Actual source code: irk.c
1: /*
2: Code for timestepping with implicit Runge-Kutta method
4: Notes:
5: The general system is written as
7: F(t,U,Udot) = 0
9: */
10: #include <petsc/private/tsimpl.h>
11: #include <petscdm.h>
12: #include <petscdt.h>
14: static TSIRKType TSIRKDefault = TSIRKGAUSS;
15: static PetscBool TSIRKRegisterAllCalled;
16: static PetscBool TSIRKPackageInitialized;
17: static PetscFunctionList TSIRKList;
19: struct _IRKTableau {
20: PetscReal *A, *b, *c;
21: PetscScalar *A_inv, *A_inv_rowsum, *I_s;
22: PetscReal *binterp; /* Dense output formula */
23: };
25: typedef struct _IRKTableau *IRKTableau;
27: typedef struct {
28: char *method_name;
29: PetscInt order; /* Classical approximation order of the method */
30: PetscInt nstages; /* Number of stages */
31: PetscBool stiffly_accurate;
32: PetscInt pinterp; /* Interpolation order */
33: IRKTableau tableau;
34: Vec U0; /* Backup vector */
35: Vec Z; /* Combined stage vector */
36: Vec *Y; /* States computed during the step */
37: Vec Ydot; /* Work vector holding time derivatives during residual evaluation */
38: Vec U; /* U is used to compute Ydot = shift(Y-U) */
39: Vec *YdotI; /* Work vectors to hold the residual evaluation */
40: Mat TJ; /* KAIJ matrix for the Jacobian of the combined system */
41: PetscScalar *work; /* Scalar work */
42: TSStepStatus status;
43: PetscBool rebuild_completion;
44: PetscReal ccfl;
45: } TS_IRK;
47: /*@C
48: TSIRKTableauCreate - create the tableau for `TSIRK` and provide the entries
50: Not Collective
52: Input Parameters:
53: + ts - timestepping context
54: . nstages - number of stages, this is the dimension of the matrices below
55: . A - stage coefficients (dimension nstages*nstages, row-major)
56: . b - step completion table (dimension nstages)
57: . c - abscissa (dimension nstages)
58: . binterp - coefficients of the interpolation formula (dimension nstages)
59: . A_inv - inverse of A (dimension nstages*nstages, row-major)
60: . A_inv_rowsum - row sum of the inverse of A (dimension nstages)
61: - I_s - identity matrix (dimension nstages*nstages)
63: Level: advanced
65: .seealso: [](ch_ts), `TSIRK`, `TSIRKRegister()`
66: @*/
67: PetscErrorCode TSIRKTableauCreate(TS ts, PetscInt nstages, const PetscReal *A, const PetscReal *b, const PetscReal *c, const PetscReal *binterp, const PetscScalar *A_inv, const PetscScalar *A_inv_rowsum, const PetscScalar *I_s)
68: {
69: TS_IRK *irk = (TS_IRK *)ts->data;
70: IRKTableau tab = irk->tableau;
72: PetscFunctionBegin;
73: irk->order = nstages;
74: PetscCall(PetscMalloc3(PetscSqr(nstages), &tab->A, PetscSqr(nstages), &tab->A_inv, PetscSqr(nstages), &tab->I_s));
75: PetscCall(PetscMalloc4(nstages, &tab->b, nstages, &tab->c, nstages, &tab->binterp, nstages, &tab->A_inv_rowsum));
76: PetscCall(PetscArraycpy(tab->A, A, PetscSqr(nstages)));
77: PetscCall(PetscArraycpy(tab->b, b, nstages));
78: PetscCall(PetscArraycpy(tab->c, c, nstages));
79: /* optional coefficient arrays */
80: if (binterp) PetscCall(PetscArraycpy(tab->binterp, binterp, nstages));
81: if (A_inv) PetscCall(PetscArraycpy(tab->A_inv, A_inv, PetscSqr(nstages)));
82: if (A_inv_rowsum) PetscCall(PetscArraycpy(tab->A_inv_rowsum, A_inv_rowsum, nstages));
83: if (I_s) PetscCall(PetscArraycpy(tab->I_s, I_s, PetscSqr(nstages)));
84: PetscFunctionReturn(PETSC_SUCCESS);
85: }
87: /* Arrays should be freed with PetscFree3(A,b,c) */
88: static PetscErrorCode TSIRKCreate_Gauss(TS ts)
89: {
90: PetscInt nstages;
91: PetscReal *gauss_A_real, *gauss_b, *b, *gauss_c;
92: PetscScalar *gauss_A, *gauss_A_inv, *gauss_A_inv_rowsum, *I_s;
93: PetscScalar *G0, *G1;
94: PetscInt i, j;
95: Mat G0mat, G1mat, Amat;
97: PetscFunctionBegin;
98: PetscCall(TSIRKGetNumStages(ts, &nstages));
99: PetscCall(PetscMalloc3(PetscSqr(nstages), &gauss_A_real, nstages, &gauss_b, nstages, &gauss_c));
100: PetscCall(PetscMalloc4(PetscSqr(nstages), &gauss_A, PetscSqr(nstages), &gauss_A_inv, nstages, &gauss_A_inv_rowsum, PetscSqr(nstages), &I_s));
101: PetscCall(PetscMalloc3(nstages, &b, PetscSqr(nstages), &G0, PetscSqr(nstages), &G1));
102: PetscCall(PetscDTGaussQuadrature(nstages, 0., 1., gauss_c, b));
103: for (i = 0; i < nstages; i++) gauss_b[i] = b[i]; /* copy to possibly-complex array */
105: /* A^T = G0^{-1} G1 */
106: for (i = 0; i < nstages; i++) {
107: for (j = 0; j < nstages; j++) {
108: G0[i * nstages + j] = PetscPowRealInt(gauss_c[i], j);
109: G1[i * nstages + j] = PetscPowRealInt(gauss_c[i], j + 1) / (j + 1);
110: }
111: }
112: /* The arrays above are row-aligned, but we create dense matrices as the transpose */
113: PetscCall(MatCreateSeqDense(PETSC_COMM_SELF, nstages, nstages, G0, &G0mat));
114: PetscCall(MatCreateSeqDense(PETSC_COMM_SELF, nstages, nstages, G1, &G1mat));
115: PetscCall(MatCreateSeqDense(PETSC_COMM_SELF, nstages, nstages, gauss_A, &Amat));
116: PetscCall(MatLUFactor(G0mat, NULL, NULL, NULL));
117: PetscCall(MatMatSolve(G0mat, G1mat, Amat));
118: PetscCall(MatTranspose(Amat, MAT_INPLACE_MATRIX, &Amat));
119: for (i = 0; i < nstages; i++)
120: for (j = 0; j < nstages; j++) gauss_A_real[i * nstages + j] = PetscRealPart(gauss_A[i * nstages + j]);
122: PetscCall(MatDestroy(&G0mat));
123: PetscCall(MatDestroy(&G1mat));
124: PetscCall(MatDestroy(&Amat));
125: PetscCall(PetscFree3(b, G0, G1));
127: { /* Invert A */
128: /* PETSc does not provide a routine to calculate the inverse of a general matrix.
