Actual source code: ex3opt.c

  1: static char help[] = "Finds optimal parameter P_m for the generator system while maintaining generator stability.\n";

  3: /*F

  5: \begin{eqnarray}
  6:                  \frac{d \theta}{dt} = \omega_b (\omega - \omega_s)
  7:                  \frac{2 H}{\omega_s}\frac{d \omega}{dt} & = & P_m - P_max \sin(\theta) -D(\omega - \omega_s)\\
  8: \end{eqnarray}

 10: F*/

 12: /*
 13:   This code demonstrates how to solve a ODE-constrained optimization problem with TAO, TSEvent, TSAdjoint and TS.
 14:   The problem features discontinuities and a cost function in integral form.
 15:   The gradient is computed with the discrete adjoint of an implicit theta method, see ex3adj.c for details.
 16: */

 18: #include <petsctao.h>
 19: #include <petscts.h>
 20: #include "ex3.h"

 22: PetscErrorCode FormFunctionGradient(Tao, Vec, PetscReal *, Vec, void *);

 24: PetscErrorCode monitor(Tao tao, AppCtx *ctx)
 25: {
 26:   FILE              *fp;
 27:   PetscInt           iterate;
 28:   PetscReal          f, gnorm, cnorm, xdiff;
 29:   TaoConvergedReason reason;

 31:   PetscFunctionBeginUser;
 32:   PetscCall(TaoGetSolutionStatus(tao, &iterate, &f, &gnorm, &cnorm, &xdiff, &reason));

 34:   fp = fopen("ex3opt_conv.out", "a");
 35:   PetscCall(PetscFPrintf(PETSC_COMM_WORLD, fp, "%" PetscInt_FMT " %g\n", iterate, (double)gnorm));
 36:   fclose(fp);
 37:   PetscFunctionReturn(PETSC_SUCCESS);
 38: }

 40: int main(int argc, char **argv)
 41: {
 42:   Vec          p;
 43:   PetscScalar *x_ptr;
 44:   PetscMPIInt  size;
 45:   AppCtx       ctx;
 46:   Tao          tao;
 47:   KSP          ksp;
 48:   PC           pc;
 49:   Vec          lambda[1], mu[1], lowerb, upperb;
 50:   PetscBool    printtofile;
 51:   PetscInt     direction[2];
 52:   PetscBool    terminate[2];
 53:   Mat          qgrad; /* Forward sesivitiy */
 54:   Mat          sp;    /* Forward sensitivity matrix */

 56:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 57:      Initialize program
 58:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
 59:   PetscFunctionBeginUser;
 60:   PetscCall(PetscInitialize(&argc, &argv, NULL, help));
 61:   PetscCallMPI(MPI_Comm_size(PETSC_COMM_WORLD, &size));
 62:   PetscCheck(size == 1, PETSC_COMM_WORLD, PETSC_ERR_WRONG_MPI_SIZE, "This is a uniprocessor example only!");

