Actual source code: irk.c

  1: /*
  2:   Code for timestepping with implicit Runge-Kutta method

  4:   Notes:
  5:   The general system is written as

  7:   F(t,U,Udot) = 0

  9: */
 10: #include <petsc/private/tsimpl.h>
 11: #include <petscdm.h>
 12: #include <petscdt.h>

 14: static TSIRKType         TSIRKDefault = TSIRKGAUSS;
 15: static PetscBool         TSIRKRegisterAllCalled;
 16: static PetscBool         TSIRKPackageInitialized;
 17: static PetscFunctionList TSIRKList;

 19: struct _IRKTableau {
 20:   PetscReal   *A, *b, *c;
 21:   PetscScalar *A_inv, *A_inv_rowsum, *I_s;
 22:   PetscReal   *binterp; /* Dense output formula */
 23: };

 25: typedef struct _IRKTableau *IRKTableau;

 27: typedef struct {
 28:   char        *method_name;
 29:   PetscInt     order;   /* Classical approximation order of the method */
 30:   PetscInt     nstages; /* Number of stages */
 31:   PetscBool    stiffly_accurate;
 32:   PetscInt     pinterp; /* Interpolation order */
 33:   IRKTableau   tableau;
 34:   Vec          U0;    /* Backup vector */
 35:   Vec          Z;     /* Combined stage vector */
 36:   Vec         *Y;     /* States computed during the step */
 37:   Vec          Ydot;  /* Work vector holding time derivatives during residual evaluation */
 38:   Vec          U;     /* U is used to compute Ydot = shift(Y-U) */
 39:   Vec         *YdotI; /* Work vectors to hold the residual evaluation */
 40:   Mat          TJ;    /* KAIJ matrix for the Jacobian of the combined system */
 41:   PetscScalar *work;  /* Scalar work */
 42:   TSStepStatus status;
 43:   PetscBool    rebuild_completion;
 44:   PetscReal    ccfl;
 45: } TS_IRK;

 47: /*@C
 48:   TSIRKTableauCreate - create the tableau for `TSIRK` and provide the entries

 50:   Not Collective

 52:   Input Parameters:
 53: + ts           - timestepping context
 54: . nstages      - number of stages, this is the dimension of the matrices below
 55: . A            - stage coefficients (dimension nstages*nstages, row-major)
 56: . b            - step completion table (dimension nstages)
 57: . c            - abscissa (dimension nstages)
 58: . binterp      - coefficients of the interpolation formula (dimension nstages)
 59: . A_inv        - inverse of A (dimension nstages*nstages, row-major)
 60: . A_inv_rowsum - row sum of the inverse of A (dimension nstages)
 61: - I_s          - identity matrix (dimension nstages*nstages)

 63:   Level: advanced

 65: .seealso: [](ch_ts), `TSIRK`, `TSIRKRegister()`
 66: @*/
 67: PetscErrorCode TSIRKTableauCreate(TS ts, PetscInt nstages, const PetscReal *A, const PetscReal *b, const PetscReal *c, const PetscReal *binterp, const PetscScalar *A_inv, const PetscScalar *A_inv_rowsum, const PetscScalar *I_s)
 68: {
 69:   TS_IRK    *irk = (TS_IRK *)ts->data;
 70:   IRKTableau tab = irk->tableau;

 72:   PetscFunctionBegin;
 73:   irk->order = nstages;
 74:   PetscCall(PetscMalloc3(PetscSqr(nstages), &tab->A, PetscSqr(nstages), &tab->A_inv, PetscSqr(nstages), &tab->I_s));
 75:   PetscCall(PetscMalloc4(nstages, &tab->b, nstages, &tab->c, nstages, &tab->binterp, nstages, &tab->A_inv_rowsum));
 76:   PetscCall(PetscArraycpy(tab->A, A, PetscSqr(nstages)));
 77:   PetscCall(PetscArraycpy(tab->b, b, nstages));
 78:   PetscCall(PetscArraycpy(tab->c, c, nstages));
 79:   /* optional coefficient arrays */
 80:   if (binterp) PetscCall(PetscArraycpy(tab->binterp, binterp, nstages));
 81:   if (A_inv) PetscCall(PetscArraycpy(tab->A_inv, A_inv, PetscSqr(nstages)));
 82:   if (A_inv_rowsum) PetscCall(PetscArraycpy(tab->A_inv_rowsum, A_inv_rowsum, nstages));
 83:   if (I_s) PetscCall(PetscArraycpy(tab->I_s, I_s, PetscSqr(nstages)));
 84:   PetscFunctionReturn(PETSC_SUCCESS);
 85: }

 87: /* Arrays should be freed with PetscFree3(A,b,c) */
 88: static PetscErrorCode TSIRKCreate_Gauss(TS ts)
 89: {
 90:   PetscInt     nstages;
 91:   PetscReal   *gauss_A_real, *gauss_b, *b, *gauss_c;
 92:   PetscScalar *gauss_A, *gauss_A_inv, *gauss_A_inv_rowsum, *I_s;
 93:   PetscScalar *G0, *G1;
 94:   PetscInt     i, j;
 95:   Mat          G0mat, G1mat, Amat;

 97:   PetscFunctionBegin;
 98:   PetscCall(TSIRKGetNumStages(ts, &nstages));
 99:   PetscCall(PetscMalloc3(PetscSqr(nstages), &gauss_A_real, nstages, &gauss_b, nstages, &gauss_c));
100:   PetscCall(PetscMalloc4(PetscSqr(nstages), &gauss_A, PetscSqr(nstages), &gauss_A_inv, nstages, &gauss_A_inv_rowsum, PetscSqr(nstages), &I_s));
101:   PetscCall(PetscMalloc3(nstages, &b, PetscSqr(nstages), &G0, PetscSqr(nstages), &G1));
102:   PetscCall(PetscDTGaussQuadrature(nstages, 0., 1., gauss_c, b));
103:   for (i = 0; i < nstages; i++) gauss_b[i] = b[i]; /* copy to possibly-complex array */

