Actual source code: ex2.c

  1: static char help[] = "Basic equation for generator stability analysis.\n";

  3: /*F

  5: \begin{eqnarray}
  6:                  \frac{2 H}{\omega_s}\frac{d \omega}{dt} & = & P_m - \frac{EV}{X} \sin(\theta) -D(\omega - \omega_s)\\
  7:                  \frac{d \theta}{dt} = \omega - \omega_s
  8: \end{eqnarray}

 10:   Ensemble of initial conditions
 11:    ./ex2 -ensemble -ts_monitor_draw_solution_phase -1,-3,3,3      -ts_adapt_dt_max .01  -ts_monitor -ts_type rosw -pc_type lu -ksp_type preonly

 13:   Fault at .1 seconds
 14:    ./ex2           -ts_monitor_draw_solution_phase .42,.95,.6,1.05 -ts_adapt_dt_max .01  -ts_monitor -ts_type rosw -pc_type lu -ksp_type preonly

 16:   Initial conditions same as when fault is ended
 17:    ./ex2 -u 0.496792,1.00932 -ts_monitor_draw_solution_phase .42,.95,.6,1.05  -ts_adapt_dt_max .01  -ts_monitor -ts_type rosw -pc_type lu -ksp_type preonly

 19: F*/

 21: /*
 22:    Include "petscts.h" so that we can use TS solvers.  Note that this
 23:    file automatically includes:
 24:      petscsys.h       - base PETSc routines   petscvec.h - vectors
 25:      petscmat.h - matrices
 26:      petscis.h     - index sets            petscksp.h - Krylov subspace methods
 27:      petscviewer.h - viewers               petscpc.h  - preconditioners
 28:      petscksp.h   - linear solvers
 29: */

 31: #include <petscts.h>

 33: typedef struct {
 34:   PetscScalar H, D, omega_s, Pmax, Pm, E, V, X;
 35:   PetscReal   tf, tcl;
 36: } AppCtx;

 38: /*
 39:      Defines the ODE passed to the ODE solver
 40: */
 41: static PetscErrorCode IFunction(TS ts, PetscReal t, Vec U, Vec Udot, Vec F, AppCtx *ctx)
 42: {
 43:   PetscScalar       *f, Pmax;
 44:   const PetscScalar *u, *udot;

 46:   PetscFunctionBegin;
 47:   /*  The next three lines allow us to access the entries of the vectors directly */
 48:   PetscCall(VecGetArrayRead(U, &u));
 49:   PetscCall(VecGetArrayRead(Udot, &udot));
 50:   PetscCall(VecGetArray(F, &f));
 51:   if ((t > ctx->tf) && (t < ctx->tcl)) Pmax = 0.0; /* A short-circuit on the generator terminal that drives the electrical power output (Pmax*sin(delta)) to 0 */
 52:   else if (t >= ctx->tcl) Pmax = ctx->E / 0.745;
 53:   else Pmax = ctx->Pmax;
 54:   f[0] = udot[0] - ctx->omega_s * (u[1] - 1.0);
 55:   f[1] = 2.0 * ctx->H * udot[1] + Pmax * PetscSinScalar(u[0]) + ctx->D * (u[1] - 1.0) - ctx->Pm;

 57:   PetscCall(VecRestoreArrayRead(U, &u));
 58:   PetscCall(VecRestoreArrayRead(Udot, &udot));
 59:   PetscCall(VecRestoreArray(F, &f));
 60:   PetscFunctionReturn(PETSC_SUCCESS);
 61: }

 63: /*
 64:      Defines the Jacobian of the ODE passed to the ODE solver. See TSSetIJacobian() for the meaning of a and the Jacobian.
 65: */
 66: static PetscErrorCode IJacobian(TS ts, PetscReal t, Vec U, Vec Udot, PetscReal a, Mat A, Mat B, AppCtx *ctx)
 67: {
 68:   PetscInt           rowcol[] = {0, 1};
 69:   PetscScalar        J[2][2], Pmax;
 70:   const PetscScalar *u, *udot;