 64:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 65:     Set runtime options
 66:     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
 67:   PetscOptionsBegin(PETSC_COMM_WORLD, NULL, "Swing equation options", "");
 68:   {
 69:     ctx.beta    = 2;
 70:     ctx.c       = 10000.0;
 71:     ctx.u_s     = 1.0;
 72:     ctx.omega_s = 1.0;
 73:     ctx.omega_b = 120.0 * PETSC_PI;
 74:     ctx.H       = 5.0;
 75:     PetscCall(PetscOptionsScalar("-Inertia", "", "", ctx.H, &ctx.H, NULL));
 76:     ctx.D = 5.0;
 77:     PetscCall(PetscOptionsScalar("-D", "", "", ctx.D, &ctx.D, NULL));
 78:     ctx.E        = 1.1378;
 79:     ctx.V        = 1.0;
 80:     ctx.X        = 0.545;
 81:     ctx.Pmax     = ctx.E * ctx.V / ctx.X;
 82:     ctx.Pmax_ini = ctx.Pmax;
 83:     PetscCall(PetscOptionsScalar("-Pmax", "", "", ctx.Pmax, &ctx.Pmax, NULL));
 84:     ctx.Pm = 1.06;
 85:     PetscCall(PetscOptionsScalar("-Pm", "", "", ctx.Pm, &ctx.Pm, NULL));
 86:     ctx.tf  = 0.1;
 87:     ctx.tcl = 0.2;
 88:     PetscCall(PetscOptionsReal("-tf", "Time to start fault", "", ctx.tf, &ctx.tf, NULL));
 89:     PetscCall(PetscOptionsReal("-tcl", "Time to end fault", "", ctx.tcl, &ctx.tcl, NULL));
 90:     printtofile = PETSC_FALSE;
 91:     PetscCall(PetscOptionsBool("-printtofile", "Print convergence results to file", "", printtofile, &printtofile, NULL));
 92:     ctx.sa = SA_ADJ;
 93:     PetscCall(PetscOptionsEnum("-sa_method", "Sensitivity analysis method (adj or tlm)", "", SAMethods, (PetscEnum)ctx.sa, (PetscEnum *)&ctx.sa, NULL));
 94:   }
 95:   PetscOptionsEnd();

 97:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 98:     Create necessary matrix and vectors
 99:     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
100:   PetscCall(MatCreate(PETSC_COMM_WORLD, &ctx.Jac));
101:   PetscCall(MatSetSizes(ctx.Jac, 2, 2, PETSC_DETERMINE, PETSC_DETERMINE));
102:   PetscCall(MatSetType(ctx.Jac, MATDENSE));
103:   PetscCall(MatSetFromOptions(ctx.Jac));
104:   PetscCall(MatSetUp(ctx.Jac));
105:   PetscCall(MatCreate(PETSC_COMM_WORLD, &ctx.Jacp));
106:   PetscCall(MatSetSizes(ctx.Jacp, PETSC_DECIDE, PETSC_DECIDE, 2, 1));
107:   PetscCall(MatSetFromOptions(ctx.Jacp));
108:   PetscCall(MatSetUp(ctx.Jacp));
109:   PetscCall(MatCreateVecs(ctx.Jac, &ctx.U, NULL));
110:   PetscCall(MatCreateDense(PETSC_COMM_WORLD, PETSC_DECIDE, PETSC_DECIDE, 1, 1, NULL, &ctx.DRDP));
111:   PetscCall(MatSetUp(ctx.DRDP));
112:   PetscCall(MatCreateDense(PETSC_COMM_WORLD, PETSC_DECIDE, PETSC_DECIDE, 2, 1, NULL, &ctx.DRDU));
113:   PetscCall(MatSetUp(ctx.DRDU));

115:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
116:      Create timestepping solver context
117:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
118:   PetscCall(TSCreate(PETSC_COMM_WORLD, &ctx.ts));
119:   PetscCall(TSSetProblemType(ctx.ts, TS_NONLINEAR));
120:   PetscCall(TSSetType(ctx.ts, TSCN));
121:   PetscCall(TSSetRHSFunction(ctx.ts, NULL, (TSRHSFunctionFn *)RHSFunction, &ctx));
122:   PetscCall(TSSetRHSJacobian(ctx.ts, ctx.Jac, ctx.Jac, (TSRHSJacobianFn *)RHSJacobian, &ctx));
123:   PetscCall(TSSetRHSJacobianP(ctx.ts, ctx.Jacp, RHSJacobianP, &ctx));

