfunc)(TS, PetscReal, Vec, Mat, void *), PetscErrorCode (*Ffunc)(TS, PetscReal, Vec, PetscScalar *, void *), PetscErrorCode (*Gfunc)(TS, PetscReal, Vec, Vec, void *), void *), (ts, Sfunc, Ffunc, Gfunc, ctx));
587:   PetscFunctionReturn(PETSC_SUCCESS);
588: }

590: /*@
591:   TSDiscGradGetType - Checks for which discrete gradient to use in formulation for `TSDISCGRAD`

593:   Not Collective

595:   Input Parameter:
596: . ts - timestepping context

598:   Output Parameter:
599: . dgtype - Discrete gradient type <none, gonzalez, average>

601:   Level: advanced

603: .seealso: [](ch_ts), `TSDISCGRAD`, `TSDiscGradSetType()`
604: @*/
605: PetscErrorCode TSDiscGradGetType(TS ts, TSDGType *dgtype)
606: {
607:   PetscFunctionBegin;
609:   PetscAssertPointer(dgtype, 2);
610:   PetscUseMethod(ts, "TSDiscGradGetType_C", (TS, TSDGType *), (ts, dgtype));
611:   PetscFunctionReturn(PETSC_SUCCESS);
612: }

614: /*@
615:   TSDiscGradSetType - Sets discrete gradient formulation.

617:   Not Collective

619:   Input Parameters:
620: + ts     - timestepping context
621: - dgtype - Discrete gradient type <none, gonzalez, average>

623:   Options Database Key:
624: . -ts_discgrad_type <type> - flag to choose discrete gradient type

626:   Level: intermediate

628:   Notes:
629:   Without `dgtype` or with type `none`, the discrete gradients timestepper is just implicit midpoint.

631: .seealso: [](ch_ts), `TSDISCGRAD`
632: @*/
633: PetscErrorCode TSDiscGradSetType(TS ts, TSDGType dgtype)
634: {
635:   PetscFunctionBegin;
637:   PetscTryMethod(ts, "TSDiscGradSetType_C", (TS, TSDGType), (ts, dgtype));
638:   PetscFunctionReturn(PETSC_SUCCESS);
639: }