105:   /* A^T = G0^{-1} G1 */
106:   for (i = 0; i < nstages; i++) {
107:     for (j = 0; j < nstages; j++) {
108:       G0[i * nstages + j] = PetscPowRealInt(gauss_c[i], j);
109:       G1[i * nstages + j] = PetscPowRealInt(gauss_c[i], j + 1) / (j + 1);
110:     }
111:   }
112:   /* The arrays above are row-aligned, but we create dense matrices as the transpose */
113:   PetscCall(MatCreateSeqDense(PETSC_COMM_SELF, nstages, nstages, G0, &G0mat));
114:   PetscCall(MatCreateSeqDense(PETSC_COMM_SELF, nstages, nstages, G1, &G1mat));
115:   PetscCall(MatCreateSeqDense(PETSC_COMM_SELF, nstages, nstages, gauss_A, &Amat));
116:   PetscCall(MatLUFactor(G0mat, NULL, NULL, NULL));
117:   PetscCall(MatMatSolve(G0mat, G1mat, Amat));
118:   PetscCall(MatTranspose(Amat, MAT_INPLACE_MATRIX, &Amat));
119:   for (i = 0; i < nstages; i++)
120:     for (j = 0; j < nstages; j++) gauss_A_real[i * nstages + j] = PetscRealPart(gauss_A[i * nstages + j]);

122:   PetscCall(MatDestroy(&G0mat));
123:   PetscCall(MatDestroy(&G1mat));
124:   PetscCall(MatDestroy(&Amat));
125:   PetscCall(PetscFree3(b, G0, G1));

127:   { /* Invert A */
128:     /* PETSc does not provide a routine to calculate the inverse of a general matrix.
129:      * To get the inverse of A, we form a sequential BAIJ matrix from it, consisting of a single block with block size
130:      * equal to the dimension of A, and then use MatInvertBlockDiagonal(). */
131:     Mat                A_baij;
132:     PetscInt           idxm[1] = {0}, idxn[1] = {0};
133:     const PetscScalar *A_inv;

135:     PetscCall(MatCreateSeqBAIJ(PETSC_COMM_SELF, nstages, nstages, nstages, 1, NULL, &A_baij));
136:     PetscCall(MatSetOption(A_baij, MAT_ROW_ORIENTED, PETSC_FALSE));
137:     PetscCall(MatSetValuesBlocked(A_baij, 1, idxm, 1, idxn, gauss_A, INSERT_VALUES));
138:     PetscCall(MatAssemblyBegin(A_baij, MAT_FINAL_ASSEMBLY));
139:     PetscCall(MatAssemblyEnd(A_baij, MAT_FINAL_ASSEMBLY));
140:     PetscCall(MatInvertBlockDiagonal(A_baij, &A_inv));
141:     PetscCall(PetscMemcpy(gauss_A_inv, A_inv, nstages * nstages * sizeof(PetscScalar)));
142:     PetscCall(MatDestroy(&A_baij));
143:   }

145:   /* Compute row sums A_inv_rowsum and identity I_s */
146:   for (i = 0; i < nstages; i++) {
147:     gauss_A_inv_rowsum[i] = 0;
148:     for (j = 0; j < nstages; j++) {
149:       gauss_A_inv_rowsum[i] += gauss_A_inv[i + nstages * j];
150:       I_s[i + nstages * j] = 1. * (i == j);
151:     }
152:   }
153:   PetscCall(TSIRKTableauCreate(ts, nstages, gauss_A_real, gauss_b, gauss_c, NULL, gauss_A_inv, gauss_A_inv_rowsum, I_s));
154:   PetscCall(PetscFree3(gauss_A_real, gauss_b, gauss_c));
155:   PetscCall(PetscFree4(gauss_A, gauss_A_inv, gauss_A_inv_rowsum, I_s));
156:   PetscFunctionReturn(PETSC_SUCCESS);
157: }

159: /*@C
160:   TSIRKRegister -  adds a `TSIRK` implementation

162:   Not Collective, No Fortran Support

164:   Input Parameters:
165: + sname    - name of user-defined IRK scheme
166: - function - function to create method context

168:   Level: advanced

170:   Note:
171:   `TSIRKRegister()` may be called multiple times to add several user-defined families.

173:   Example Usage:
174: .vb
175:    TSIRKRegister("my_scheme", MySchemeCreate);
176: .ve

178:   Then, your scheme can be chosen with the procedural interface via
179: $     TSIRKSetType(ts, "my_scheme")
180:   or at runtime via the option
181: $     -ts_irk_type my_scheme

183: .seealso: [](ch_ts), `TSIRK`, `TSIRKRegisterAll()`
184: @*/
185: PetscErrorCode TSIRKRegister(const char sname[], PetscErrorCode (*function)(TS))
186: {
187:   PetscFunctionBegin;
188:   PetscCall(TSIRKInitializePackage());
189:   PetscCall(PetscFunctionListAdd(&TSIRKList, sname, function));
190:   PetscFunctionReturn(PETSC_SUCCESS);
191: }

193: /*@C
194:   TSIRKRegisterAll - Registers all of the implicit Runge-Kutta methods in `TSIRK`

196:   Not Collective, but should be called by all processes which will need the schemes to be registered

198:   Level: advanced

200: .seealso: [](ch_ts), `TSIRK`, `TSIRKRegisterDestroy()`
201: @*/
202: PetscErrorCode TSIRKRegisterAll(void)
203: {
204:   PetscFunctionBegin;
205:   if (TSIRKRegisterAllCalled) PetscFunctionReturn(PETSC_SUCCESS);
206:   TSIRKRegisterAllCalled = PETSC_TRUE;

208:   PetscCall(TSIRKRegister(TSIRKGAUSS, TSIRKCreate_Gauss));
209:   PetscFunctionReturn(PETSC_SUCCESS);
210: }

212: /*@C
213:   TSIRKRegisterDestroy - Frees the list of schemes that were registered by `TSIRKRegister()`.