129: * To get the inverse of A, we form a sequential BAIJ matrix from it, consisting of a single block with block size
130: * equal to the dimension of A, and then use MatInvertBlockDiagonal(). */
131: Mat A_baij;
132: PetscInt idxm[1] = {0}, idxn[1] = {0};
133: const PetscScalar *A_inv;
135: PetscCall(MatCreateSeqBAIJ(PETSC_COMM_SELF, nstages, nstages, nstages, 1, NULL, &A_baij));
136: PetscCall(MatSetOption(A_baij, MAT_ROW_ORIENTED, PETSC_FALSE));
137: PetscCall(MatSetValuesBlocked(A_baij, 1, idxm, 1, idxn, gauss_A, INSERT_VALUES));
138: PetscCall(MatAssemblyBegin(A_baij, MAT_FINAL_ASSEMBLY));
139: PetscCall(MatAssemblyEnd(A_baij, MAT_FINAL_ASSEMBLY));
140: PetscCall(MatInvertBlockDiagonal(A_baij, &A_inv));
141: PetscCall(PetscMemcpy(gauss_A_inv, A_inv, nstages * nstages * sizeof(PetscScalar)));
142: PetscCall(MatDestroy(&A_baij));
143: }
145: /* Compute row sums A_inv_rowsum and identity I_s */
146: for (i = 0; i < nstages; i++) {
147: gauss_A_inv_rowsum[i] = 0;
148: for (j = 0; j < nstages; j++) {
149: gauss_A_inv_rowsum[i] += gauss_A_inv[i + nstages * j];
150: I_s[i + nstages * j] = 1. * (i == j);
151: }
152: }
153: PetscCall(TSIRKTableauCreate(ts, nstages, gauss_A_real, gauss_b, gauss_c, NULL, gauss_A_inv, gauss_A_inv_rowsum, I_s));
154: PetscCall(PetscFree3(gauss_A_real, gauss_b, gauss_c));
155: PetscCall(PetscFree4(gauss_A, gauss_A_inv, gauss_A_inv_rowsum, I_s));
156: PetscFunctionReturn(PETSC_SUCCESS);
157: }
159: /*@C
160: TSIRKRegister - adds a `TSIRK` implementation
162: Not Collective, No Fortran Support
164: Input Parameters:
165: + sname - name of user-defined IRK scheme
166: - function - function to create method context
168: Level: advanced
170: Note:
171: `TSIRKRegister()` may be called multiple times to add several user-defined families.
173: Example Usage:
174: .vb
175: TSIRKRegister("my_scheme", MySchemeCreate);
176: .ve
178: Then, your scheme can be chosen with the procedural interface via
179: $ TSIRKSetType(ts, "my_scheme")
180: or at runtime via the option
181: $ -ts_irk_type my_scheme
183: .seealso: [](ch_ts), `TSIRK`, `TSIRKRegisterAll()`
184: @*/
185: PetscErrorCode TSIRKRegister(const char sname[], PetscErrorCode (*function)(TS))
186: {
187: PetscFunctionBegin;
188: PetscCall(TSIRKInitializePackage());
189: PetscCall(PetscFunctionListAdd(&TSIRKList, sname, function));
190: PetscFunctionReturn(PETSC_SUCCESS);
191: }
193: /*@C
194: TSIRKRegisterAll - Registers all of the implicit Runge-Kutta methods in `TSIRK`
196: Not Collective, but should be called by all processes which will need the schemes to be registered
198: Level: advanced
200: .seealso: [](ch_ts), `TSIRK`, `TSIRKRegisterDestroy()`
201: @*/
202: PetscErrorCode TSIRKRegisterAll(void)
203: {
204: PetscFunctionBegin;
205: if (TSIRKRegisterAllCalled) PetscFunctionReturn(PETSC_SUCCESS);
206: TSIRKRegisterAllCalled = PETSC_TRUE;
208: PetscCall(TSIRKRegister(TSIRKGAUSS, TSIRKCreate_Gauss));
209: PetscFunctionReturn(PETSC_SUCCESS);
210: }
212: /*@C
213: TSIRKRegisterDestroy - Frees the list of schemes that were registered by `TSIRKRegister()`.
