Actual source code: ex9busadj.c
1: static char help[] = "Sensitivity analysis applied in power grid stability analysis of WECC 9 bus system.\n\
2: This example is based on the 9-bus (node) example given in the book Power\n\
3: Systems Dynamics and Stability (Chapter 7) by P. Sauer and M. A. Pai.\n\
4: The power grid in this example consists of 9 buses (nodes), 3 generators,\n\
5: 3 loads, and 9 transmission lines. The network equations are written\n\
6: in current balance form using rectangular coordinates.\n\n";
8: /*
9: The equations for the stability analysis are described by the DAE. See ex9bus.c for details.
10: The system has 'jumps' due to faults, thus the time interval is split into multiple sections, and TSSolve is called for each of them. But TSAdjointSolve only needs to be called once since the whole trajectory has been saved in the forward run.
11: The code computes the sensitivity of a final state w.r.t. initial conditions.
12: */
14: #include <petscts.h>
15: #include <petscdm.h>
16: #include <petscdmda.h>
17: #include <petscdmcomposite.h>
19: #define freq 60
20: #define w_s (2 * PETSC_PI * freq)
22: /* Sizes and indices */
23: const PetscInt nbus = 9; /* Number of network buses */
24: const PetscInt ngen = 3; /* Number of generators */
25: const PetscInt nload = 3; /* Number of loads */
26: const PetscInt gbus[3] = {0, 1, 2}; /* Buses at which generators are incident */
27: const PetscInt lbus[3] = {4, 5, 7}; /* Buses at which loads are incident */
29: /* Generator real and reactive powers (found via loadflow) */
30: const PetscScalar PG[3] = {0.716786142395021, 1.630000000000000, 0.850000000000000};
31: const PetscScalar QG[3] = {0.270702180178785, 0.066120127797275, -0.108402221791588};
32: /* Generator constants */
33: const PetscScalar H[3] = {23.64, 6.4, 3.01}; /* Inertia constant */
34: const PetscScalar Rs[3] = {0.0, 0.0, 0.0}; /* Stator Resistance */
35: const PetscScalar Xd[3] = {0.146, 0.8958, 1.3125}; /* d-axis reactance */
36: const PetscScalar Xdp[3] = {0.0608, 0.1198, 0.1813}; /* d-axis transient reactance */
37: const PetscScalar Xq[3] = {0.4360, 0.8645, 1.2578}; /* q-axis reactance Xq(1) set to 0.4360, value given in text 0.0969 */
38: const PetscScalar Xqp[3] = {0.0969, 0.1969, 0.25}; /* q-axis transient reactance */
39: const PetscScalar Td0p[3] = {8.96, 6.0, 5.89}; /* d-axis open circuit time constant */
40: const PetscScalar Tq0p[3] = {0.31, 0.535, 0.6}; /* q-axis open circuit time constant */
41: PetscScalar M[3]; /* M = 2*H/w_s */
42: PetscScalar D[3]; /* D = 0.1*M */
44: PetscScalar TM[3]; /* Mechanical Torque */
45: /* Exciter system constants */
46: const PetscScalar KA[3] = {20.0, 20.0, 20.0}; /* Voltage regulartor gain constant */
47: const PetscScalar TA[3] = {0.2, 0.2, 0.2}; /* Voltage regulator time constant */
48: const PetscScalar KE[3] = {1.0, 1.0, 1.0}; /* Exciter gain constant */
49: const PetscScalar TE[3] = {0.314, 0.314, 0.314}; /* Exciter time constant */
50: const PetscScalar KF[3] = {0.063, 0.063, 0.063}; /* Feedback stabilizer gain constant */
51: const PetscScalar TF[3] = {0.35, 0.35, 0.35}; /* Feedback stabilizer time constant */
52: const PetscScalar k1[3] = {0.0039, 0.0039, 0.0039};
53: const PetscScalar k2[3] = {1.555, 1.555, 1.555}; /* k1 and k2 for calculating the saturation function SE = k1*exp(k2*Efd) */
55: PetscScalar Vref[3];
56: /* Load constants
57: We use a composite load model that describes the load and reactive powers at each time instant as follows
58: P(t) = \sum\limits_{i=0}^ld_nsegsp \ld_alphap_i*P_D0(\frac{V_m(t)}{V_m0})^\ld_betap_i
59: Q(t) = \sum\limits_{i=0}^ld_nsegsq \ld_alphaq_i*Q_D0(\frac{V_m(t)}{V_m0})^\ld_betaq_i
60: where
61: ld_nsegsp,ld_nsegsq - Number of individual load models for real and reactive power loads
62: ld_alphap,ld_alphap - Percentage contribution (weights) or loads
63: P_D0 - Real power load
64: Q_D0 - Reactive power load
65: V_m(t) - Voltage magnitude at time t
66: V_m0 - Voltage magnitude at t = 0
67: ld_betap, ld_betaq - exponents describing the load model for real and reactive part
69: Note: All loads have the same characteristic currently.