125:   if (ctx.sa == SA_ADJ) {
126:     PetscCall(MatCreateVecs(ctx.Jac, &lambda[0], NULL));
127:     PetscCall(MatCreateVecs(ctx.Jacp, &mu[0], NULL));
128:     PetscCall(TSSetSaveTrajectory(ctx.ts));
129:     PetscCall(TSSetCostGradients(ctx.ts, 1, lambda, mu));
130:     PetscCall(TSCreateQuadratureTS(ctx.ts, PETSC_FALSE, &ctx.quadts));
131:     PetscCall(TSSetRHSFunction(ctx.quadts, NULL, (TSRHSFunctionFn *)CostIntegrand, &ctx));
132:     PetscCall(TSSetRHSJacobian(ctx.quadts, ctx.DRDU, ctx.DRDU, (TSRHSJacobianFn *)DRDUJacobianTranspose, &ctx));
133:     PetscCall(TSSetRHSJacobianP(ctx.quadts, ctx.DRDP, DRDPJacobianTranspose, &ctx));
134:   }
135:   if (ctx.sa == SA_TLM) {
136:     PetscCall(MatCreateDense(PETSC_COMM_WORLD, PETSC_DECIDE, PETSC_DECIDE, 1, 1, NULL, &qgrad));
137:     PetscCall(MatCreateDense(PETSC_COMM_WORLD, PETSC_DECIDE, PETSC_DECIDE, 2, 1, NULL, &sp));
138:     PetscCall(TSForwardSetSensitivities(ctx.ts, 1, sp));
139:     PetscCall(TSCreateQuadratureTS(ctx.ts, PETSC_TRUE, &ctx.quadts));
140:     PetscCall(TSForwardSetSensitivities(ctx.quadts, 1, qgrad));
141:     PetscCall(TSSetRHSFunction(ctx.quadts, NULL, (TSRHSFunctionFn *)CostIntegrand, &ctx));
142:     PetscCall(TSSetRHSJacobian(ctx.quadts, ctx.DRDU, ctx.DRDU, (TSRHSJacobianFn *)DRDUJacobianTranspose, &ctx));
143:     PetscCall(TSSetRHSJacobianP(ctx.quadts, ctx.DRDP, DRDPJacobianTranspose, &ctx));
144:   }

146:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
147:      Set solver options
148:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
149:   PetscCall(TSSetMaxTime(ctx.ts, 1.0));
150:   PetscCall(TSSetExactFinalTime(ctx.ts, TS_EXACTFINALTIME_MATCHSTEP));
151:   PetscCall(TSSetTimeStep(ctx.ts, 0.03125));
152:   PetscCall(TSSetFromOptions(ctx.ts));

154:   direction[0] = direction[1] = 1;
155:   terminate[0] = terminate[1] = PETSC_FALSE;
156:   PetscCall(TSSetEventHandler(ctx.ts, 2, direction, terminate, EventFunction, PostEventFunction, &ctx));

158:   /* Create TAO solver and set desired solution method */
159:   PetscCall(TaoCreate(PETSC_COMM_WORLD, &tao));
160:   PetscCall(TaoSetType(tao, TAOBLMVM));
161:   if (printtofile) PetscCall(TaoMonitorSet(tao, (PetscErrorCode (*)(Tao, void *))monitor, (void *)&ctx, NULL));
162:   /*
163:      Optimization starts
164:   */
165:   /* Set initial solution guess */
166:   PetscCall(VecCreateSeq(PETSC_COMM_WORLD, 1, &p));
167:   PetscCall(VecGetArray(p, &x_ptr));
168:   x_ptr[0] = ctx.Pm;
169:   PetscCall(VecRestoreArray(p, &x_ptr));

171:   PetscCall(TaoSetSolution(tao, p));
172:   /* Set routine for function and gradient evaluation */
173:   PetscCall(TaoSetObjectiveAndGradient(tao, NULL, FormFunctionGradient, (void *)&ctx));