215:   Not Collective

217:   Level: advanced

219: .seealso: [](ch_ts), `TSIRK`, `TSIRKRegister()`, `TSIRKRegisterAll()`
220: @*/
221: PetscErrorCode TSIRKRegisterDestroy(void)
222: {
223:   PetscFunctionBegin;
224:   TSIRKRegisterAllCalled = PETSC_FALSE;
225:   PetscFunctionReturn(PETSC_SUCCESS);
226: }

228: /*@C
229:   TSIRKInitializePackage - This function initializes everything in the `TSIRK` package. It is called
230:   from `TSInitializePackage()`.

232:   Level: developer

234: .seealso: [](ch_ts), `TSIRK`, `PetscInitialize()`, `TSIRKFinalizePackage()`, `TSInitializePackage()`
235: @*/
236: PetscErrorCode TSIRKInitializePackage(void)
237: {
238:   PetscFunctionBegin;
239:   if (TSIRKPackageInitialized) PetscFunctionReturn(PETSC_SUCCESS);
240:   TSIRKPackageInitialized = PETSC_TRUE;
241:   PetscCall(TSIRKRegisterAll());
242:   PetscCall(PetscRegisterFinalize(TSIRKFinalizePackage));
243:   PetscFunctionReturn(PETSC_SUCCESS);
244: }

246: /*@C
247:   TSIRKFinalizePackage - This function destroys everything in the `TSIRK` package. It is
248:   called from `PetscFinalize()`.

250:   Level: developer

252: .seealso: [](ch_ts), `TSIRK`, `PetscFinalize()`, `TSInitializePackage()`
253: @*/
254: PetscErrorCode TSIRKFinalizePackage(void)
255: {
256:   PetscFunctionBegin;
257:   PetscCall(PetscFunctionListDestroy(&TSIRKList));
258:   TSIRKPackageInitialized = PETSC_FALSE;
259:   PetscFunctionReturn(PETSC_SUCCESS);
260: }

262: /*
263:  This function can be called before or after ts->vec_sol has been updated.
264: */
265: static PetscErrorCode TSEvaluateStep_IRK(TS ts, PetscInt order, Vec U, PetscBool *done)
266: {
267:   TS_IRK      *irk   = (TS_IRK *)ts->data;
268:   IRKTableau   tab   = irk->tableau;
269:   Vec         *YdotI = irk->YdotI;
270:   PetscScalar *w     = irk->work;
271:   PetscReal    h;
272:   PetscInt     j;

274:   PetscFunctionBegin;
275:   switch (irk->status) {
276:   case TS_STEP_INCOMPLETE:
277:   case TS_STEP_PENDING:
278:     h = ts->time_step;
279:     break;
280:   case TS_STEP_COMPLETE:
281:     h = ts->ptime - ts->ptime_prev;
282:     break;
283:   default:
284:     SETERRQ(PetscObjectComm((PetscObject)ts), PETSC_ERR_PLIB, "Invalid TSStepStatus");
285:   }

287:   PetscCall(VecCopy(ts->vec_sol, U));
288:   for (j = 0; j < irk->nstages; j++) w[j] = h * tab->b[j];
289:   PetscCall(VecMAXPY(U, irk->nstages, w, YdotI));
290:   PetscFunctionReturn(PETSC_SUCCESS);
291: }

293: static PetscErrorCode TSRollBack_IRK(TS ts)
294: {
295:   TS_IRK *irk = (TS_IRK *)ts->data;

297:   PetscFunctionBegin;
298:   PetscCall(VecCopy(irk->U0, ts->vec_sol));
299:   PetscFunctionReturn(PETSC_SUCCESS);
300: }

302: static PetscErrorCode TSStep_IRK(TS ts)
303: {
304:   TS_IRK        *irk   = (TS_IRK *)ts->data;
305:   IRKTableau     tab   = irk->tableau;
306:   PetscScalar   *A_inv = tab->A_inv, *A_inv_rowsum = tab->A_inv_rowsum;
307:   const PetscInt nstages = irk->nstages;
308:   SNES           snes;
309:   PetscInt       i, j, its, lits, bs;
310:   TSAdapt        adapt;
311:   PetscInt       rejections     = 0;
312:   PetscBool      accept         = PETSC_TRUE;
313:   PetscReal      next_time_step = ts->time_step;

315:   PetscFunctionBegin;
316:   if (!ts->steprollback) PetscCall(VecCopy(ts->vec_sol, irk->U0));
317:   PetscCall(VecGetBlockSize(ts->vec_sol, &bs));
318:   for (i = 0; i < nstages; i++) PetscCall(VecStrideScatter(ts->vec_sol, i * bs, irk->Z, INSERT_VALUES));