215: Not Collective
217: Level: advanced
219: .seealso: [](ch_ts), `TSIRK`, `TSIRKRegister()`, `TSIRKRegisterAll()`
220: @*/
221: PetscErrorCode TSIRKRegisterDestroy(void)
222: {
223: PetscFunctionBegin;
224: TSIRKRegisterAllCalled = PETSC_FALSE;
225: PetscFunctionReturn(PETSC_SUCCESS);
226: }
228: /*@C
229: TSIRKInitializePackage - This function initializes everything in the `TSIRK` package. It is called
230: from `TSInitializePackage()`.
232: Level: developer
234: .seealso: [](ch_ts), `TSIRK`, `PetscInitialize()`, `TSIRKFinalizePackage()`, `TSInitializePackage()`
235: @*/
236: PetscErrorCode TSIRKInitializePackage(void)
237: {
238: PetscFunctionBegin;
239: if (TSIRKPackageInitialized) PetscFunctionReturn(PETSC_SUCCESS);
240: TSIRKPackageInitialized = PETSC_TRUE;
241: PetscCall(TSIRKRegisterAll());
242: PetscCall(PetscRegisterFinalize(TSIRKFinalizePackage));
243: PetscFunctionReturn(PETSC_SUCCESS);
244: }
246: /*@C
247: TSIRKFinalizePackage - This function destroys everything in the `TSIRK` package. It is
248: called from `PetscFinalize()`.
250: Level: developer
252: .seealso: [](ch_ts), `TSIRK`, `PetscFinalize()`, `TSInitializePackage()`
253: @*/
254: PetscErrorCode TSIRKFinalizePackage(void)
255: {
256: PetscFunctionBegin;
257: PetscCall(PetscFunctionListDestroy(&TSIRKList));
258: TSIRKPackageInitialized = PETSC_FALSE;
259: PetscFunctionReturn(PETSC_SUCCESS);
260: }
262: /*
263: This function can be called before or after ts->vec_sol has been updated.
264: */
265: static PetscErrorCode TSEvaluateStep_IRK(TS ts, PetscInt order, Vec U, PetscBool *done)
266: {
267: TS_IRK *irk = (TS_IRK *)ts->data;
268: IRKTableau tab = irk->tableau;
269: Vec *YdotI = irk->YdotI;
270: PetscScalar *w = irk->work;
271: PetscReal h;
272: PetscInt j;
274: PetscFunctionBegin;
275: switch (irk->status) {
276: case TS_STEP_INCOMPLETE:
277: case TS_STEP_PENDING:
278: h = ts->time_step;
279: break;
280: case TS_STEP_COMPLETE:
281: h = ts->ptime - ts->ptime_prev;
282: break;
283: default:
284: SETERRQ(PetscObjectComm((PetscObject)ts), PETSC_ERR_PLIB, "Invalid TSStepStatus");
285: }
287: PetscCall(VecCopy(ts->vec_sol, U));
288: for (j = 0; j < irk->nstages; j++) w[j] = h * tab->b[j];
289: PetscCall(VecMAXPY(U, irk->nstages, w, YdotI));
290: PetscFunctionReturn(PETSC_SUCCESS);
291: }
293: static PetscErrorCode TSRollBack_IRK(TS ts)
294: {
295: TS_IRK *irk = (TS_IRK *)ts->data;
297: PetscFunctionBegin;
298: PetscCall(VecCopy(irk->U0, ts->vec_sol));
299: PetscFunctionReturn(PETSC_SUCCESS);
300: }
302: static PetscErrorCode TSStep_IRK(TS ts)
303: {
304: TS_IRK *irk = (TS_IRK *)ts->data;
305: IRKTableau tab = irk->tableau;
306: PetscScalar *A_inv = tab->A_inv, *A_inv_rowsum = tab->A_inv_rowsum;
307: const PetscInt nstages = irk->nstages;
308: SNES snes;
309: PetscInt i, j, its, lits, bs;
310: TSAdapt adapt;
311: PetscInt rejections = 0;
312: PetscBool accept = PETSC_TRUE;
313: PetscReal next_time_step = ts->time_step;
315: PetscFunctionBegin;
316: if (!ts->steprollback) PetscCall(VecCopy(ts->vec_sol, irk->U0));
317: PetscCall(VecGetBlockSize(ts->vec_sol, &bs));
318: for (i = 0; i < nstages; i++) PetscCall(VecStrideScatter(ts->vec_sol, i * bs, irk->Z, INSERT_VALUES));
320: irk->status = TS_STEP_INCOMPLETE;
321: while (!ts->reason && irk->status != TS_STEP_COMPLETE) {
322: PetscCall(VecCopy(ts->vec_sol, irk->U));
323: PetscCall(TSGetSNES(ts, &snes));
324: PetscCall(SNESSolve(snes, NULL, irk->Z));
325: PetscCall(SNESGetIterationNumber(snes, &its));
326: PetscCall(SNESGetLinearSolveIterations(snes, &lits));
327: ts->snes_its += its;
328: ts->ksp_its += lits;
329: PetscCall(VecStrideGatherAll(irk->Z, irk->Y, INSERT_VALUES));
330: for (i = 0; i < nstages; i++) {
331: PetscCall(VecZeroEntries(irk->YdotI[i]));
332: for (j = 0; j < nstages; j++) PetscCall(VecAXPY(irk->YdotI[i], A_inv[i + j * nstages] / ts->time_step, irk->Y[j]));
