Actual source code: ex36.c
1: static char help[] = "Transistor amplifier.\n";
3: /*F
4: ` This example illustrates the implementation of an implicit DAE index-1 of form M y'=f(t,y) with singular mass matrix, where
6: [ -C1 C1 ]
7: [ C1 -C1 ]
8: M =[ -C2 ]; Ck = k * 1e-06
9: [ -C3 C3]
10: [ C3 -C3]
12: [ -(U(t) - y[0])/1000 ]
13: [ -6/R + y[1]/4500 + 0.01 * h(y[1]-y[2]) ]
14: f(t,y)= [ y[2]/R - h(y[1]-y[2]) ]
15: [ (y[3]-6)/9000 + 0.99 * h([y1]-y[2]) ]
16: [ y[4]/9000 ]
18: U(t) = 0.4 * Sin(200 Pi t); h[V] = 1e-06 * Exp(V/0.026 - 1) `
20: Useful options: -ts_monitor_lg_solution -ts_monitor_lg_timestep -lg_indicate_data_points 0
21: F*/
23: /*
24: Include "petscts.h" so that we can use TS solvers. Note that this
25: file automatically includes:
26: petscsys.h - base PETSc routines petscvec.h - vectors
27: petscmat.h - matrices
28: petscis.h - index sets petscksp.h - Krylov subspace methods
29: petscviewer.h - viewers petscpc.h - preconditioners
30: petscksp.h - linear solvers
31: */
32: #include <petscts.h>
34: FILE *gfilepointer_data, *gfilepointer_info;
36: /* Defines the source */
37: PetscErrorCode Ue(PetscScalar t, PetscScalar *U)
38: {
39: PetscFunctionBeginUser;
40: *U = 0.4 * PetscSinReal(200 * PETSC_PI * t);
41: PetscFunctionReturn(PETSC_SUCCESS);
42: }
44: /*
45: Defines the DAE passed to the time solver
46: */
47: static PetscErrorCode IFunctionImplicit(TS ts, PetscReal t, Vec Y, Vec Ydot, Vec F, void *ctx)
48: {
49: const PetscScalar *y, *ydot;
50: PetscScalar *f;
52: PetscFunctionBeginUser;
53: /* The next three lines allow us to access the entries of the vectors directly */
54: PetscCall(VecGetArrayRead(Y, &y));
55: PetscCall(VecGetArrayRead(Ydot, &ydot));
56: PetscCall(VecGetArrayWrite(F, &f));
58: f[0] = ydot[0] / 1.e6 - ydot[1] / 1.e6 - PetscSinReal(200 * PETSC_PI * t) / 2500. + y[0] / 1000.;
59: f[1] = -ydot[0] / 1.e6 + ydot[1] / 1.e6 - 0.0006666766666666667 + PetscExpReal((500 * (y[1] - y[2])) / 13.) / 1.e8 + y[1] / 4500.;
60: f[2] = ydot[2] / 500000. + 1.e-6 - PetscExpReal((500 * (y[1] - y[2])) / 13.) / 1.e6 + y[2] / 9000.;
61: f[3] = (3 * ydot[3]) / 1.e6 - (3 * ydot[4]) / 1.e6 - 0.0006676566666666666 + (99 * PetscExpReal((500 * (y[1] - y[2])) / 13.)) / 1.e8 + y[3] / 9000.;
62: f[4] = (3 * ydot[4]) / 1.e6 - (3 * ydot[3]) / 1.e6 + y[4] / 9000.;
64: PetscCall(VecRestoreArrayRead(Y, &y));
65: PetscCall(VecRestoreArrayRead(Ydot, &ydot));
66: PetscCall(VecRestoreArrayWrite(F, &f));
67: PetscFunctionReturn(PETSC_SUCCESS);
68: }
70: /*
71: Defines the Jacobian of the ODE passed to the ODE solver. See TSSetIJacobian() for the meaning of a and the Jacobian.