320:   irk->status = TS_STEP_INCOMPLETE;
321:   while (!ts->reason && irk->status != TS_STEP_COMPLETE) {
322:     PetscCall(VecCopy(ts->vec_sol, irk->U));
323:     PetscCall(TSGetSNES(ts, &snes));
324:     PetscCall(SNESSolve(snes, NULL, irk->Z));
325:     PetscCall(SNESGetIterationNumber(snes, &its));
326:     PetscCall(SNESGetLinearSolveIterations(snes, &lits));
327:     ts->snes_its += its;
328:     ts->ksp_its += lits;
329:     PetscCall(VecStrideGatherAll(irk->Z, irk->Y, INSERT_VALUES));
330:     for (i = 0; i < nstages; i++) {
331:       PetscCall(VecZeroEntries(irk->YdotI[i]));
332:       for (j = 0; j < nstages; j++) PetscCall(VecAXPY(irk->YdotI[i], A_inv[i + j * nstages] / ts->time_step, irk->Y[j]));
333:       PetscCall(VecAXPY(irk->YdotI[i], -A_inv_rowsum[i] / ts->time_step, irk->U));
334:     }
335:     irk->status = TS_STEP_INCOMPLETE;
336:     PetscCall(TSEvaluateStep_IRK(ts, irk->order, ts->vec_sol, NULL));
337:     irk->status = TS_STEP_PENDING;
338:     PetscCall(TSGetAdapt(ts, &adapt));
339:     PetscCall(TSAdaptChoose(adapt, ts, ts->time_step, NULL, &next_time_step, &accept));
340:     irk->status = accept ? TS_STEP_COMPLETE : TS_STEP_INCOMPLETE;
341:     if (!accept) {
342:       PetscCall(TSRollBack_IRK(ts));
343:       ts->time_step = next_time_step;
344:       goto reject_step;
345:     }

347:     ts->ptime += ts->time_step;
348:     ts->time_step = next_time_step;
349:     break;
350:   reject_step:
351:     ts->reject++;
352:     accept = PETSC_FALSE;
353:     if (!ts->reason && ++rejections > ts->max_reject && ts->max_reject >= 0) {
354:       ts->reason = TS_DIVERGED_STEP_REJECTED;
355:       PetscCall(PetscInfo(ts, "Step=%" PetscInt_FMT ", step rejections %" PetscInt_FMT " greater than current TS allowed, stopping solve\n", ts->steps, rejections));
356:     }
357:   }
358:   PetscFunctionReturn(PETSC_SUCCESS);
359: }

361: static PetscErrorCode TSInterpolate_IRK(TS ts, PetscReal itime, Vec U)
362: {
363:   TS_IRK          *irk     = (TS_IRK *)ts->data;
364:   PetscInt         nstages = irk->nstages, pinterp = irk->pinterp, i, j;
365:   PetscReal        h;
366:   PetscReal        tt, t;
367:   PetscScalar     *bt;
368:   const PetscReal *B = irk->tableau->binterp;

370:   PetscFunctionBegin;
371:   PetscCheck(B, PetscObjectComm((PetscObject)ts), PETSC_ERR_SUP, "TSIRK %s does not have an interpolation formula", irk->method_name);
372:   switch (irk->status) {
373:   case TS_STEP_INCOMPLETE:
374:   case TS_STEP_PENDING:
375:     h = ts->time_step;
376:     t = (itime - ts->ptime) / h;
377:     break;
378:   case TS_STEP_COMPLETE:
379:     h = ts->ptime - ts->ptime_prev;
380:     t = (itime - ts->ptime) / h + 1; /* In the interval [0,1] */
381:     break;
382:   default:
383:     SETERRQ(PetscObjectComm((PetscObject)ts), PETSC_ERR_PLIB, "Invalid TSStepStatus");
384:   }
385:   PetscCall(PetscMalloc1(nstages, &bt));
386:   for (i = 0; i < nstages; i++) bt[i] = 0;
387:   for (j = 0, tt = t; j < pinterp; j++, tt *= t) {
388:     for (i = 0; i < nstages; i++) bt[i] += h * B[i * pinterp + j] * tt;
389:   }
390:   PetscCall(VecMAXPY(U, nstages, bt, irk->YdotI));
391:   PetscFunctionReturn(PETSC_SUCCESS);
392: }

394: static PetscErrorCode TSIRKTableauReset(TS ts)
395: {
396:   TS_IRK    *irk = (TS_IRK *)ts->data;
397:   IRKTableau tab = irk->tableau;

399:   PetscFunctionBegin;
400:   if (!tab) PetscFunctionReturn(PETSC_SUCCESS);
401:   PetscCall(PetscFree3(tab->A, tab->A_inv, tab->I_s));
402:   PetscCall(PetscFree4(tab->b, tab->c, tab->binterp, tab->A_inv_rowsum));
403:   PetscFunctionReturn(PETSC_SUCCESS);
404: }

406: static PetscErrorCode TSReset_IRK(TS ts)
407: {
408:   TS_IRK *irk = (TS_IRK *)ts->data;

410:   PetscFunctionBegin;
411:   PetscCall(TSIRKTableauReset(ts));
412:   if (irk->tableau) PetscCall(PetscFree(irk->tableau));
413:   if (irk->method_name) PetscCall(PetscFree(irk->method_name));
414:   if (irk->work) PetscCall(PetscFree(irk->work));
415:   PetscCall(VecDestroyVecs(irk->nstages, &irk->Y));
416:   PetscCall(VecDestroyVecs(irk->nstages, &irk->YdotI));
417:   PetscCall(VecDestroy(&irk->Ydot));
418:   PetscCall(VecDestroy(&irk->Z));
419:   PetscCall(VecDestroy(&irk->U));
420:   PetscCall(VecDestroy(&irk->U0));
421:   PetscCall(MatDestroy(&irk->TJ));
422:   PetscFunctionReturn(PETSC_SUCCESS);
423: }

425: static PetscErrorCode TSIRKGetVecs(TS ts, DM dm, Vec *U)
426: {
427:   TS_IRK *irk = (TS_IRK *)ts->data;

429:   PetscFunctionBegin;
430:   if (U) {
431:     if (dm && dm != ts->dm) {
432:       PetscCall(DMGetNamedGlobalVector(dm, "TSIRK_U", U));
433:     } else *U = irk->U;
434:   }
435:   PetscFunctionReturn(PETSC_SUCCESS);
436: }

