Actual source code: ex1.c

  1: static char help[] = "Basic equation for generator stability analysis.\n";

  3: /*F

  5: \begin{eqnarray}
  6:                  \frac{2 H}{\omega_s}\frac{d \omega}{dt} & = & P_m - \frac{EV}{X} \sin(\theta) \\
  7:                  \frac{d \theta}{dt} = \omega - \omega_s
  8: \end{eqnarray}

 10: F*/

 12: /*
 13:    Include "petscts.h" so that we can use TS solvers.  Note that this
 14:    file automatically includes:
 15:      petscsys.h       - base PETSc routines   petscvec.h - vectors
 16:      petscmat.h - matrices
 17:      petscis.h     - index sets            petscksp.h - Krylov subspace methods
 18:      petscviewer.h - viewers               petscpc.h  - preconditioners
 19:      petscksp.h   - linear solvers
 20: */

 22: #include <petscts.h>

 24: typedef struct {
 25:   PetscScalar H, omega_s, E, V, X;
 26:   PetscRandom rand;
 27: } AppCtx;

 29: /*
 30:      Defines the ODE passed to the ODE solver
 31: */
 32: static PetscErrorCode IFunction(TS ts, PetscReal t, Vec U, Vec Udot, Vec F, AppCtx *ctx)
 33: {
 34:   PetscScalar       *f, r;
 35:   const PetscScalar *u, *udot;
 36:   static PetscScalar R = .4;

 38:   PetscFunctionBegin;
 39:   PetscCall(PetscRandomGetValue(ctx->rand, &r));
 40:   if (r > .9) R = .5;
 41:   if (r < .1) R = .4;
 42:   R = .4;
 43:   /*  The next three lines allow us to access the entries of the vectors directly */
 44:   PetscCall(VecGetArrayRead(U, &u));
 45:   PetscCall(VecGetArrayRead(Udot, &udot));
 46:   PetscCall(VecGetArray(F, &f));
 47:   f[0] = 2.0 * ctx->H * udot[0] / ctx->omega_s + ctx->E * ctx->V * PetscSinScalar(u[1]) / ctx->X - R;
 48:   f[1] = udot[1] - u[0] + ctx->omega_s;

 50:   PetscCall(VecRestoreArrayRead(U, &u));
 51:   PetscCall(VecRestoreArrayRead(Udot, &udot));
 52:   PetscCall(VecRestoreArray(F, &f));
 53:   PetscFunctionReturn(PETSC_SUCCESS);
 54: }

 56: /*
 57:      Defines the Jacobian of the ODE passed to the ODE solver. See TSSetIJacobian() for the meaning of a and the Jacobian.
 58: */
 59: static PetscErrorCode IJacobian(TS ts, PetscReal t, Vec U, Vec Udot, PetscReal a, Mat A, Mat B, AppCtx *ctx)
 60: {
 61:   PetscInt           rowcol[] = {0, 1};
 62:   PetscScalar        J[2][2];
 63:   const PetscScalar *u, *udot;

 65:   PetscFunctionBegin;
 66:   PetscCall(VecGetArrayRead(U, &u));
 67:   PetscCall(VecGetArrayRead(Udot, &udot));
 68:   J[0][0] = 2.0 * ctx->H * a / ctx->omega_s;
 69:   J[0][1] = -ctx->E * ctx->V * PetscCosScalar(u[1]) / ctx->X;
 70:   J[1][0] = -1.0;
 71:   J[1][1] = a;
 72:   PetscCall(MatSetValues(B, 2, rowcol, 2, rowcol, &J[0][0], INSERT_VALUES));
 73:   PetscCall(VecRestoreArrayRead(U, &u));
 74:   PetscCall(VecRestoreArrayRead(Udot, &udot));

 76:   PetscCall(MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY));
 77:   PetscCall(MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY));
 78:   if (A != B) {
 79:     PetscCall(MatAssemblyBegin(B, MAT_FINAL_ASSEMBLY));
 80:     PetscCall(MatAssemblyEnd(B, MAT_FINAL_ASSEMBLY));
 81:   }
 82:   PetscFunctionReturn(PETSC_SUCCESS);
 83: }