175:   /* Set bounds for the optimization */
176:   PetscCall(VecDuplicate(p, &lowerb));
177:   PetscCall(VecDuplicate(p, &upperb));
178:   PetscCall(VecGetArray(lowerb, &x_ptr));
179:   x_ptr[0] = 0.;
180:   PetscCall(VecRestoreArray(lowerb, &x_ptr));
181:   PetscCall(VecGetArray(upperb, &x_ptr));
182:   x_ptr[0] = 1.1;
183:   PetscCall(VecRestoreArray(upperb, &x_ptr));
184:   PetscCall(TaoSetVariableBounds(tao, lowerb, upperb));

186:   /* Check for any TAO command line options */
187:   PetscCall(TaoSetFromOptions(tao));
188:   PetscCall(TaoGetKSP(tao, &ksp));
189:   if (ksp) {
190:     PetscCall(KSPGetPC(ksp, &pc));
191:     PetscCall(PCSetType(pc, PCNONE));
192:   }

194:   /* SOLVE THE APPLICATION */
195:   PetscCall(TaoSolve(tao));

197:   PetscCall(VecView(p, PETSC_VIEWER_STDOUT_WORLD));

199:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
200:      Free work space.  All PETSc objects should be destroyed when they are no longer needed.
201:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
202:   PetscCall(MatDestroy(&ctx.Jac));
203:   PetscCall(MatDestroy(&ctx.Jacp));
204:   PetscCall(MatDestroy(&ctx.DRDU));
205:   PetscCall(MatDestroy(&ctx.DRDP));
206:   PetscCall(VecDestroy(&ctx.U));
207:   if (ctx.sa == SA_ADJ) {
208:     PetscCall(VecDestroy(&lambda[0]));
209:     PetscCall(VecDestroy(&mu[0]));
210:   }
211:   if (ctx.sa == SA_TLM) {
212:     PetscCall(MatDestroy(&qgrad));
213:     PetscCall(MatDestroy(&sp));
214:   }
215:   PetscCall(TSDestroy(&ctx.ts));
216:   PetscCall(VecDestroy(&p));
217:   PetscCall(VecDestroy(&lowerb));
218:   PetscCall(VecDestroy(&upperb));
219:   PetscCall(TaoDestroy(&tao));
220:   PetscCall(PetscFinalize());
221:   return 0;
222: }

224: /* ------------------------------------------------------------------ */
225: /*
226:    FormFunctionGradient - Evaluates the function and corresponding gradient.

228:    Input Parameters:
229:    tao - the Tao context
230:    X   - the input vector
231:    ptr - optional user-defined context, as set by TaoSetObjectiveAndGradient()

233:    Output Parameters:
234:    f   - the newly evaluated function
235:    G   - the newly evaluated gradient
236: */
237: PetscErrorCode FormFunctionGradient(Tao tao, Vec P, PetscReal *f, Vec G, void *ctx0)
238: {
239:   AppCtx      *ctx = (AppCtx *)ctx0;
240:   PetscInt     nadj;
241:   PetscReal    ftime;
242:   PetscInt     steps;
243:   PetscScalar *u;
244:   PetscScalar *x_ptr, *y_ptr;
245:   Vec          q;
246:   Mat          qgrad;

248:   PetscFunctionBeginUser;
249:   PetscCall(VecGetArrayRead(P, (const PetscScalar **)&x_ptr));
250:   ctx->Pm = x_ptr[0];
251:   PetscCall(VecRestoreArrayRead(P, (const PetscScalar **)&x_ptr));

253:   /* reinitialize the solution vector */
254:   PetscCall(VecGetArray(ctx->U, &u));
255:   u[0] = PetscAsinScalar(ctx->Pm / ctx->Pmax);
256:   u[1] = 1.0;
257:   PetscCall(VecRestoreArray(ctx->U, &u));
258:   PetscCall(TSSetSolution(ctx->ts, ctx->U));

260:   /* reset time */
261:   PetscCall(TSSetTime(ctx->ts, 0.0));

263:   /* reset step counter, this is critical for adjoint solver */
264:   PetscCall(TSSetStepNumber(ctx->ts, 0));