70: */
71: const PetscScalar PD0[3] = {1.25, 0.9, 1.0};
72: const PetscScalar QD0[3] = {0.5, 0.3, 0.35};
73: const PetscInt ld_nsegsp[3] = {3, 3, 3};
74: const PetscScalar ld_alphap[3] = {1.0, 0.0, 0.0};
75: const PetscScalar ld_betap[3] = {2.0, 1.0, 0.0};
76: const PetscInt ld_nsegsq[3] = {3, 3, 3};
77: const PetscScalar ld_alphaq[3] = {1.0, 0.0, 0.0};
78: const PetscScalar ld_betaq[3] = {2.0, 1.0, 0.0};
80: typedef struct {
81: DM dmgen, dmnet; /* DMs to manage generator and network subsystem */
82: DM dmpgrid; /* Composite DM to manage the entire power grid */
83: Mat Ybus; /* Network admittance matrix */
84: Vec V0; /* Initial voltage vector (Power flow solution) */
85: PetscReal tfaulton, tfaultoff; /* Fault on and off times */
86: PetscInt faultbus; /* Fault bus */
87: PetscScalar Rfault;
88: PetscReal t0, tmax;
89: PetscInt neqs_gen, neqs_net, neqs_pgrid;
90: PetscBool alg_flg;
91: PetscReal t;
92: IS is_diff; /* indices for differential equations */
93: IS is_alg; /* indices for algebraic equations */
94: } Userctx;
96: /* Converts from machine frame (dq) to network (phase a real,imag) reference frame */
97: PetscErrorCode dq2ri(PetscScalar Fd, PetscScalar Fq, PetscScalar delta, PetscScalar *Fr, PetscScalar *Fi)
98: {
99: PetscFunctionBegin;
100: *Fr = Fd * PetscSinScalar(delta) + Fq * PetscCosScalar(delta);
101: *Fi = -Fd * PetscCosScalar(delta) + Fq * PetscSinScalar(delta);
102: PetscFunctionReturn(PETSC_SUCCESS);
103: }
105: /* Converts from network frame ([phase a real,imag) to machine (dq) reference frame */
106: PetscErrorCode ri2dq(PetscScalar Fr, PetscScalar Fi, PetscScalar delta, PetscScalar *Fd, PetscScalar *Fq)
107: {
108: PetscFunctionBegin;
109: *Fd = Fr * PetscSinScalar(delta) - Fi * PetscCosScalar(delta);
110: *Fq = Fr * PetscCosScalar(delta) + Fi * PetscSinScalar(delta);
111: PetscFunctionReturn(PETSC_SUCCESS);
112: }
114: PetscErrorCode SetInitialGuess(Vec X, Userctx *user)
115: {
116: Vec Xgen, Xnet;
117: PetscScalar *xgen, *xnet;
118: PetscInt i, idx = 0;
119: PetscScalar Vr, Vi, IGr, IGi, Vm, Vm2;
120: PetscScalar Eqp, Edp, delta;
121: PetscScalar Efd, RF, VR; /* Exciter variables */
122: PetscScalar Id, Iq; /* Generator dq axis currents */
123: PetscScalar theta, Vd, Vq, SE;
125: PetscFunctionBegin;
126: M[0] = 2 * H[0] / w_s;
127: M[1] = 2 * H[1] / w_s;
128: M[2] = 2 * H[2] / w_s;
129: D[0] = 0.1 * M[0];
130: D[1] = 0.1 * M[1];
131: D[2] = 0.1 * M[2];
133: PetscCall(DMCompositeGetLocalVectors(user->dmpgrid, &Xgen, &Xnet));
135: /* Network subsystem initialization */
136: PetscCall(VecCopy(user->V0, Xnet));
138: /* Generator subsystem initialization */
139: PetscCall(VecGetArray(Xgen, &xgen));
140: PetscCall(VecGetArray(Xnet, &xnet));
142: for (i = 0; i < ngen; i++) {
143: Vr = xnet[2 * gbus[i]]; /* Real part of generator terminal voltage */
144: Vi = xnet[2 * gbus[i] + 1]; /* Imaginary part of the generator terminal voltage */
