Actual source code: ex9.c

  1: static char help[] = "Basic equation for generator stability analysis.\n";

  3: /*F

  5: \begin{eqnarray}
  6:                  \frac{d \theta}{dt} = \omega_b (\omega - \omega_s)
  7:                  \frac{2 H}{\omega_s}\frac{d \omega}{dt} & = & P_m - P_max \sin(\theta) -D(\omega - \omega_s)\\
  8: \end{eqnarray}

 10:   Ensemble of initial conditions
 11:    ./ex2 -ensemble -ts_monitor_draw_solution_phase -1,-3,3,3      -ts_adapt_dt_max .01  -ts_monitor -ts_type rosw -pc_type lu -ksp_type preonly

 13:   Fault at .1 seconds
 14:    ./ex2           -ts_monitor_draw_solution_phase .42,.95,.6,1.05 -ts_adapt_dt_max .01  -ts_monitor -ts_type rosw -pc_type lu -ksp_type preonly

 16:   Initial conditions same as when fault is ended
 17:    ./ex2 -u 0.496792,1.00932 -ts_monitor_draw_solution_phase .42,.95,.6,1.05  -ts_adapt_dt_max .01  -ts_monitor -ts_type rosw -pc_type lu -ksp_type preonly

 19: F*/

 21: /*
 22:    Include "petscts.h" so that we can use TS solvers.  Note that this
 23:    file automatically includes:
 24:      petscsys.h       - base PETSc routines   petscvec.h - vectors
 25:      petscmat.h - matrices
 26:      petscis.h     - index sets            petscksp.h - Krylov subspace methods
 27:      petscviewer.h - viewers               petscpc.h  - preconditioners
 28:      petscksp.h   - linear solvers
 29: */

 31: #include <petscts.h>

 33: typedef struct {
 34:   PetscScalar H, D, omega_b, omega_s, Pmax, Pm, E, V, X;
 35:   PetscReal   tf, tcl;
 36: } AppCtx;

 38: /*
 39:      Defines the ODE passed to the ODE solver
 40: */
 41: static PetscErrorCode RHSFunction(TS ts, PetscReal t, Vec U, Vec F, AppCtx *ctx)
 42: {
 43:   const PetscScalar *u;
 44:   PetscScalar       *f, Pmax;

 46:   PetscFunctionBegin;
 47:   /*  The next three lines allow us to access the entries of the vectors directly */
 48:   PetscCall(VecGetArrayRead(U, &u));
 49:   PetscCall(VecGetArray(F, &f));
 50:   if ((t > ctx->tf) && (t < ctx->tcl)) Pmax = 0.0; /* A short-circuit on the generator terminal that drives the electrical power output (Pmax*sin(delta)) to 0 */
 51:   else Pmax = ctx->Pmax;

 53:   f[0] = ctx->omega_b * (u[1] - ctx->omega_s);
 54:   f[1] = (-Pmax * PetscSinScalar(u[0]) - ctx->D * (u[1] - ctx->omega_s) + ctx->Pm) * ctx->omega_s / (2.0 * ctx->H);

 56:   PetscCall(VecRestoreArrayRead(U, &u));
 57:   PetscCall(VecRestoreArray(F, &f));
 58:   PetscFunctionReturn(PETSC_SUCCESS);
 59: }

 61: /*
 62:      Defines the Jacobian of the ODE passed to the ODE solver. See TSSetIJacobian() for the meaning of a and the Jacobian.
 63: */
 64: static PetscErrorCode RHSJacobian(TS ts, PetscReal t, Vec U, Mat A, Mat B, AppCtx *ctx)
 65: {
 66:   PetscInt           rowcol[] = {0, 1};
 67:   PetscScalar        J[2][2], Pmax;
 68:   const PetscScalar *u;

 70:   PetscFunctionBegin;
 71:   PetscCall(VecGetArrayRead(U, &u));
 72:   if ((t > ctx->tf) && (t < ctx->tcl)) Pmax = 0.0; /* A short-circuit on the generator terminal that drives the electrical power output (Pmax*sin(delta)) to 0 */
 73:   else Pmax = ctx->Pmax;

 75:   J[0][0] = 0;
 76:   J[0][1] = ctx->omega_b;
 77:   J[1][1] = -ctx->D * ctx->omega_s / (2.0 * ctx->H);
 78:   J[1][0] = -Pmax * PetscCosScalar(u[0]) * ctx->omega_s / (2.0 * ctx->H);

 80:   PetscCall(MatSetValues(B, 2, rowcol, 2, rowcol, &J[0][0], INSERT_VALUES));
 81:   PetscCall(VecRestoreArrayRead(U, &u));

 83:   PetscCall(MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY));
 84:   PetscCall(MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY));
 85:   if (A != B) {
 86:     PetscCall(MatAssemblyBegin(B, MAT_FINAL_ASSEMBLY));
 87:     PetscCall(MatAssemblyEnd(B, MAT_FINAL_ASSEMBLY));
 88:   }
 89:   PetscFunctionReturn(PETSC_SUCCESS);
 90: }

 92: int main(int argc, char **argv)
 93: {
 94:   TS           ts; /* ODE integrator */
 95:   Vec          U;  /* solution will be stored here */
 96:   Mat          A;  /* Jacobian matrix */
 97:   PetscMPIInt  size;
 98:   PetscInt     n = 2;
 99:   AppCtx       ctx;
100:   PetscScalar *u;
101:   PetscReal    du[2]    = {0.0, 0.0};
102:   PetscBool    ensemble = PETSC_FALSE, flg1, flg2;

104:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
105:      Initialize program
106:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
107:   PetscFunctionBeginUser;
108:   PetscCall(PetscInitialize(&argc, &argv, NULL, help));
109:   PetscCallMPI(MPI_Comm_size(PETSC_COMM_WORLD, &size));
110:   PetscCheck(size == 1, PETSC_COMM_WORLD, PETSC_ERR_WRONG_MPI_SIZE, "Only for sequential runs");

112:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
113:     Create necessary matrix and vectors
114:     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
115:   PetscCall(MatCreate(PETSC_COMM_WORLD, &A));
116:   PetscCall(MatSetSizes(A, n, n, PETSC_DETERMINE, PETSC_DETERMINE));
117:   PetscCall(MatSetType(A, MATDENSE));
118:   PetscCall(MatSetFromOptions(A));
119:   PetscCall(MatSetUp(A));

121:   PetscCall(MatCreateVecs(A, &U, NULL));

123:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
124:     Set runtime options
125:     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
126:   PetscOptionsBegin(PETSC_COMM_WORLD, NULL, "Swing equation options", "");
127:   {
128:     ctx.omega_b = 1.0;
129:     ctx.omega_s = 2.0 * PETSC_PI * 60.0;
130:     ctx.H       = 5.0;
131:     PetscCall(PetscOptionsScalar("-Inertia", "", "", ctx.H, &ctx.H, NULL));
132:     ctx.D = 5.0;
133:     PetscCall(PetscOptionsScalar("-D", "", "", ctx.D, &ctx.D, NULL));
134:     ctx.E    = 1.1378;
135:     ctx.V    = 1.0;
136:     ctx.X    = 0.545;
137:     ctx.Pmax = ctx.E * ctx.V / ctx.X;
138:     PetscCall(PetscOptionsScalar("-Pmax", "", "", ctx.Pmax, &ctx.Pmax, NULL));
139:     ctx.Pm = 0.9;
140:     PetscCall(PetscOptionsScalar("-Pm", "", "", ctx.Pm, &ctx.Pm, NULL));
141:     ctx.tf  = 1.0;
142:     ctx.tcl = 1.05;
143:     PetscCall(PetscOptionsReal("-tf", "Time to start fault", "", ctx.tf, &ctx.tf, NULL));
144:     PetscCall(PetscOptionsReal("-tcl", "Time to end fault", "", ctx.tcl, &ctx.tcl, NULL));
145:     PetscCall(PetscOptionsBool("-ensemble", "Run ensemble of different initial conditions", "", ensemble, &ensemble, NULL));
146:     if (ensemble) {
147:       ctx.tf  = -1;
148:       ctx.tcl = -1;
149:     }

151:     PetscCall(VecGetArray(U, &u));
152:     u[0] = PetscAsinScalar(ctx.Pm / ctx.Pmax);
153:     u[1] = 1.0;
154:     PetscCall(PetscOptionsRealArray("-u", "Initial solution", "", u, &n, &flg1));
155:     n = 2;
156:     PetscCall(PetscOptionsRealArray("-du", "Perturbation in initial solution", "", du, &n, &flg2));
157:     u[0] += du[0];
158:     u[1] += du[1];
159:     PetscCall(VecRestoreArray(U, &u));
160:     if (flg1 || flg2) {
161:       ctx.tf  = -1;
162:       ctx.tcl = -1;
163:     }
164:   }
165:   PetscOptionsEnd();

167:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
168:      Create timestepping solver context
169:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
170:   PetscCall(TSCreate(PETSC_COMM_WORLD, &ts));
171:   PetscCall(TSSetProblemType(ts, TS_NONLINEAR));
172:   PetscCall(TSSetType(ts, TSTHETA));
173:   PetscCall(TSSetRHSFunction(ts, NULL, (TSRHSFunctionFn *)RHSFunction, &ctx));
174:   PetscCall(TSSetRHSJacobian(ts, A, A, (TSRHSJacobianFn *)RHSJacobian, &ctx));

176:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
177:      Set initial conditions
178:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
179:   PetscCall(TSSetSolution(ts, U));

181:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
182:      Set solver options
183:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
184:   PetscCall(TSSetMaxTime(ts, 35.0));
185:   PetscCall(TSSetExactFinalTime(ts, TS_EXACTFINALTIME_MATCHSTEP));
186:   PetscCall(TSSetTimeStep(ts, .01));
187:   PetscCall(TSSetFromOptions(ts));

189:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
190:      Solve nonlinear system
191:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
192:   if (ensemble) {
193:     for (du[1] = -2.5; du[1] <= .01; du[1] += .1) {
194:       PetscCall(VecGetArray(U, &u));
195:       u[0] = PetscAsinScalar(ctx.Pm / ctx.Pmax);
196:       u[1] = ctx.omega_s;
197:       u[0] += du[0];
198:       u[1] += du[1];
199:       PetscCall(VecRestoreArray(U, &u));
200:       PetscCall(TSSetTimeStep(ts, .01));
201:       PetscCall(TSSolve(ts, U));
202:     }
203:   } else {
204:     PetscCall(TSSolve(ts, U));
205:   }
206:   PetscCall(VecView(U, PETSC_VIEWER_STDOUT_WORLD));
207:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
208:      Free work space.  All PETSc objects should be destroyed when they are no longer needed.
209:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
210:   PetscCall(MatDestroy(&A));
211:   PetscCall(VecDestroy(&U));
212:   PetscCall(TSDestroy(&ts));
213:   PetscCall(PetscFinalize());
214:   return 0;
215: }

217: /*TEST

219:    build:
220:      requires: !complex

222:    test:

224: TEST*/