438: static PetscErrorCode TSIRKRestoreVecs(TS ts, DM dm, Vec *U)
439: {
440:   PetscFunctionBegin;
441:   if (U) {
442:     if (dm && dm != ts->dm) PetscCall(DMRestoreNamedGlobalVector(dm, "TSIRK_U", U));
443:   }
444:   PetscFunctionReturn(PETSC_SUCCESS);
445: }

447: /*
448:   This defines the nonlinear equations that is to be solved with SNES
449:     G[e\otimes t + C*dt, Z, Zdot] = 0
450:     Zdot = (In \otimes S)*Z - (In \otimes Se) U
451:   where S = 1/(dt*A)
452: */
453: static PetscErrorCode SNESTSFormFunction_IRK(SNES snes, Vec ZC, Vec FC, TS ts)
454: {
455:   TS_IRK            *irk     = (TS_IRK *)ts->data;
456:   IRKTableau         tab     = irk->tableau;
457:   const PetscInt     nstages = irk->nstages;
458:   const PetscReal   *c       = tab->c;
459:   const PetscScalar *A_inv = tab->A_inv, *A_inv_rowsum = tab->A_inv_rowsum;
460:   DM                 dm, dmsave;
461:   Vec                U, *YdotI = irk->YdotI, Ydot = irk->Ydot, *Y = irk->Y;
462:   PetscReal          h = ts->time_step;
463:   PetscInt           i, j;

465:   PetscFunctionBegin;
466:   PetscCall(SNESGetDM(snes, &dm));
467:   PetscCall(TSIRKGetVecs(ts, dm, &U));
468:   PetscCall(VecStrideGatherAll(ZC, Y, INSERT_VALUES));
469:   dmsave = ts->dm;
470:   ts->dm = dm;
471:   for (i = 0; i < nstages; i++) {
472:     PetscCall(VecZeroEntries(Ydot));
473:     for (j = 0; j < nstages; j++) PetscCall(VecAXPY(Ydot, A_inv[j * nstages + i] / h, Y[j]));
474:     PetscCall(VecAXPY(Ydot, -A_inv_rowsum[i] / h, U)); /* Ydot = (S \otimes In)*Z - (Se \otimes In) U */
475:     PetscCall(TSComputeIFunction(ts, ts->ptime + ts->time_step * c[i], Y[i], Ydot, YdotI[i], PETSC_FALSE));
476:   }
477:   PetscCall(VecStrideScatterAll(YdotI, FC, INSERT_VALUES));
478:   ts->dm = dmsave;
479:   PetscCall(TSIRKRestoreVecs(ts, dm, &U));
480:   PetscFunctionReturn(PETSC_SUCCESS);
481: }

483: /*
484:    For explicit ODE, the Jacobian is
485:      JC = I_n \otimes S - J \otimes I_s
486:    For DAE, the Jacobian is
487:      JC = M_n \otimes S - J \otimes I_s
488: */
489: static PetscErrorCode SNESTSFormJacobian_IRK(SNES snes, Vec ZC, Mat JC, Mat JCpre, TS ts)
490: {
491:   TS_IRK          *irk     = (TS_IRK *)ts->data;
492:   IRKTableau       tab     = irk->tableau;
493:   const PetscInt   nstages = irk->nstages;
494:   const PetscReal *c       = tab->c;
495:   DM               dm, dmsave;
496:   Vec             *Y = irk->Y, Ydot = irk->Ydot;
497:   Mat              J;
498:   PetscScalar     *S;
499:   PetscInt         i, j, bs;

501:   PetscFunctionBegin;
502:   PetscCall(SNESGetDM(snes, &dm));
503:   /* irk->Ydot has already been computed in SNESTSFormFunction_IRK (SNES guarantees this) */
504:   dmsave = ts->dm;
505:   ts->dm = dm;
506:   PetscCall(VecGetBlockSize(Y[nstages - 1], &bs));
507:   if (ts->equation_type <= TS_EQ_ODE_EXPLICIT) { /* Support explicit formulas only */
508:     PetscCall(VecStrideGather(ZC, (nstages - 1) * bs, Y[nstages - 1], INSERT_VALUES));
509:     PetscCall(MatKAIJGetAIJ(JC, &J));
510:     PetscCall(TSComputeIJacobian(ts, ts->ptime + ts->time_step * c[nstages - 1], Y[nstages - 1], Ydot, 0, J, J, PETSC_FALSE));
511:     PetscCall(MatKAIJGetS(JC, NULL, NULL, &S));
512:     for (i = 0; i < nstages; i++)
513:       for (j = 0; j < nstages; j++) S[i + nstages * j] = tab->A_inv[i + nstages * j] / ts->time_step;
514:     PetscCall(MatKAIJRestoreS(JC, &S));
515:   } else SETERRQ(PetscObjectComm((PetscObject)ts), PETSC_ERR_SUP, "TSIRK %s does not support implicit formula", irk->method_name); /* TODO: need the mass matrix for DAE  */
516:   ts->dm = dmsave;
517:   PetscFunctionReturn(PETSC_SUCCESS);
518: }

520: static PetscErrorCode DMCoarsenHook_TSIRK(DM fine, DM coarse, void *ctx)
521: {
522:   PetscFunctionBegin;
523:   PetscFunctionReturn(PETSC_SUCCESS);
524: }

526: static PetscErrorCode DMRestrictHook_TSIRK(DM fine, Mat restrct, Vec rscale, Mat inject, DM coarse, void *ctx)
527: {
528:   TS  ts = (TS)ctx;
529:   Vec U, U_c;