145: Vm = PetscSqrtScalar(Vr * Vr + Vi * Vi);
146: Vm2 = Vm * Vm;
147: IGr = (Vr * PG[i] + Vi * QG[i]) / Vm2;
148: IGi = (Vi * PG[i] - Vr * QG[i]) / Vm2;
150: delta = PetscAtan2Real(Vi + Xq[i] * IGr, Vr - Xq[i] * IGi); /* Machine angle */
152: theta = PETSC_PI / 2.0 - delta;
154: Id = IGr * PetscCosScalar(theta) - IGi * PetscSinScalar(theta); /* d-axis stator current */
155: Iq = IGr * PetscSinScalar(theta) + IGi * PetscCosScalar(theta); /* q-axis stator current */
157: Vd = Vr * PetscCosScalar(theta) - Vi * PetscSinScalar(theta);
158: Vq = Vr * PetscSinScalar(theta) + Vi * PetscCosScalar(theta);
160: Edp = Vd + Rs[i] * Id - Xqp[i] * Iq; /* d-axis transient EMF */
161: Eqp = Vq + Rs[i] * Iq + Xdp[i] * Id; /* q-axis transient EMF */
163: TM[i] = PG[i];
165: /* The generator variables are ordered as [Eqp,Edp,delta,w,Id,Iq] */
166: xgen[idx] = Eqp;
167: xgen[idx + 1] = Edp;
168: xgen[idx + 2] = delta;
169: xgen[idx + 3] = w_s;
171: idx = idx + 4;
173: xgen[idx] = Id;
174: xgen[idx + 1] = Iq;
176: idx = idx + 2;
178: /* Exciter */
179: Efd = Eqp + (Xd[i] - Xdp[i]) * Id;
180: SE = k1[i] * PetscExpScalar(k2[i] * Efd);
181: VR = KE[i] * Efd + SE;
182: RF = KF[i] * Efd / TF[i];
184: xgen[idx] = Efd;
185: xgen[idx + 1] = RF;
186: xgen[idx + 2] = VR;
188: Vref[i] = Vm + (VR / KA[i]);
190: idx = idx + 3;
191: }
193: PetscCall(VecRestoreArray(Xgen, &xgen));
194: PetscCall(VecRestoreArray(Xnet, &xnet));
196: /* PetscCall(VecView(Xgen,0)); */
197: PetscCall(DMCompositeGather(user->dmpgrid, INSERT_VALUES, X, Xgen, Xnet));
198: PetscCall(DMCompositeRestoreLocalVectors(user->dmpgrid, &Xgen, &Xnet));
199: PetscFunctionReturn(PETSC_SUCCESS);
200: }
202: /* Computes F = [f(x,y);g(x,y)] */
203: PetscErrorCode ResidualFunction(SNES snes, Vec X, Vec F, Userctx *user)
204: {
205: Vec Xgen, Xnet, Fgen, Fnet;
206: PetscScalar *xgen, *xnet, *fgen, *fnet;
207: PetscInt i, idx = 0;
208: PetscScalar Vr, Vi, Vm, Vm2;
209: PetscScalar Eqp, Edp, delta, w; /* Generator variables */
210: PetscScalar Efd, RF, VR; /* Exciter variables */
211: PetscScalar Id, Iq; /* Generator dq axis currents */
212: PetscScalar Vd, Vq, SE;
213: PetscScalar IGr, IGi, IDr, IDi;
214: PetscScalar Zdq_inv[4], det;
215: PetscScalar PD, QD, Vm0, *v0;
216: PetscInt k;
218: PetscFunctionBegin;
219: PetscCall(VecZeroEntries(F));
220: PetscCall(DMCompositeGetLocalVectors(user->dmpgrid, &Xgen, &Xnet));
221: PetscCall(DMCompositeGetLocalVectors(user->dmpgrid, &Fgen, &Fnet));
222: PetscCall(DMCompositeScatter(user->dmpgrid, X, Xgen, Xnet));
223: PetscCall(DMCompositeScatter(user->dmpgrid, F, Fgen, Fnet));
225: /* Network current balance residual IG + Y*V + IL = 0. Only YV is added here.
226: The generator current injection, IG, and load current injection, ID are added later
227: */
228: /* Note that the values in Ybus are stored assuming the imaginary current balance
229: equation is ordered first followed by real current balance equation for each bus.