 72:   PetscFunctionBegin;
 73:   PetscCall(VecGetArrayRead(U, &u));
 74:   PetscCall(VecGetArrayRead(Udot, &udot));
 75:   if ((t > ctx->tf) && (t < ctx->tcl)) Pmax = 0.0; /* A short-circuit on the generator terminal that drives the electrical power output (Pmax*sin(delta)) to 0 */
 76:   else if (t >= ctx->tcl) Pmax = ctx->E / 0.745;
 77:   else Pmax = ctx->Pmax;

 79:   J[0][0] = a;
 80:   J[0][1] = -ctx->omega_s;
 81:   J[1][1] = 2.0 * ctx->H * a + ctx->D;
 82:   J[1][0] = Pmax * PetscCosScalar(u[0]);

 84:   PetscCall(MatSetValues(B, 2, rowcol, 2, rowcol, &J[0][0], INSERT_VALUES));
 85:   PetscCall(VecRestoreArrayRead(U, &u));
 86:   PetscCall(VecRestoreArrayRead(Udot, &udot));

 88:   PetscCall(MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY));
 89:   PetscCall(MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY));
 90:   if (A != B) {
 91:     PetscCall(MatAssemblyBegin(B, MAT_FINAL_ASSEMBLY));
 92:     PetscCall(MatAssemblyEnd(B, MAT_FINAL_ASSEMBLY));
 93:   }
 94:   PetscFunctionReturn(PETSC_SUCCESS);
 95: }

 97: PetscErrorCode PostStep(TS ts)
 98: {
 99:   Vec       X;
100:   PetscReal t;

102:   PetscFunctionBegin;
103:   PetscCall(TSGetTime(ts, &t));
104:   if (t >= .2) {
105:     PetscCall(TSGetSolution(ts, &X));
106:     PetscCall(VecView(X, PETSC_VIEWER_STDOUT_WORLD));
107:     exit(0);
108:     /* results in initial conditions after fault of -u 0.496792,1.00932 */
109:   }
110:   PetscFunctionReturn(PETSC_SUCCESS);
111: }

113: int main(int argc, char **argv)
114: {
115:   TS           ts; /* ODE integrator */
116:   Vec          U;  /* solution will be stored here */
117:   Mat          A;  /* Jacobian matrix */
118:   PetscMPIInt  size;
119:   PetscInt     n = 2;
120:   AppCtx       ctx;
121:   PetscScalar *u;
122:   PetscReal    du[2]    = {0.0, 0.0};
123:   PetscBool    ensemble = PETSC_FALSE, flg1, flg2;

125:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
126:      Initialize program
127:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
128:   PetscFunctionBeginUser;
129:   PetscCall(PetscInitialize(&argc, &argv, NULL, help));
130:   PetscCallMPI(MPI_Comm_size(PETSC_COMM_WORLD, &size));
131:   PetscCheck(size == 1, PETSC_COMM_WORLD, PETSC_ERR_WRONG_MPI_SIZE, "Only for sequential runs");

133:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
134:     Create necessary matrix and vectors
135:     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
136:   PetscCall(MatCreate(PETSC_COMM_WORLD, &A));
137:   PetscCall(MatSetSizes(A, n, n, PETSC_DETERMINE, PETSC_DETERMINE));
138:   PetscCall(MatSetType(A, MATDENSE));
139:   PetscCall(MatSetFromOptions(A));
140:   PetscCall(MatSetUp(A));

142:   PetscCall(MatCreateVecs(A, &U, NULL));

144:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
145:     Set runtime options
146:     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
147:   PetscOptionsBegin(PETSC_COMM_WORLD, NULL, "Swing equation options", "");
148:   {
149:     ctx.omega_s = 2.0 * PETSC_PI * 60.0;
150:     ctx.H       = 5.0;
151:     PetscCall(PetscOptionsScalar("-Inertia", "", "", ctx.H, &ctx.H, NULL));
152:     ctx.D = 5.0;
153:     PetscCall(PetscOptionsScalar("-D", "", "", ctx.D, &ctx.D, NULL));
154:     ctx.E    = 1.1378;
155:     ctx.V    = 1.0;
156:     ctx.X    = 0.545;
157:     ctx.Pmax = ctx.E * ctx.V / ctx.X;
158:     PetscCall(PetscOptionsScalar("-Pmax", "", "", ctx.Pmax, &ctx.Pmax, NULL));
159:     ctx.Pm = 0.9;
160:     PetscCall(PetscOptionsScalar("-Pm", "", "", ctx.Pm, &ctx.Pm, NULL));
161:     ctx.tf  = 1.0;
162:     ctx.tcl = 1.05;
163:     PetscCall(PetscOptionsReal("-tf", "Time to start fault", "", ctx.tf, &ctx.tf, NULL));
164:     PetscCall(PetscOptionsReal("-tcl", "Time to end fault", "", ctx.tcl, &ctx.tcl, NULL));
165:     PetscCall(PetscOptionsBool("-ensemble", "Run ensemble of different initial conditions", "", ensemble, &ensemble, NULL));
166:     if (ensemble) {
167:       ctx.tf  = -1;
168:       ctx.tcl = -1;
169:     }

171:     PetscCall(VecGetArray(U, &u));
172:     u[0] = PetscAsinScalar(ctx.Pm / ctx.Pmax);
173:     u[1] = 1.0;
174:     PetscCall(PetscOptionsRealArray("-u", "Initial solution", "", u, &n, &flg1));
175:     n = 2;
176:     PetscCall(PetscOptionsRealArray("-du", "Perturbation in initial solution", "", du, &n, &flg2));
177:     u[0] += du[0];
178:     u[1] += du[1];
179:     PetscCall(VecRestoreArray(U, &u));
180:     if (flg1 || flg2) {
181:       ctx.tf  = -1;
182:       ctx.tcl = -1;
183:     }
184:   }
185:   PetscOptionsEnd();

187:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
188:      Create timestepping solver context
189:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
190:   PetscCall(TSCreate(PETSC_COMM_WORLD, &ts));
191:   PetscCall(TSSetProblemType(ts, TS_NONLINEAR));
192:   PetscCall(TSSetType(ts, TSROSW));
193:   PetscCall(TSSetIFunction(ts, NULL, (TSIFunctionFn *)IFunction, &ctx));
194:   PetscCall(TSSetIJacobian(ts, A, A, (TSIJacobianFn *)IJacobian, &ctx));

196:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
197:      Set initial conditions
198:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
199:   PetscCall(TSSetSolution(ts, U));

201:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
202:      Set solver options
203:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
204:   PetscCall(TSSetMaxTime(ts, 35.0));
205:   PetscCall(TSSetExactFinalTime(ts, TS_EXACTFINALTIME_MATCHSTEP));
206:   PetscCall(TSSetTimeStep(ts, .01));
207:   PetscCall(TSSetFromOptions(ts));
208:   /* PetscCall(TSSetPostStep(ts,PostStep));  */

210:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
211:      Solve nonlinear system
212:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
213:   if (ensemble) {
214:     for (du[1] = -2.5; du[1] <= .01; du[1] += .1) {
215:       PetscCall(VecGetArray(U, &u));
216:       u[0] = PetscAsinScalar(ctx.Pm / ctx.Pmax);
217:       u[1] = ctx.omega_s;
218:       u[0] += du[0];
219:       u[1] += du[1];
220:       PetscCall(VecRestoreArray(U, &u));
221:       PetscCall(TSSetTimeStep(ts, .01));
222:       PetscCall(TSSolve(ts, U));
223:     }
224:   } else {
225:     PetscCall(TSSolve(ts, U));
226:   }
227:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
228:      Free work space.  All PETSc objects should be destroyed when they are no longer needed.
229:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
230:   PetscCall(MatDestroy(&A));
231:   PetscCall(VecDestroy(&U));
232:   PetscCall(TSDestroy(&ts));
233:   PetscCall(PetscFinalize());
234:   return 0;
235: }

237: /*TEST

239:    build:
240:       requires: !complex

242:    test:
243:       args: -nox -ts_dt 10

245: TEST*/