 85: int main(int argc, char **argv)
 86: {
 87:   TS           ts; /* ODE integrator */
 88:   Vec          U;  /* solution will be stored here */
 89:   Mat          A;  /* Jacobian matrix */
 90:   PetscMPIInt  size;
 91:   PetscInt     n = 2;
 92:   AppCtx       ctx;
 93:   PetscScalar *u;

 95:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 96:      Initialize program
 97:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
 98:   PetscFunctionBeginUser;
 99:   PetscCall(PetscInitialize(&argc, &argv, NULL, help));
100:   PetscCallMPI(MPI_Comm_size(PETSC_COMM_WORLD, &size));
101:   PetscCheck(size == 1, PETSC_COMM_WORLD, PETSC_ERR_WRONG_MPI_SIZE, "Only for sequential runs");

103:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
104:     Create necessary matrix and vectors
105:     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
106:   PetscCall(MatCreate(PETSC_COMM_WORLD, &A));
107:   PetscCall(MatSetSizes(A, n, n, PETSC_DETERMINE, PETSC_DETERMINE));
108:   PetscCall(MatSetFromOptions(A));
109:   PetscCall(MatSetUp(A));

111:   PetscCall(MatCreateVecs(A, &U, NULL));

113:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
114:     Set runtime options
115:     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
116:   PetscOptionsBegin(PETSC_COMM_WORLD, NULL, "Reaction options", "");
117:   {
118:     ctx.omega_s = 1.0;
119:     PetscCall(PetscOptionsScalar("-omega_s", "", "", ctx.omega_s, &ctx.omega_s, NULL));
120:     ctx.H = 1.0;
121:     PetscCall(PetscOptionsScalar("-H", "", "", ctx.H, &ctx.H, NULL));
122:     ctx.E = 1.0;
123:     PetscCall(PetscOptionsScalar("-E", "", "", ctx.E, &ctx.E, NULL));
124:     ctx.V = 1.0;
125:     PetscCall(PetscOptionsScalar("-V", "", "", ctx.V, &ctx.V, NULL));
126:     ctx.X = 1.0;
127:     PetscCall(PetscOptionsScalar("-X", "", "", ctx.X, &ctx.X, NULL));

129:     PetscCall(VecGetArray(U, &u));
130:     u[0] = 1;
131:     u[1] = .7;
132:     PetscCall(VecRestoreArray(U, &u));
133:     PetscCall(PetscOptionsGetVec(NULL, NULL, "-initial", U, NULL));
134:   }
135:   PetscOptionsEnd();

137:   PetscCall(PetscRandomCreate(PETSC_COMM_WORLD, &ctx.rand));
138:   PetscCall(PetscRandomSetFromOptions(ctx.rand));

140:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
141:      Create timestepping solver context
142:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
143:   PetscCall(TSCreate(PETSC_COMM_WORLD, &ts));
144:   PetscCall(TSSetProblemType(ts, TS_NONLINEAR));
145:   PetscCall(TSSetType(ts, TSROSW));
146:   PetscCall(TSSetIFunction(ts, NULL, (TSIFunctionFn *)IFunction, &ctx));
147:   PetscCall(TSSetIJacobian(ts, A, A, (TSIJacobianFn *)IJacobian, &ctx));

149:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
150:      Set initial conditions
151:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
152:   PetscCall(TSSetSolution(ts, U));

154:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
155:      Set solver options
156:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
157:   PetscCall(TSSetMaxTime(ts, 2000.0));
158:   PetscCall(TSSetExactFinalTime(ts, TS_EXACTFINALTIME_MATCHSTEP));
159:   PetscCall(TSSetTimeStep(ts, .001));
160:   PetscCall(TSSetFromOptions(ts));

162:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
163:      Solve nonlinear system
164:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
165:   PetscCall(TSSolve(ts, U));

167:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
168:      Free work space.  All PETSc objects should be destroyed when they are no longer needed.
169:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
170:   PetscCall(MatDestroy(&A));
171:   PetscCall(VecDestroy(&U));
172:   PetscCall(TSDestroy(&ts));
173:   PetscCall(PetscRandomDestroy(&ctx.rand));
174:   PetscCall(PetscFinalize());
175:   return 0;
176: }

178: /*TEST

180:    build:
181:      requires: !complex !single

183:    test:
184:       args: -ksp_gmres_cgs_refinement_type refine_always -snes_type newtonls -ts_max_steps 10

186:    test:
187:       suffix: 2
188:       args: -ts_max_steps 10

190: TEST*/