72: */
73: static PetscErrorCode IJacobianImplicit(TS ts, PetscReal t, Vec Y, Vec Ydot, PetscReal a, Mat A, Mat B, void *ctx)
74: {
75: PetscInt rowcol[] = {0, 1, 2, 3, 4};
76: const PetscScalar *y, *ydot;
77: PetscScalar J[5][5];
79: PetscFunctionBeginUser;
80: PetscCall(VecGetArrayRead(Y, &y));
81: PetscCall(VecGetArrayRead(Ydot, &ydot));
83: PetscCall(PetscMemzero(J, sizeof(J)));
85: J[0][0] = a / 1.e6 + 0.001;
86: J[0][1] = -a / 1.e6;
87: J[1][0] = -a / 1.e6;
88: J[1][1] = a / 1.e6 + 0.00022222222222222223 + PetscExpReal((500 * (y[1] - y[2])) / 13.) / 2.6e6;
89: J[1][2] = -PetscExpReal((500 * (y[1] - y[2])) / 13.) / 2.6e6;
90: J[2][1] = -PetscExpReal((500 * (y[1] - y[2])) / 13.) / 26000.;
91: J[2][2] = a / 500000 + 0.00011111111111111112 + PetscExpReal((500 * (y[1] - y[2])) / 13.) / 26000.;
92: J[3][1] = (99 * PetscExpReal((500 * (y[1] - y[2])) / 13.)) / 2.6e6;
93: J[3][2] = (-99 * PetscExpReal((500 * (y[1] - y[2])) / 13.)) / 2.6e6;
94: J[3][3] = (3 * a) / 1.e6 + 0.00011111111111111112;
95: J[3][4] = -(3 * a) / 1.e6;
96: J[4][3] = -(3 * a) / 1.e6;
97: J[4][4] = (3 * a) / 1.e6 + 0.00011111111111111112;
99: PetscCall(MatSetValues(B, 5, rowcol, 5, rowcol, &J[0][0], INSERT_VALUES));
101: PetscCall(VecRestoreArrayRead(Y, &y));
102: PetscCall(VecRestoreArrayRead(Ydot, &ydot));
104: PetscCall(MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY));
105: PetscCall(MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY));
106: if (A != B) {
107: PetscCall(MatAssemblyBegin(B, MAT_FINAL_ASSEMBLY));
108: PetscCall(MatAssemblyEnd(B, MAT_FINAL_ASSEMBLY));
109: }
110: PetscFunctionReturn(PETSC_SUCCESS);
111: }
113: int main(int argc, char **argv)
114: {
115: TS ts; /* ODE integrator */
116: Vec Y; /* solution will be stored here */
117: Mat A; /* Jacobian matrix */
118: PetscMPIInt size;
119: PetscInt n = 5;
120: PetscScalar *y;
122: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
123: Initialize program
124: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
125: PetscFunctionBeginUser;
126: PetscCall(PetscInitialize(&argc, &argv, NULL, help));
127: PetscCallMPI(MPI_Comm_size(PETSC_COMM_WORLD, &size));
128: PetscCheck(size == 1, PETSC_COMM_WORLD, PETSC_ERR_WRONG_MPI_SIZE, "Only for sequential runs");
130: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
131: Create necessary matrix and vectors
132: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
133: PetscCall(MatCreate(PETSC_COMM_WORLD, &A));
134: PetscCall(MatSetSizes(A, n, n, PETSC_DETERMINE, PETSC_DETERMINE));
135: PetscCall(MatSetFromOptions(A));
136: PetscCall(MatSetUp(A));
138: PetscCall(MatCreateVecs(A, &Y, NULL));
140: PetscCall(VecGetArray(Y, &y));
141: y[0] = 0.0;
142: y[1] = 3.0;
143: y[2] = y[1];
144: y[3] = 6.0;
145: y[4] = 0.0;
146: PetscCall(VecRestoreArray(Y, &y));
148: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
149: Create timestepping solver context
150: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
151: PetscCall(TSCreate(PETSC_COMM_WORLD, &ts));
152: PetscCall(TSSetProblemType(ts, TS_NONLINEAR));
153: PetscCall(TSSetType(ts, TSARKIMEX));
154: /* Must use ARKIMEX with fully implicit stages since mass matrix is not the identity */
155: PetscCall(TSARKIMEXSetType(ts, TSARKIMEXPRSSP2));
156: PetscCall(TSSetEquationType(ts, TS_EQ_DAE_IMPLICIT_INDEX1));
157: /*PetscCall(TSSetType(ts,TSROSW));*/
158: PetscCall(TSSetIFunction(ts, NULL, IFunctionImplicit, NULL));
159: PetscCall(TSSetIJacobian(ts, A, A, IJacobianImplicit, NULL));
161: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
162: Set initial conditions
163: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
164: PetscCall(TSSetSolution(ts, Y));
166: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
167: Set solver options
168: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
169: PetscCall(TSSetMaxTime(ts, 0.15));
170: PetscCall(TSSetExactFinalTime(ts, TS_EXACTFINALTIME_STEPOVER));
171: PetscCall(TSSetTimeStep(ts, .001));
172: PetscCall(TSSetFromOptions(ts));
174: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
175: Do time stepping
176: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
177: PetscCall(TSSolve(ts, Y));
179: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
180: Free work space. All PETSc objects should be destroyed when they are no longer needed.
181: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
182: PetscCall(MatDestroy(&A));
183: PetscCall(VecDestroy(&Y));
184: PetscCall(TSDestroy(&ts));
185: PetscCall(PetscFinalize());
186: return 0;
187: }
189: /*TEST
190: build:
191: requires: !single !complex
192: test:
193: args: -ts_monitor
195: TEST*/