266:   /* reset step size, the step size becomes negative after TSAdjointSolve */
267:   PetscCall(TSSetTimeStep(ctx->ts, 0.03125));

269:   /* reinitialize the integral value */
270:   PetscCall(TSGetQuadratureTS(ctx->ts, NULL, &ctx->quadts));
271:   PetscCall(TSGetSolution(ctx->quadts, &q));
272:   PetscCall(VecSet(q, 0.0));

274:   if (ctx->sa == SA_TLM) { /* reset the forward sensitivities */
275:     TS             quadts;
276:     Mat            sp;
277:     PetscScalar    val[2];
278:     const PetscInt row[] = {0, 1}, col[] = {0};

280:     PetscCall(TSGetQuadratureTS(ctx->ts, NULL, &quadts));
281:     PetscCall(TSForwardGetSensitivities(quadts, NULL, &qgrad));
282:     PetscCall(MatZeroEntries(qgrad));
283:     PetscCall(TSForwardGetSensitivities(ctx->ts, NULL, &sp));
284:     val[0] = 1. / PetscSqrtScalar(1. - (ctx->Pm / ctx->Pmax) * (ctx->Pm / ctx->Pmax)) / ctx->Pmax;
285:     val[1] = 0.0;
286:     PetscCall(MatSetValues(sp, 2, row, 1, col, val, INSERT_VALUES));
287:     PetscCall(MatAssemblyBegin(sp, MAT_FINAL_ASSEMBLY));
288:     PetscCall(MatAssemblyEnd(sp, MAT_FINAL_ASSEMBLY));
289:   }

291:   /* solve the ODE */
292:   PetscCall(TSSolve(ctx->ts, ctx->U));
293:   PetscCall(TSGetSolveTime(ctx->ts, &ftime));
294:   PetscCall(TSGetStepNumber(ctx->ts, &steps));

296:   if (ctx->sa == SA_ADJ) {
297:     Vec *lambda, *mu;
298:     /* reset the terminal condition for adjoint */
299:     PetscCall(TSGetCostGradients(ctx->ts, &nadj, &lambda, &mu));
300:     PetscCall(VecGetArray(lambda[0], &y_ptr));
301:     y_ptr[0] = 0.0;
302:     y_ptr[1] = 0.0;
303:     PetscCall(VecRestoreArray(lambda[0], &y_ptr));
304:     PetscCall(VecGetArray(mu[0], &x_ptr));
305:     x_ptr[0] = -1.0;
306:     PetscCall(VecRestoreArray(mu[0], &x_ptr));

308:     /* solve the adjont */
309:     PetscCall(TSAdjointSolve(ctx->ts));

311:     PetscCall(ComputeSensiP(lambda[0], mu[0], ctx));
312:     PetscCall(VecCopy(mu[0], G));
313:   }

315:   if (ctx->sa == SA_TLM) {
316:     PetscCall(VecGetArray(G, &x_ptr));
317:     PetscCall(MatDenseGetArray(qgrad, &y_ptr));
318:     x_ptr[0] = y_ptr[0] - 1.;
319:     PetscCall(MatDenseRestoreArray(qgrad, &y_ptr));
320:     PetscCall(VecRestoreArray(G, &x_ptr));
321:   }

323:   PetscCall(TSGetSolution(ctx->quadts, &q));
324:   PetscCall(VecGetArray(q, &x_ptr));
325:   *f = -ctx->Pm + x_ptr[0];
326:   PetscCall(VecRestoreArray(q, &x_ptr));
327:   PetscFunctionReturn(PETSC_SUCCESS);
328: }

330: /*TEST

332:    build:
333:       requires: !complex !single

335:    test:
336:       args: -viewer_binary_skip_info -ts_type cn -pc_type lu -tao_monitor

338:    test:
339:       suffix: 2
340:       output_file: output/ex3opt_1.out
341:       args: -sa_method tlm -ts_type cn -pc_type lu -tao_monitor
342: TEST*/