333: PetscCall(VecAXPY(irk->YdotI[i], -A_inv_rowsum[i] / ts->time_step, irk->U));
334: }
335: irk->status = TS_STEP_INCOMPLETE;
336: PetscCall(TSEvaluateStep_IRK(ts, irk->order, ts->vec_sol, NULL));
337: irk->status = TS_STEP_PENDING;
338: PetscCall(TSGetAdapt(ts, &adapt));
339: PetscCall(TSAdaptChoose(adapt, ts, ts->time_step, NULL, &next_time_step, &accept));
340: irk->status = accept ? TS_STEP_COMPLETE : TS_STEP_INCOMPLETE;
341: if (!accept) {
342: PetscCall(TSRollBack_IRK(ts));
343: ts->time_step = next_time_step;
344: goto reject_step;
345: }
347: ts->ptime += ts->time_step;
348: ts->time_step = next_time_step;
349: break;
350: reject_step:
351: ts->reject++;
352: accept = PETSC_FALSE;
353: if (!ts->reason && ++rejections > ts->max_reject && ts->max_reject >= 0) {
354: ts->reason = TS_DIVERGED_STEP_REJECTED;
355: PetscCall(PetscInfo(ts, "Step=%" PetscInt_FMT ", step rejections %" PetscInt_FMT " greater than current TS allowed, stopping solve\n", ts->steps, rejections));
356: }
357: }
358: PetscFunctionReturn(PETSC_SUCCESS);
359: }
361: static PetscErrorCode TSInterpolate_IRK(TS ts, PetscReal itime, Vec U)
362: {
363: TS_IRK *irk = (TS_IRK *)ts->data;
364: PetscInt nstages = irk->nstages, pinterp = irk->pinterp, i, j;
365: PetscReal h;
366: PetscReal tt, t;
367: PetscScalar *bt;
368: const PetscReal *B = irk->tableau->binterp;
370: PetscFunctionBegin;
371: PetscCheck(B, PetscObjectComm((PetscObject)ts), PETSC_ERR_SUP, "TSIRK %s does not have an interpolation formula", irk->method_name);
372: switch (irk->status) {
373: case TS_STEP_INCOMPLETE:
374: case TS_STEP_PENDING:
375: h = ts->time_step;
376: t = (itime - ts->ptime) / h;
377: break;
378: case TS_STEP_COMPLETE:
379: h = ts->ptime - ts->ptime_prev;
380: t = (itime - ts->ptime) / h + 1; /* In the interval [0,1] */
381: break;
382: default:
383: SETERRQ(PetscObjectComm((PetscObject)ts), PETSC_ERR_PLIB, "Invalid TSStepStatus");
384: }
385: PetscCall(PetscMalloc1(nstages, &bt));
386: for (i = 0; i < nstages; i++) bt[i] = 0;
387: for (j = 0, tt = t; j < pinterp; j++, tt *= t) {
388: for (i = 0; i < nstages; i++) bt[i] += h * B[i * pinterp + j] * tt;
389: }
390: PetscCall(VecMAXPY(U, nstages, bt, irk->YdotI));
391: PetscFunctionReturn(PETSC_SUCCESS);
392: }
394: static PetscErrorCode TSIRKTableauReset(TS ts)
395: {
396: TS_IRK *irk = (TS_IRK *)ts->data;
397: IRKTableau tab = irk->tableau;
399: PetscFunctionBegin;
400: if (!tab) PetscFunctionReturn(PETSC_SUCCESS);
401: PetscCall(PetscFree3(tab->A, tab->A_inv, tab->I_s));
402: PetscCall(PetscFree4(tab->b, tab->c, tab->binterp, tab->A_inv_rowsum));
403: PetscFunctionReturn(PETSC_SUCCESS);
404: }
406: static PetscErrorCode TSReset_IRK(TS ts)
407: {
408: TS_IRK *irk = (TS_IRK *)ts->data;
410: PetscFunctionBegin;
411: PetscCall(TSIRKTableauReset(ts));
412: if (irk->tableau) PetscCall(PetscFree(irk->tableau));
413: if (irk->method_name) PetscCall(PetscFree(irk->method_name));
414: if (irk->work) PetscCall(PetscFree(irk->work));
415: PetscCall(VecDestroyVecs(irk->nstages, &irk->Y));
416: PetscCall(VecDestroyVecs(irk->nstages, &irk->YdotI));
417: PetscCall(VecDestroy(&irk->Ydot));
418: PetscCall(VecDestroy(&irk->Z));
419: PetscCall(VecDestroy(&irk->U));
420: PetscCall(VecDestroy(&irk->U0));
421: PetscCall(MatDestroy(&irk->TJ));
422: PetscFunctionReturn(PETSC_SUCCESS);
423: }
425: static PetscErrorCode TSIRKGetVecs(TS ts, DM dm, Vec *U)
426: {
427: TS_IRK *irk = (TS_IRK *)ts->data;
429: PetscFunctionBegin;
430: if (U) {
431: if (dm && dm != ts->dm) {
432: PetscCall(DMGetNamedGlobalVector(dm, "TSIRK_U", U));
433: } else *U = irk->U;
434: }
435: PetscFunctionReturn(PETSC_SUCCESS);
436: }
438: static PetscErrorCode TSIRKRestoreVecs(TS ts, DM dm, Vec *U)
439: {
440: PetscFunctionBegin;
441: if (U) {
442: if (dm && dm != ts->dm) PetscCall(DMRestoreNamedGlobalVector(dm, "TSIRK_U", U));
443: }
