Actual source code: ex6.c

  1: static char help[] = "Model Equations for Advection \n";

  3: /*
  4:     Modified from ex3.c
  5:     Page 9, Section 1.2 Model Equations for Advection-Diffusion

  7:           u_t + a u_x = 0, 0<= x <= 1.0

  9:    The initial conditions used here different from the book.

 11:    Example:
 12:      ./ex6 -ts_monitor -ts_view_solution -ts_max_steps 100 -ts_monitor_solution draw -draw_pause .1
 13:      ./ex6 -ts_monitor -ts_max_steps 100 -ts_monitor_lg_error -draw_pause .1
 14: */

 16: #include <petscts.h>
 17: #include <petscdm.h>
 18: #include <petscdmda.h>

 20: /*
 21:    User-defined application context - contains data needed by the
 22:    application-provided call-back routines.
 23: */
 24: typedef struct {
 25:   PetscReal a; /* advection strength */
 26: } AppCtx;

 28: /* User-defined routines */
 29: extern PetscErrorCode InitialConditions(TS, Vec, AppCtx *);
 30: extern PetscErrorCode Solution(TS, PetscReal, Vec, AppCtx *);
 31: extern PetscErrorCode IFunction_LaxFriedrichs(TS, PetscReal, Vec, Vec, Vec, void *);
 32: extern PetscErrorCode IFunction_LaxWendroff(TS, PetscReal, Vec, Vec, Vec, void *);

 34: int main(int argc, char **argv)
 35: {
 36:   AppCtx      appctx; /* user-defined application context */
 37:   TS          ts;     /* timestepping context */
 38:   Vec         U;      /* approximate solution vector */
 39:   PetscReal   dt;
 40:   DM          da;
 41:   PetscInt    M;
 42:   PetscMPIInt rank;
 43:   PetscBool   useLaxWendroff = PETSC_TRUE;

 45:   /* Initialize program and set problem parameters */
 46:   PetscFunctionBeginUser;
 47:   PetscCall(PetscInitialize(&argc, &argv, NULL, help));
 48:   PetscCallMPI(MPI_Comm_rank(PETSC_COMM_WORLD, &rank));

 50:   appctx.a = -1.0;
 51:   PetscCall(PetscOptionsGetReal(NULL, NULL, "-a", &appctx.a, NULL));

 53:   PetscCall(DMDACreate1d(PETSC_COMM_WORLD, DM_BOUNDARY_PERIODIC, 60, 1, 1, NULL, &da));
 54:   PetscCall(DMSetFromOptions(da));
 55:   PetscCall(DMSetUp(da));

 57:   /* Create vector data structures for approximate and exact solutions */
 58:   PetscCall(DMCreateGlobalVector(da, &U));

 60:   /* Create timestepping solver context */
 61:   PetscCall(TSCreate(PETSC_COMM_WORLD, &ts));
 62:   PetscCall(TSSetDM(ts, da));

 64:   /* Function evaluation */
 65:   PetscCall(PetscOptionsGetBool(NULL, NULL, "-useLaxWendroff", &useLaxWendroff, NULL));
 66:   if (useLaxWendroff) {
 67:     if (rank == 0) PetscCall(PetscPrintf(PETSC_COMM_SELF, "... Use Lax-Wendroff finite volume\n"));
 68:     PetscCall(TSSetIFunction(ts, NULL, IFunction_LaxWendroff, &appctx));
 69:   } else {
 70:     if (rank == 0) PetscCall(PetscPrintf(PETSC_COMM_SELF, "... Use Lax-LaxFriedrichs finite difference\n"));
 71:     PetscCall(TSSetIFunction(ts, NULL, IFunction_LaxFriedrichs, &appctx));
 72:   }

 74:   /* Customize timestepping solver */
 75:   PetscCall(DMDAGetInfo(da, PETSC_IGNORE, &M, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0));
 76:   dt = 1.0 / (PetscAbsReal(appctx.a) * M);
 77:   PetscCall(TSSetTimeStep(ts, dt));
 78:   PetscCall(TSSetMaxSteps(ts, 100));
 79:   PetscCall(TSSetMaxTime(ts, 100.0));
 80:   PetscCall(TSSetExactFinalTime(ts, TS_EXACTFINALTIME_STEPOVER));
 81:   PetscCall(TSSetType(ts, TSBEULER));
 82:   PetscCall(TSSetFromOptions(ts));

 84:   /* Evaluate initial conditions */
 85:   PetscCall(InitialConditions(ts, U, &appctx));

 87:   /* For testing accuracy of TS with already known solution, e.g., '-ts_monitor_lg_error' */
 88:   PetscCall(TSSetSolutionFunction(ts, (PetscErrorCode (*)(TS, PetscReal, Vec, void *))Solution, &appctx));

 90:   /* Run the timestepping solver */
 91:   PetscCall(TSSolve(ts, U));

 93:   /* Free work space */
 94:   PetscCall(TSDestroy(&ts));
 95:   PetscCall(VecDestroy(&U));
 96:   PetscCall(DMDestroy(&da));

 98:   PetscCall(PetscFinalize());
 99:   return 0;
100: }
101: /* --------------------------------------------------------------------- */
102: /*
103:    InitialConditions - Computes the solution at the initial time.