531:   PetscFunctionBegin;
532:   PetscCall(TSIRKGetVecs(ts, fine, &U));
533:   PetscCall(TSIRKGetVecs(ts, coarse, &U_c));
534:   PetscCall(MatRestrict(restrct, U, U_c));
535:   PetscCall(VecPointwiseMult(U_c, rscale, U_c));
536:   PetscCall(TSIRKRestoreVecs(ts, fine, &U));
537:   PetscCall(TSIRKRestoreVecs(ts, coarse, &U_c));
538:   PetscFunctionReturn(PETSC_SUCCESS);
539: }

541: static PetscErrorCode DMSubDomainHook_TSIRK(DM dm, DM subdm, void *ctx)
542: {
543:   PetscFunctionBegin;
544:   PetscFunctionReturn(PETSC_SUCCESS);
545: }

547: static PetscErrorCode DMSubDomainRestrictHook_TSIRK(DM dm, VecScatter gscat, VecScatter lscat, DM subdm, void *ctx)
548: {
549:   TS  ts = (TS)ctx;
550:   Vec U, U_c;

552:   PetscFunctionBegin;
553:   PetscCall(TSIRKGetVecs(ts, dm, &U));
554:   PetscCall(TSIRKGetVecs(ts, subdm, &U_c));

556:   PetscCall(VecScatterBegin(gscat, U, U_c, INSERT_VALUES, SCATTER_FORWARD));
557:   PetscCall(VecScatterEnd(gscat, U, U_c, INSERT_VALUES, SCATTER_FORWARD));

559:   PetscCall(TSIRKRestoreVecs(ts, dm, &U));
560:   PetscCall(TSIRKRestoreVecs(ts, subdm, &U_c));
561:   PetscFunctionReturn(PETSC_SUCCESS);
562: }

564: static PetscErrorCode TSSetUp_IRK(TS ts)
565: {
566:   TS_IRK        *irk = (TS_IRK *)ts->data;
567:   IRKTableau     tab = irk->tableau;
568:   DM             dm;
569:   Mat            J;
570:   Vec            R;
571:   const PetscInt nstages = irk->nstages;
572:   PetscInt       vsize, bs;

574:   PetscFunctionBegin;
575:   if (!irk->work) PetscCall(PetscMalloc1(irk->nstages, &irk->work));
576:   if (!irk->Y) PetscCall(VecDuplicateVecs(ts->vec_sol, irk->nstages, &irk->Y));
577:   if (!irk->YdotI) PetscCall(VecDuplicateVecs(ts->vec_sol, irk->nstages, &irk->YdotI));
578:   if (!irk->Ydot) PetscCall(VecDuplicate(ts->vec_sol, &irk->Ydot));
579:   if (!irk->U) PetscCall(VecDuplicate(ts->vec_sol, &irk->U));
580:   if (!irk->U0) PetscCall(VecDuplicate(ts->vec_sol, &irk->U0));
581:   if (!irk->Z) {
582:     PetscCall(VecCreate(PetscObjectComm((PetscObject)ts->vec_sol), &irk->Z));
583:     PetscCall(VecGetSize(ts->vec_sol, &vsize));
584:     PetscCall(VecSetSizes(irk->Z, PETSC_DECIDE, vsize * irk->nstages));
585:     PetscCall(VecGetBlockSize(ts->vec_sol, &bs));
586:     PetscCall(VecSetBlockSize(irk->Z, irk->nstages * bs));
587:     PetscCall(VecSetFromOptions(irk->Z));
588:   }
589:   PetscCall(TSGetDM(ts, &dm));
590:   PetscCall(DMCoarsenHookAdd(dm, DMCoarsenHook_TSIRK, DMRestrictHook_TSIRK, ts));
591:   PetscCall(DMSubDomainHookAdd(dm, DMSubDomainHook_TSIRK, DMSubDomainRestrictHook_TSIRK, ts));

593:   PetscCall(TSGetSNES(ts, &ts->snes));
594:   PetscCall(VecDuplicate(irk->Z, &R));
595:   PetscCall(SNESSetFunction(ts->snes, R, SNESTSFormFunction, ts));
596:   PetscCall(TSGetIJacobian(ts, &J, NULL, NULL, NULL));
597:   if (!irk->TJ) {
598:     /* Create the KAIJ matrix for solving the stages */
599:     PetscCall(MatCreateKAIJ(J, nstages, nstages, tab->A_inv, tab->I_s, &irk->TJ));
600:   }
601:   PetscCall(SNESSetJacobian(ts->snes, irk->TJ, irk->TJ, SNESTSFormJacobian, ts));
602:   PetscCall(VecDestroy(&R));
603:   PetscFunctionReturn(PETSC_SUCCESS);
604: }

606: static PetscErrorCode TSSetFromOptions_IRK(TS ts, PetscOptionItems *PetscOptionsObject)
607: {
608:   TS_IRK *irk        = (TS_IRK *)ts->data;
609:   char    tname[256] = TSIRKGAUSS;

611:   PetscFunctionBegin;
612:   PetscOptionsHeadBegin(PetscOptionsObject, "IRK ODE solver options");
613:   {
614:     PetscBool flg1, flg2;
615:     PetscCall(PetscOptionsInt("-ts_irk_nstages", "Stages of the IRK method", "TSIRKSetNumStages", irk->nstages, &irk->nstages, &flg1));
616:     PetscCall(PetscOptionsFList("-ts_irk_type", "Type of IRK method", "TSIRKSetType", TSIRKList, irk->method_name[0] ? irk->method_name : tname, tname, sizeof(tname), &flg2));
617:     if (flg1 || flg2 || !irk->method_name[0]) { /* Create the method tableau after nstages or method is set */
618:       PetscCall(TSIRKSetType(ts, tname));
619:     }
620:   }
621:   PetscOptionsHeadEnd();
622:   PetscFunctionReturn(PETSC_SUCCESS);
623: }