444: PetscFunctionReturn(PETSC_SUCCESS);
445: }
447: /*
448: This defines the nonlinear equations that is to be solved with SNES
449: G[e\otimes t + C*dt, Z, Zdot] = 0
450: Zdot = (In \otimes S)*Z - (In \otimes Se) U
451: where S = 1/(dt*A)
452: */
453: static PetscErrorCode SNESTSFormFunction_IRK(SNES snes, Vec ZC, Vec FC, TS ts)
454: {
455: TS_IRK *irk = (TS_IRK *)ts->data;
456: IRKTableau tab = irk->tableau;
457: const PetscInt nstages = irk->nstages;
458: const PetscReal *c = tab->c;
459: const PetscScalar *A_inv = tab->A_inv, *A_inv_rowsum = tab->A_inv_rowsum;
460: DM dm, dmsave;
461: Vec U, *YdotI = irk->YdotI, Ydot = irk->Ydot, *Y = irk->Y;
462: PetscReal h = ts->time_step;
463: PetscInt i, j;
465: PetscFunctionBegin;
466: PetscCall(SNESGetDM(snes, &dm));
467: PetscCall(TSIRKGetVecs(ts, dm, &U));
468: PetscCall(VecStrideGatherAll(ZC, Y, INSERT_VALUES));
469: dmsave = ts->dm;
470: ts->dm = dm;
471: for (i = 0; i < nstages; i++) {
472: PetscCall(VecZeroEntries(Ydot));
473: for (j = 0; j < nstages; j++) PetscCall(VecAXPY(Ydot, A_inv[j * nstages + i] / h, Y[j]));
474: PetscCall(VecAXPY(Ydot, -A_inv_rowsum[i] / h, U)); /* Ydot = (S \otimes In)*Z - (Se \otimes In) U */
475: PetscCall(TSComputeIFunction(ts, ts->ptime + ts->time_step * c[i], Y[i], Ydot, YdotI[i], PETSC_FALSE));
476: }
477: PetscCall(VecStrideScatterAll(YdotI, FC, INSERT_VALUES));
478: ts->dm = dmsave;
479: PetscCall(TSIRKRestoreVecs(ts, dm, &U));
480: PetscFunctionReturn(PETSC_SUCCESS);
481: }
483: /*
484: For explicit ODE, the Jacobian is
485: JC = I_n \otimes S - J \otimes I_s
486: For DAE, the Jacobian is
487: JC = M_n \otimes S - J \otimes I_s
488: */
489: static PetscErrorCode SNESTSFormJacobian_IRK(SNES snes, Vec ZC, Mat JC, Mat JCpre, TS ts)
490: {
491: TS_IRK *irk = (TS_IRK *)ts->data;
492: IRKTableau tab = irk->tableau;
493: const PetscInt nstages = irk->nstages;
494: const PetscReal *c = tab->c;
495: DM dm, dmsave;
496: Vec *Y = irk->Y, Ydot = irk->Ydot;
497: Mat J;
498: PetscScalar *S;
499: PetscInt i, j, bs;
501: PetscFunctionBegin;
502: PetscCall(SNESGetDM(snes, &dm));
503: /* irk->Ydot has already been computed in SNESTSFormFunction_IRK (SNES guarantees this) */
504: dmsave = ts->dm;
505: ts->dm = dm;
506: PetscCall(VecGetBlockSize(Y[nstages - 1], &bs));
507: if (ts->equation_type <= TS_EQ_ODE_EXPLICIT) { /* Support explicit formulas only */
508: PetscCall(VecStrideGather(ZC, (nstages - 1) * bs, Y[nstages - 1], INSERT_VALUES));
509: PetscCall(MatKAIJGetAIJ(JC, &J));
510: PetscCall(TSComputeIJacobian(ts, ts->ptime + ts->time_step * c[nstages - 1], Y[nstages - 1], Ydot, 0, J, J, PETSC_FALSE));
511: PetscCall(MatKAIJGetS(JC, NULL, NULL, &S));
512: for (i = 0; i < nstages; i++)
513: for (j = 0; j < nstages; j++) S[i + nstages * j] = tab->A_inv[i + nstages * j] / ts->time_step;
514: PetscCall(MatKAIJRestoreS(JC, &S));
515: } else SETERRQ(PetscObjectComm((PetscObject)ts), PETSC_ERR_SUP, "TSIRK %s does not support implicit formula", irk->method_name); /* TODO: need the mass matrix for DAE */
516: ts->dm = dmsave;
517: PetscFunctionReturn(PETSC_SUCCESS);
518: }
520: static PetscErrorCode DMCoarsenHook_TSIRK(DM fine, DM coarse, void *ctx)
521: {
522: PetscFunctionBegin;
523: PetscFunctionReturn(PETSC_SUCCESS);
524: }
526: static PetscErrorCode DMRestrictHook_TSIRK(DM fine, Mat restrct, Vec rscale, Mat inject, DM coarse, void *ctx)
527: {
528: TS ts = (TS)ctx;
529: Vec U, U_c;
531: PetscFunctionBegin;
532: PetscCall(TSIRKGetVecs(ts, fine, &U));
533: PetscCall(TSIRKGetVecs(ts, coarse, &U_c));
534: PetscCall(MatRestrict(restrct, U, U_c));
535: PetscCall(VecPointwiseMult(U_c, rscale, U_c));
536: PetscCall(TSIRKRestoreVecs(ts, fine, &U));
537: PetscCall(TSIRKRestoreVecs(ts, coarse, &U_c));
538: PetscFunctionReturn(PETSC_SUCCESS);
539: }
541: static PetscErrorCode DMSubDomainHook_TSIRK(DM dm, DM subdm, void *ctx)
542: {