105:    Input Parameter:
106:    u - uninitialized solution vector (global)
107:    appctx - user-defined application context

109:    Output Parameter:
110:    u - vector with solution at initial time (global)
111: */
112: PetscErrorCode InitialConditions(TS ts, Vec U, AppCtx *appctx)
113: {
114:   PetscScalar *u;
115:   PetscInt     i, mstart, mend, um, M;
116:   DM           da;
117:   PetscReal    h;

119:   PetscFunctionBeginUser;
120:   PetscCall(TSGetDM(ts, &da));
121:   PetscCall(DMDAGetCorners(da, &mstart, 0, 0, &um, 0, 0));
122:   PetscCall(DMDAGetInfo(da, PETSC_IGNORE, &M, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0));
123:   h    = 1.0 / M;
124:   mend = mstart + um;
125:   /*
126:     Get a pointer to vector data.
127:     - For default PETSc vectors, VecGetArray() returns a pointer to
128:       the data array.  Otherwise, the routine is implementation dependent.
129:     - You MUST call VecRestoreArray() when you no longer need access to
130:       the array.
131:     - Note that the Fortran interface to VecGetArray() differs from the
132:       C version.  See the users manual for details.
133:   */
134:   PetscCall(DMDAVecGetArray(da, U, &u));

136:   /*
137:      We initialize the solution array by simply writing the solution
138:      directly into the array locations.  Alternatively, we could use
139:      VecSetValues() or VecSetValuesLocal().
140:   */
141:   for (i = mstart; i < mend; i++) u[i] = PetscSinReal(PETSC_PI * i * 6. * h) + 3. * PetscSinReal(PETSC_PI * i * 2. * h);

143:   /* Restore vector */
144:   PetscCall(DMDAVecRestoreArray(da, U, &u));
145:   PetscFunctionReturn(PETSC_SUCCESS);
146: }
147: /* --------------------------------------------------------------------- */
148: /*
149:    Solution - Computes the exact solution at a given time

151:    Input Parameters:
152:    t - current time
153:    solution - vector in which exact solution will be computed
154:    appctx - user-defined application context

156:    Output Parameter:
157:    solution - vector with the newly computed exact solution
158:               u(x,t) = sin(6*PI*(x - a*t)) + 3 * sin(2*PI*(x - a*t))
159: */
160: PetscErrorCode Solution(TS ts, PetscReal t, Vec U, AppCtx *appctx)
161: {
162:   PetscScalar *u;
163:   PetscReal    a = appctx->a, h, PI6, PI2;
164:   PetscInt     i, mstart, mend, um, M;
165:   DM           da;

167:   PetscFunctionBeginUser;
168:   PetscCall(TSGetDM(ts, &da));
169:   PetscCall(DMDAGetCorners(da, &mstart, 0, 0, &um, 0, 0));
170:   PetscCall(DMDAGetInfo(da, PETSC_IGNORE, &M, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0));
171:   h    = 1.0 / M;
172:   mend = mstart + um;

174:   /* Get a pointer to vector data. */
175:   PetscCall(DMDAVecGetArray(da, U, &u));

177:   /* u[i] = sin(6*PI*(x[i] - a*t)) + 3 * sin(2*PI*(x[i] - a*t)) */
178:   PI6 = PETSC_PI * 6.;
179:   PI2 = PETSC_PI * 2.;
180:   for (i = mstart; i < mend; i++) u[i] = PetscSinReal(PI6 * (i * h - a * t)) + 3. * PetscSinReal(PI2 * (i * h - a * t));

182:   /* Restore vector */
183:   PetscCall(DMDAVecRestoreArray(da, U, &u));
184:   PetscFunctionReturn(PETSC_SUCCESS);
185: }

187: /* --------------------------------------------------------------------- */
188: /*
189:  Use Lax-Friedrichs method to evaluate F(u,t) = du/dt + a *  du/dx

191:  See https://en.wikipedia.org/wiki/Lax%E2%80%93Friedrichs_method
192:  */
193: PetscErrorCode IFunction_LaxFriedrichs(TS ts, PetscReal t, Vec U, Vec Udot, Vec F, void *ctx)
194: {
195:   AppCtx      *appctx = (AppCtx *)ctx;
196:   PetscInt     mstart, mend, M, i, um;
197:   DM           da;
198:   Vec          Uold, localUold;
199:   PetscScalar *uarray, *f, *uoldarray, h, uave, c;
200:   PetscReal    dt;

202:   PetscFunctionBegin;
203:   PetscCall(TSGetTimeStep(ts, &dt));
204:   PetscCall(TSGetSolution(ts, &Uold));

206:   PetscCall(TSGetDM(ts, &da));
207:   PetscCall(DMDAGetInfo(da, 0, &M, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0));
208:   PetscCall(DMDAGetCorners(da, &mstart, 0, 0, &um, 0, 0));
209:   h    = 1.0 / M;
210:   mend = mstart + um;
211:   /* printf(" mstart %d, um %d\n",mstart,um); */