625: static PetscErrorCode TSView_IRK(TS ts, PetscViewer viewer)
626: {
627:   TS_IRK   *irk = (TS_IRK *)ts->data;
628:   PetscBool iascii;

630:   PetscFunctionBegin;
631:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
632:   if (iascii) {
633:     IRKTableau tab = irk->tableau;
634:     TSIRKType  irktype;
635:     char       buf[512];

637:     PetscCall(TSIRKGetType(ts, &irktype));
638:     PetscCall(PetscViewerASCIIPrintf(viewer, "  IRK type %s\n", irktype));
639:     PetscCall(PetscFormatRealArray(buf, sizeof(buf), "% 8.6f", irk->nstages, tab->c));
640:     PetscCall(PetscViewerASCIIPrintf(viewer, "  Abscissa       c = %s\n", buf));
641:     PetscCall(PetscViewerASCIIPrintf(viewer, "Stiffly accurate: %s\n", irk->stiffly_accurate ? "yes" : "no"));
642:     PetscCall(PetscFormatRealArray(buf, sizeof(buf), "% 8.6f", PetscSqr(irk->nstages), tab->A));
643:     PetscCall(PetscViewerASCIIPrintf(viewer, "  A coefficients       A = %s\n", buf));
644:   }
645:   PetscFunctionReturn(PETSC_SUCCESS);
646: }

648: static PetscErrorCode TSLoad_IRK(TS ts, PetscViewer viewer)
649: {
650:   SNES    snes;
651:   TSAdapt adapt;

653:   PetscFunctionBegin;
654:   PetscCall(TSGetAdapt(ts, &adapt));
655:   PetscCall(TSAdaptLoad(adapt, viewer));
656:   PetscCall(TSGetSNES(ts, &snes));
657:   PetscCall(SNESLoad(snes, viewer));
658:   /* function and Jacobian context for SNES when used with TS is always ts object */
659:   PetscCall(SNESSetFunction(snes, NULL, NULL, ts));
660:   PetscCall(SNESSetJacobian(snes, NULL, NULL, NULL, ts));
661:   PetscFunctionReturn(PETSC_SUCCESS);
662: }

664: /*@
665:   TSIRKSetType - Set the type of `TSIRK` scheme to use

667:   Logically Collective

669:   Input Parameters:
670: + ts      - timestepping context
671: - irktype - type of `TSIRK` scheme

673:   Options Database Key:
674: . -ts_irk_type <gauss> - set irk type

676:   Level: intermediate

678: .seealso: [](ch_ts), `TSIRKGetType()`, `TSIRK`, `TSIRKType`, `TSIRKGAUSS`
679: @*/
680: PetscErrorCode TSIRKSetType(TS ts, TSIRKType irktype)
681: {
682:   PetscFunctionBegin;
684:   PetscAssertPointer(irktype, 2);
685:   PetscTryMethod(ts, "TSIRKSetType_C", (TS, TSIRKType), (ts, irktype));
686:   PetscFunctionReturn(PETSC_SUCCESS);
687: }

689: /*@
690:   TSIRKGetType - Get the type of `TSIRK` IMEX scheme being used

692:   Logically Collective

694:   Input Parameter:
695: . ts - timestepping context

697:   Output Parameter:
698: . irktype - type of `TSIRK` IMEX scheme

700:   Level: intermediate

702: .seealso: [](ch_ts), `TSIRK`, `TSIRKType`, `TSIRKGAUSS`
703: @*/
704: PetscErrorCode TSIRKGetType(TS ts, TSIRKType *irktype)
705: {
706:   PetscFunctionBegin;
708:   PetscUseMethod(ts, "TSIRKGetType_C", (TS, TSIRKType *), (ts, irktype));
709:   PetscFunctionReturn(PETSC_SUCCESS);
710: }

712: /*@
713:   TSIRKSetNumStages - Set the number of stages of `TSIRK` scheme to use

715:   Logically Collective

717:   Input Parameters:
718: + ts      - timestepping context
719: - nstages - number of stages of `TSIRK` scheme

721:   Options Database Key:
722: . -ts_irk_nstages <int> - set number of stages

724:   Level: intermediate

726: .seealso: [](ch_ts), `TSIRKGetNumStages()`, `TSIRK`
727: @*/
728: PetscErrorCode TSIRKSetNumStages(TS ts, PetscInt nstages)
729: {
730:   PetscFunctionBegin;
732:   PetscTryMethod(ts, "TSIRKSetNumStages_C", (TS, PetscInt), (ts, nstages));
733:   PetscFunctionReturn(PETSC_SUCCESS);
734: }

736: /*@
737:   TSIRKGetNumStages - Get the number of stages of `TSIRK` scheme

739:   Logically Collective

741:   Input Parameters:
742: + ts      - timestepping context
743: - nstages - number of stages of `TSIRK` scheme

745:   Level: intermediate

747: .seealso: [](ch_ts), `TSIRKSetNumStages()`, `TSIRK`
748: @*/
749: PetscErrorCode TSIRKGetNumStages(TS ts, PetscInt *nstages)
750: {
751:   PetscFunctionBegin;
753:   PetscAssertPointer(nstages, 2);
754:   PetscTryMethod(ts, "TSIRKGetNumStages_C", (TS, PetscInt *), (ts, nstages));
755:   PetscFunctionReturn(PETSC_SUCCESS);
756: }

758: static PetscErrorCode TSIRKGetType_IRK(TS ts, TSIRKType *irktype)
759: {
760:   TS_IRK *irk = (TS_IRK *)ts->data;

762:   PetscFunctionBegin;
763:   *irktype = irk->method_name;
764:   PetscFunctionReturn(PETSC_SUCCESS);
765: }

767: static PetscErrorCode TSIRKSetType_IRK(TS ts, TSIRKType irktype)
768: {
769:   TS_IRK *irk = (TS_IRK *)ts->data;
770:   PetscErrorCode (*irkcreate)(TS);