543: PetscFunctionBegin;
544: PetscFunctionReturn(PETSC_SUCCESS);
545: }
547: static PetscErrorCode DMSubDomainRestrictHook_TSIRK(DM dm, VecScatter gscat, VecScatter lscat, DM subdm, void *ctx)
548: {
549: TS ts = (TS)ctx;
550: Vec U, U_c;
552: PetscFunctionBegin;
553: PetscCall(TSIRKGetVecs(ts, dm, &U));
554: PetscCall(TSIRKGetVecs(ts, subdm, &U_c));
556: PetscCall(VecScatterBegin(gscat, U, U_c, INSERT_VALUES, SCATTER_FORWARD));
557: PetscCall(VecScatterEnd(gscat, U, U_c, INSERT_VALUES, SCATTER_FORWARD));
559: PetscCall(TSIRKRestoreVecs(ts, dm, &U));
560: PetscCall(TSIRKRestoreVecs(ts, subdm, &U_c));
561: PetscFunctionReturn(PETSC_SUCCESS);
562: }
564: static PetscErrorCode TSSetUp_IRK(TS ts)
565: {
566: TS_IRK *irk = (TS_IRK *)ts->data;
567: IRKTableau tab = irk->tableau;
568: DM dm;
569: Mat J;
570: Vec R;
571: const PetscInt nstages = irk->nstages;
572: PetscInt vsize, bs;
574: PetscFunctionBegin;
575: if (!irk->work) PetscCall(PetscMalloc1(irk->nstages, &irk->work));
576: if (!irk->Y) PetscCall(VecDuplicateVecs(ts->vec_sol, irk->nstages, &irk->Y));
577: if (!irk->YdotI) PetscCall(VecDuplicateVecs(ts->vec_sol, irk->nstages, &irk->YdotI));
578: if (!irk->Ydot) PetscCall(VecDuplicate(ts->vec_sol, &irk->Ydot));
579: if (!irk->U) PetscCall(VecDuplicate(ts->vec_sol, &irk->U));
580: if (!irk->U0) PetscCall(VecDuplicate(ts->vec_sol, &irk->U0));
581: if (!irk->Z) {
582: PetscCall(VecCreate(PetscObjectComm((PetscObject)ts->vec_sol), &irk->Z));
583: PetscCall(VecGetSize(ts->vec_sol, &vsize));
584: PetscCall(VecSetSizes(irk->Z, PETSC_DECIDE, vsize * irk->nstages));
585: PetscCall(VecGetBlockSize(ts->vec_sol, &bs));
586: PetscCall(VecSetBlockSize(irk->Z, irk->nstages * bs));
587: PetscCall(VecSetFromOptions(irk->Z));
588: }
589: PetscCall(TSGetDM(ts, &dm));
590: PetscCall(DMCoarsenHookAdd(dm, DMCoarsenHook_TSIRK, DMRestrictHook_TSIRK, ts));
591: PetscCall(DMSubDomainHookAdd(dm, DMSubDomainHook_TSIRK, DMSubDomainRestrictHook_TSIRK, ts));
593: PetscCall(TSGetSNES(ts, &ts->snes));
594: PetscCall(VecDuplicate(irk->Z, &R));
595: PetscCall(SNESSetFunction(ts->snes, R, SNESTSFormFunction, ts));
596: PetscCall(TSGetIJacobian(ts, &J, NULL, NULL, NULL));
597: if (!irk->TJ) {
598: /* Create the KAIJ matrix for solving the stages */
599: PetscCall(MatCreateKAIJ(J, nstages, nstages, tab->A_inv, tab->I_s, &irk->TJ));
600: }
601: PetscCall(SNESSetJacobian(ts->snes, irk->TJ, irk->TJ, SNESTSFormJacobian, ts));
602: PetscCall(VecDestroy(&R));
603: PetscFunctionReturn(PETSC_SUCCESS);
604: }
606: static PetscErrorCode TSSetFromOptions_IRK(TS ts, PetscOptionItems *PetscOptionsObject)
607: {
608: TS_IRK *irk = (TS_IRK *)ts->data;
609: char tname[256] = TSIRKGAUSS;
611: PetscFunctionBegin;
612: PetscOptionsHeadBegin(PetscOptionsObject, "IRK ODE solver options");
613: {
614: PetscBool flg1, flg2;
615: PetscCall(PetscOptionsInt("-ts_irk_nstages", "Stages of the IRK method", "TSIRKSetNumStages", irk->nstages, &irk->nstages, &flg1));
616: PetscCall(PetscOptionsFList("-ts_irk_type", "Type of IRK method", "TSIRKSetType", TSIRKList, irk->method_name[0] ? irk->method_name : tname, tname, sizeof(tname), &flg2));
617: if (flg1 || flg2 || !irk->method_name[0]) { /* Create the method tableau after nstages or method is set */
618: PetscCall(TSIRKSetType(ts, tname));
619: }
620: }
621: PetscOptionsHeadEnd();
622: PetscFunctionReturn(PETSC_SUCCESS);
623: }
625: static PetscErrorCode TSView_IRK(TS ts, PetscViewer viewer)
626: {
627: TS_IRK *irk = (TS_IRK *)ts->data;
628: PetscBool iascii;
630: PetscFunctionBegin;
631: PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
632: if (iascii) {
633: IRKTableau tab = irk->tableau;
634: TSIRKType irktype;
635: char buf[512];
637: PetscCall(TSIRKGetType(ts, &irktype));
638: PetscCall(PetscViewerASCIIPrintf(viewer, " IRK type %s\n", irktype));
639: PetscCall(PetscFormatRealArray(buf, sizeof(buf), "% 8.6f", irk->nstages, tab->c));