213:   PetscCall(DMGetLocalVector(da, &localUold));
214:   PetscCall(DMGlobalToLocalBegin(da, Uold, INSERT_VALUES, localUold));
215:   PetscCall(DMGlobalToLocalEnd(da, Uold, INSERT_VALUES, localUold));

217:   /* Get pointers to vector data */
218:   PetscCall(DMDAVecGetArrayRead(da, U, &uarray));
219:   PetscCall(DMDAVecGetArrayRead(da, localUold, &uoldarray));
220:   PetscCall(DMDAVecGetArray(da, F, &f));

222:   /* advection */
223:   c = appctx->a * dt / h; /* Courant-Friedrichs-Lewy number (CFL number) */

225:   for (i = mstart; i < mend; i++) {
226:     uave = 0.5 * (uoldarray[i - 1] + uoldarray[i + 1]);
227:     f[i] = uarray[i] - uave + c * 0.5 * (uoldarray[i + 1] - uoldarray[i - 1]);
228:   }

230:   /* Restore vectors */
231:   PetscCall(DMDAVecRestoreArrayRead(da, U, &uarray));
232:   PetscCall(DMDAVecRestoreArrayRead(da, localUold, &uoldarray));
233:   PetscCall(DMDAVecRestoreArray(da, F, &f));
234:   PetscCall(DMRestoreLocalVector(da, &localUold));
235:   PetscFunctionReturn(PETSC_SUCCESS);
236: }

238: /*
239:  Use Lax-Wendroff method to evaluate F(u,t) = du/dt + a *  du/dx
240: */
241: PetscErrorCode IFunction_LaxWendroff(TS ts, PetscReal t, Vec U, Vec Udot, Vec F, void *ctx)
242: {
243:   AppCtx      *appctx = (AppCtx *)ctx;
244:   PetscInt     mstart, mend, M, i, um;
245:   DM           da;
246:   Vec          Uold, localUold;
247:   PetscScalar *uarray, *f, *uoldarray, h, RFlux, LFlux, lambda;
248:   PetscReal    dt, a;

250:   PetscFunctionBegin;
251:   PetscCall(TSGetTimeStep(ts, &dt));
252:   PetscCall(TSGetSolution(ts, &Uold));

254:   PetscCall(TSGetDM(ts, &da));
255:   PetscCall(DMDAGetInfo(da, 0, &M, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0));
256:   PetscCall(DMDAGetCorners(da, &mstart, 0, 0, &um, 0, 0));
257:   h    = 1.0 / M;
258:   mend = mstart + um;
259:   /* printf(" mstart %d, um %d\n",mstart,um); */

261:   PetscCall(DMGetLocalVector(da, &localUold));
262:   PetscCall(DMGlobalToLocalBegin(da, Uold, INSERT_VALUES, localUold));
263:   PetscCall(DMGlobalToLocalEnd(da, Uold, INSERT_VALUES, localUold));

265:   /* Get pointers to vector data */
266:   PetscCall(DMDAVecGetArrayRead(da, U, &uarray));
267:   PetscCall(DMDAVecGetArrayRead(da, localUold, &uoldarray));
268:   PetscCall(DMDAVecGetArray(da, F, &f));

270:   /* advection -- finite volume (appctx->a < 0 -- can be relaxed?) */
271:   lambda = dt / h;
272:   a      = appctx->a;

274:   for (i = mstart; i < mend; i++) {
275:     RFlux = 0.5 * a * (uoldarray[i + 1] + uoldarray[i]) - a * a * 0.5 * lambda * (uoldarray[i + 1] - uoldarray[i]);
276:     LFlux = 0.5 * a * (uoldarray[i - 1] + uoldarray[i]) - a * a * 0.5 * lambda * (uoldarray[i] - uoldarray[i - 1]);
277:     f[i]  = uarray[i] - uoldarray[i] + lambda * (RFlux - LFlux);
278:   }

280:   /* Restore vectors */
281:   PetscCall(DMDAVecRestoreArrayRead(da, U, &uarray));
282:   PetscCall(DMDAVecRestoreArrayRead(da, localUold, &uoldarray));
283:   PetscCall(DMDAVecRestoreArray(da, F, &f));
284:   PetscCall(DMRestoreLocalVector(da, &localUold));
285:   PetscFunctionReturn(PETSC_SUCCESS);
286: }

288: /*TEST

290:    test:
291:       args: -ts_max_steps 10 -ts_monitor

293:    test:
294:       suffix: 2
295:       nsize: 3
296:       args: -ts_max_steps 10 -ts_monitor
297:       output_file: output/ex6_1.out

299:    test:
300:       suffix: 3
301:       args: -ts_max_steps 10 -ts_monitor -useLaxWendroff false

303:    test:
304:       suffix: 4
305:       nsize: 3
306:       args: -ts_max_steps 10 -ts_monitor -useLaxWendroff false
307:       output_file: output/ex6_3.out

309: TEST*/