772:   PetscFunctionBegin;
773:   if (irk->method_name) {
774:     PetscCall(PetscFree(irk->method_name));
775:     PetscCall(TSIRKTableauReset(ts));
776:   }
777:   PetscCall(PetscFunctionListFind(TSIRKList, irktype, &irkcreate));
778:   PetscCheck(irkcreate, PetscObjectComm((PetscObject)ts), PETSC_ERR_ARG_UNKNOWN_TYPE, "Unknown TSIRK type \"%s\" given", irktype);
779:   PetscCall((*irkcreate)(ts));
780:   PetscCall(PetscStrallocpy(irktype, &irk->method_name));
781:   PetscFunctionReturn(PETSC_SUCCESS);
782: }

784: static PetscErrorCode TSIRKSetNumStages_IRK(TS ts, PetscInt nstages)
785: {
786:   TS_IRK *irk = (TS_IRK *)ts->data;

788:   PetscFunctionBegin;
789:   PetscCheck(nstages > 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "input argument, %" PetscInt_FMT ", out of range", nstages);
790:   irk->nstages = nstages;
791:   PetscFunctionReturn(PETSC_SUCCESS);
792: }

794: static PetscErrorCode TSIRKGetNumStages_IRK(TS ts, PetscInt *nstages)
795: {
796:   TS_IRK *irk = (TS_IRK *)ts->data;

798:   PetscFunctionBegin;
799:   PetscAssertPointer(nstages, 2);
800:   *nstages = irk->nstages;
801:   PetscFunctionReturn(PETSC_SUCCESS);
802: }

804: static PetscErrorCode TSDestroy_IRK(TS ts)
805: {
806:   PetscFunctionBegin;
807:   PetscCall(TSReset_IRK(ts));
808:   if (ts->dm) {
809:     PetscCall(DMCoarsenHookRemove(ts->dm, DMCoarsenHook_TSIRK, DMRestrictHook_TSIRK, ts));
810:     PetscCall(DMSubDomainHookRemove(ts->dm, DMSubDomainHook_TSIRK, DMSubDomainRestrictHook_TSIRK, ts));
811:   }
812:   PetscCall(PetscFree(ts->data));
813:   PetscCall(PetscObjectComposeFunction((PetscObject)ts, "TSIRKSetType_C", NULL));
814:   PetscCall(PetscObjectComposeFunction((PetscObject)ts, "TSIRKGetType_C", NULL));
815:   PetscCall(PetscObjectComposeFunction((PetscObject)ts, "TSIRKSetNumStages_C", NULL));
816:   PetscCall(PetscObjectComposeFunction((PetscObject)ts, "TSIRKGetNumStages_C", NULL));
817:   PetscFunctionReturn(PETSC_SUCCESS);
818: }

820: /*MC
821:       TSIRK - ODE and DAE solver using Implicit Runge-Kutta schemes

823:   Level: beginner

825:   Notes:
826:   `TSIRK` uses the sparse Kronecker product matrix implementation of `MATKAIJ` to achieve good arithmetic intensity.

828:   Gauss-Legrendre methods are currently supported. These are A-stable symplectic methods with an arbitrary number of stages. The order of accuracy is 2s
829:   when using s stages. The default method uses three stages and thus has an order of six. The number of stages (thus order) can be set with
830:   -ts_irk_nstages or `TSIRKSetNumStages()`.

832: .seealso: [](ch_ts), `TSCreate()`, `TS`, `TSSetType()`, `TSIRKSetType()`, `TSIRKGetType()`, `TSIRKGAUSS`, `TSIRKRegister()`, `TSIRKSetNumStages()`, `TSType`
833: M*/
834: PETSC_EXTERN PetscErrorCode TSCreate_IRK(TS ts)
835: {
836:   TS_IRK *irk;

838:   PetscFunctionBegin;
839:   PetscCall(TSIRKInitializePackage());

841:   ts->ops->reset          = TSReset_IRK;
842:   ts->ops->destroy        = TSDestroy_IRK;
843:   ts->ops->view           = TSView_IRK;
844:   ts->ops->load           = TSLoad_IRK;
845:   ts->ops->setup          = TSSetUp_IRK;
846:   ts->ops->step           = TSStep_IRK;
847:   ts->ops->interpolate    = TSInterpolate_IRK;
848:   ts->ops->evaluatestep   = TSEvaluateStep_IRK;
849:   ts->ops->rollback       = TSRollBack_IRK;
850:   ts->ops->setfromoptions = TSSetFromOptions_IRK;
851:   ts->ops->snesfunction   = SNESTSFormFunction_IRK;
852:   ts->ops->snesjacobian   = SNESTSFormJacobian_IRK;

854:   ts->usessnes = PETSC_TRUE;

856:   PetscCall(PetscNew(&irk));
857:   ts->data = (void *)irk;

859:   PetscCall(PetscObjectComposeFunction((PetscObject)ts, "TSIRKSetType_C", TSIRKSetType_IRK));
860:   PetscCall(PetscObjectComposeFunction((PetscObject)ts, "TSIRKGetType_C", TSIRKGetType_IRK));
861:   PetscCall(PetscObjectComposeFunction((PetscObject)ts, "TSIRKSetNumStages_C", TSIRKSetNumStages_IRK));
862:   PetscCall(PetscObjectComposeFunction((PetscObject)ts, "TSIRKGetNumStages_C", TSIRKGetNumStages_IRK));
863:   /* 3-stage IRK_Gauss is the default */
864:   PetscCall(PetscNew(&irk->tableau));
865:   irk->nstages = 3;
866:   PetscCall(TSIRKSetType(ts, TSIRKDefault));
867:   PetscFunctionReturn(PETSC_SUCCESS);
868: }