640: PetscCall(PetscViewerASCIIPrintf(viewer, " Abscissa c = %s\n", buf));
641: PetscCall(PetscViewerASCIIPrintf(viewer, "Stiffly accurate: %s\n", irk->stiffly_accurate ? "yes" : "no"));
642: PetscCall(PetscFormatRealArray(buf, sizeof(buf), "% 8.6f", PetscSqr(irk->nstages), tab->A));
643: PetscCall(PetscViewerASCIIPrintf(viewer, " A coefficients A = %s\n", buf));
644: }
645: PetscFunctionReturn(PETSC_SUCCESS);
646: }
648: static PetscErrorCode TSLoad_IRK(TS ts, PetscViewer viewer)
649: {
650: SNES snes;
651: TSAdapt adapt;
653: PetscFunctionBegin;
654: PetscCall(TSGetAdapt(ts, &adapt));
655: PetscCall(TSAdaptLoad(adapt, viewer));
656: PetscCall(TSGetSNES(ts, &snes));
657: PetscCall(SNESLoad(snes, viewer));
658: /* function and Jacobian context for SNES when used with TS is always ts object */
659: PetscCall(SNESSetFunction(snes, NULL, NULL, ts));
660: PetscCall(SNESSetJacobian(snes, NULL, NULL, NULL, ts));
661: PetscFunctionReturn(PETSC_SUCCESS);
662: }
664: /*@
665: TSIRKSetType - Set the type of `TSIRK` scheme to use
667: Logically Collective
669: Input Parameters:
670: + ts - timestepping context
671: - irktype - type of `TSIRK` scheme
673: Options Database Key:
674: . -ts_irk_type <gauss> - set irk type
676: Level: intermediate
678: .seealso: [](ch_ts), `TSIRKGetType()`, `TSIRK`, `TSIRKType`, `TSIRKGAUSS`
679: @*/
680: PetscErrorCode TSIRKSetType(TS ts, TSIRKType irktype)
681: {
682: PetscFunctionBegin;
684: PetscAssertPointer(irktype, 2);
685: PetscTryMethod(ts, "TSIRKSetType_C", (TS, TSIRKType), (ts, irktype));
686: PetscFunctionReturn(PETSC_SUCCESS);
687: }
689: /*@
690: TSIRKGetType - Get the type of `TSIRK` IMEX scheme being used
692: Logically Collective
694: Input Parameter:
695: . ts - timestepping context
697: Output Parameter:
698: . irktype - type of `TSIRK` IMEX scheme
700: Level: intermediate
702: .seealso: [](ch_ts), `TSIRK`, `TSIRKType`, `TSIRKGAUSS`
703: @*/
704: PetscErrorCode TSIRKGetType(TS ts, TSIRKType *irktype)
705: {
706: PetscFunctionBegin;
708: PetscUseMethod(ts, "TSIRKGetType_C", (TS, TSIRKType *), (ts, irktype));
709: PetscFunctionReturn(PETSC_SUCCESS);
710: }
712: /*@
713: TSIRKSetNumStages - Set the number of stages of `TSIRK` scheme to use
715: Logically Collective
717: Input Parameters:
718: + ts - timestepping context
719: - nstages - number of stages of `TSIRK` scheme
721: Options Database Key:
722: . -ts_irk_nstages <int> - set number of stages
724: Level: intermediate
726: .seealso: [](ch_ts), `TSIRKGetNumStages()`, `TSIRK`
727: @*/
728: PetscErrorCode TSIRKSetNumStages(TS ts, PetscInt nstages)
729: {
730: PetscFunctionBegin;
732: PetscTryMethod(ts, "TSIRKSetNumStages_C", (TS, PetscInt), (ts, nstages));
733: PetscFunctionReturn(PETSC_SUCCESS);
734: }
736: /*@
737: TSIRKGetNumStages - Get the number of stages of `TSIRK` scheme
739: Logically Collective
741: Input Parameters:
742: + ts - timestepping context
743: - nstages - number of stages of `TSIRK` scheme
745: Level: intermediate
747: .seealso: [](ch_ts), `TSIRKSetNumStages()`, `TSIRK`
748: @*/
749: PetscErrorCode TSIRKGetNumStages(TS ts, PetscInt *nstages)
750: {
751: PetscFunctionBegin;
753: PetscAssertPointer(nstages, 2);
754: PetscTryMethod(ts, "TSIRKGetNumStages_C", (TS, PetscInt *), (ts, nstages));
755: PetscFunctionReturn(PETSC_SUCCESS);
756: }
758: static PetscErrorCode TSIRKGetType_IRK(TS ts, TSIRKType *irktype)
759: {
760: TS_IRK *irk = (TS_IRK *)ts->data;
762: PetscFunctionBegin;
763: *irktype = irk->method_name;
764: PetscFunctionReturn(PETSC_SUCCESS);
765: }
767: static PetscErrorCode TSIRKSetType_IRK(TS ts, TSIRKType irktype)
768: {
769: TS_IRK *irk = (TS_IRK *)ts->data;
770: PetscErrorCode (*irkcreate)(TS);
772: PetscFunctionBegin;
773: if (irk->method_name) {
774: PetscCall(PetscFree(irk->method_name));
775: PetscCall(TSIRKTableauReset(ts));
776: }
777: PetscCall(PetscFunctionListFind(TSIRKList, irktype, &irkcreate));
778: PetscCheck(irkcreate, PetscObjectComm((PetscObject)ts), PETSC_ERR_ARG_UNKNOWN_TYPE, "Unknown TSIRK type \"%s\" given", irktype);
779: PetscCall((*irkcreate)(ts));
780: PetscCall(PetscStrallocpy(irktype, &irk->method_name));
781: PetscFunctionReturn(PETSC_SUCCESS);
782: }
784: static PetscErrorCode TSIRKSetNumStages_IRK(TS ts, PetscInt nstages)
785: {
786: TS_IRK *irk = (TS_IRK *)ts->data;
788: PetscFunctionBegin;
789: PetscCheck(nstages > 0, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "input argument, %" PetscInt_FMT ", out of range", nstages);
790: irk->nstages = nstages;
791: PetscFunctionReturn(PETSC_SUCCESS);
792: }
794: static PetscErrorCode TSIRKGetNumStages_IRK(TS ts, PetscInt *nstages)
795: {
796: TS_IRK *irk = (TS_IRK *)ts->data;
798: PetscFunctionBegin;
799: PetscAssertPointer(nstages, 2);
800: *nstages = irk->nstages;
801: PetscFunctionReturn(PETSC_SUCCESS);
802: }
804: static PetscErrorCode TSDestroy_IRK(TS ts)
805: {
806: PetscFunctionBegin;
807: PetscCall(TSReset_IRK(ts));
808: if (ts->dm) {
809: PetscCall(DMCoarsenHookRemove(ts->dm, DMCoarsenHook_TSIRK, DMRestrictHook_TSIRK, ts));
810: PetscCall(DMSubDomainHookRemove(ts->dm, DMSubDomainHook_TSIRK, DMSubDomainRestrictHook_TSIRK, ts));
811: }
812: PetscCall(PetscFree(ts->data));
813: PetscCall(PetscObjectComposeFunction((PetscObject)ts, "TSIRKSetType_C", NULL));
814: PetscCall(PetscObjectComposeFunction((PetscObject)ts, "TSIRKGetType_C", NULL));
815: PetscCall(PetscObjectComposeFunction((PetscObject)ts, "TSIRKSetNumStages_C", NULL));
816: PetscCall(PetscObjectComposeFunction((PetscObject)ts, "TSIRKGetNumStages_C", NULL));
817: PetscFunctionReturn(PETSC_SUCCESS);
818: }
820: /*MC
821: TSIRK - ODE and DAE solver using Implicit Runge-Kutta schemes
823: Level: beginner
825: Notes:
826: `TSIRK` uses the sparse Kronecker product matrix implementation of `MATKAIJ` to achieve good arithmetic intensity.
828: Gauss-Legrendre methods are currently supported. These are A-stable symplectic methods with an arbitrary number of stages. The order of accuracy is 2s
829: when using s stages. The default method uses three stages and thus has an order of six. The number of stages (thus order) can be set with
830: -ts_irk_nstages or `TSIRKSetNumStages()`.
832: .seealso: [](ch_ts), `TSCreate()`, `TS`, `TSSetType()`, `TSIRKSetType()`, `TSIRKGetType()`, `TSIRKGAUSS`, `TSIRKRegister()`, `TSIRKSetNumStages()`, `TSType`
833: M*/
834: PETSC_EXTERN PetscErrorCode TSCreate_IRK(TS ts)
835: {
836: TS_IRK *irk;
838: PetscFunctionBegin;
839: PetscCall(TSIRKInitializePackage());
841: ts->ops->reset = TSReset_IRK;
842: ts->ops->destroy = TSDestroy_IRK;
843: ts->ops->view = TSView_IRK;
844: ts->ops->load = TSLoad_IRK;
845: ts->ops->setup = TSSetUp_IRK;
846: ts->ops->step = TSStep_IRK;
847: ts->ops->interpolate = TSInterpolate_IRK;
848: ts->ops->evaluatestep = TSEvaluateStep_IRK;
849: ts->ops->rollback = TSRollBack_IRK;
850: ts->ops->setfromoptions = TSSetFromOptions_IRK;
851: ts->ops->snesfunction = SNESTSFormFunction_IRK;
852: ts->ops->snesjacobian = SNESTSFormJacobian_IRK;
854: ts->usessnes = PETSC_TRUE;
856: PetscCall(PetscNew(&irk));
857: ts->data = (void *)irk;
859: PetscCall(PetscObjectComposeFunction((PetscObject)ts, "TSIRKSetType_C", TSIRKSetType_IRK));
860: PetscCall(PetscObjectComposeFunction((PetscObject)ts, "TSIRKGetType_C", TSIRKGetType_IRK));
861: PetscCall(PetscObjectComposeFunction((PetscObject)ts, "TSIRKSetNumStages_C", TSIRKSetNumStages_IRK));
862: PetscCall(PetscObjectComposeFunction((PetscObject)ts, "TSIRKGetNumStages_C", TSIRKGetNumStages_IRK));
863: /* 3-stage IRK_Gauss is the default */
864: PetscCall(PetscNew(&irk->tableau));
865: irk->nstages = 3;
866: PetscCall(TSIRKSetType(ts, TSIRKDefault));
867: PetscFunctionReturn(PETSC_SUCCESS);
868: }