230: Thus imaginary current contribution goes in location 2*i, and
231: real current contribution in 2*i+1
232: */
233: PetscCall(MatMult(user->Ybus, Xnet, Fnet));
235: PetscCall(VecGetArray(Xgen, &xgen));
236: PetscCall(VecGetArray(Xnet, &xnet));
237: PetscCall(VecGetArray(Fgen, &fgen));
238: PetscCall(VecGetArray(Fnet, &fnet));
240: /* Generator subsystem */
241: for (i = 0; i < ngen; i++) {
242: Eqp = xgen[idx];
243: Edp = xgen[idx + 1];
244: delta = xgen[idx + 2];
245: w = xgen[idx + 3];
246: Id = xgen[idx + 4];
247: Iq = xgen[idx + 5];
248: Efd = xgen[idx + 6];
249: RF = xgen[idx + 7];
250: VR = xgen[idx + 8];
252: /* Generator differential equations */
253: fgen[idx] = (Eqp + (Xd[i] - Xdp[i]) * Id - Efd) / Td0p[i];
254: fgen[idx + 1] = (Edp - (Xq[i] - Xqp[i]) * Iq) / Tq0p[i];
255: fgen[idx + 2] = -w + w_s;
256: fgen[idx + 3] = (-TM[i] + Edp * Id + Eqp * Iq + (Xqp[i] - Xdp[i]) * Id * Iq + D[i] * (w - w_s)) / M[i];
258: Vr = xnet[2 * gbus[i]]; /* Real part of generator terminal voltage */
259: Vi = xnet[2 * gbus[i] + 1]; /* Imaginary part of the generator terminal voltage */
261: PetscCall(ri2dq(Vr, Vi, delta, &Vd, &Vq));
262: /* Algebraic equations for stator currents */
264: det = Rs[i] * Rs[i] + Xdp[i] * Xqp[i];
266: Zdq_inv[0] = Rs[i] / det;
267: Zdq_inv[1] = Xqp[i] / det;
268: Zdq_inv[2] = -Xdp[i] / det;
269: Zdq_inv[3] = Rs[i] / det;
271: fgen[idx + 4] = Zdq_inv[0] * (-Edp + Vd) + Zdq_inv[1] * (-Eqp + Vq) + Id;
272: fgen[idx + 5] = Zdq_inv[2] * (-Edp + Vd) + Zdq_inv[3] * (-Eqp + Vq) + Iq;
274: /* Add generator current injection to network */
275: PetscCall(dq2ri(Id, Iq, delta, &IGr, &IGi));
277: fnet[2 * gbus[i]] -= IGi;
278: fnet[2 * gbus[i] + 1] -= IGr;
280: Vm = PetscSqrtScalar(Vd * Vd + Vq * Vq);
282: SE = k1[i] * PetscExpScalar(k2[i] * Efd);
284: /* Exciter differential equations */
285: fgen[idx + 6] = (KE[i] * Efd + SE - VR) / TE[i];
286: fgen[idx + 7] = (RF - KF[i] * Efd / TF[i]) / TF[i];
287: fgen[idx + 8] = (VR - KA[i] * RF + KA[i] * KF[i] * Efd / TF[i] - KA[i] * (Vref[i] - Vm)) / TA[i];
289: idx = idx + 9;
290: }
292: PetscCall(VecGetArray(user->V0, &v0));
293: for (i = 0; i < nload; i++) {
294: Vr = xnet[2 * lbus[i]]; /* Real part of load bus voltage */
295: Vi = xnet[2 * lbus[i] + 1]; /* Imaginary part of the load bus voltage */
296: Vm = PetscSqrtScalar(Vr * Vr + Vi * Vi);
297: Vm2 = Vm * Vm;
298: Vm0 = PetscSqrtScalar(v0[2 * lbus[i]] * v0[2 * lbus[i]] + v0[2 * lbus[i] + 1] * v0[2 * lbus[i] + 1]);
299: PD = QD = 0.0;
300: for (k = 0; k < ld_nsegsp[i]; k++) PD += ld_alphap[k] * PD0[i] * PetscPowScalar(Vm / Vm0, ld_betap[k]);
301: for (k = 0; k < ld_nsegsq[i]; k++) QD += ld_alphaq[k] * QD0[i] * PetscPowScalar(Vm / Vm0, ld_betaq[k]);
303: /* Load currents */
304: IDr = (PD * Vr + QD * Vi) / Vm2;
305: IDi = (-QD * Vr + PD * Vi) / Vm2;
307: fnet[2 * lbus[i]] += IDi;
308: fnet[2 * lbus[i] + 1] += IDr;
309: }
310: PetscCall(VecRestoreArray(user->V0, &v0));
312: PetscCall(VecRestoreArray(Xgen, &xgen));
313: PetscCall(VecRestoreArray(Xnet, &xnet));
314: PetscCall(VecRestoreArray(Fgen, &fgen));
315: PetscCall(VecRestoreArray(Fnet, &fnet));
317: PetscCall(DMCompositeGather(user->dmpgrid, INSERT_VALUES, F, Fgen, Fnet));
318: PetscCall(DMCompositeRestoreLocalVectors(user->dmpgrid, &Xgen, &Xnet));
319: PetscCall(DMCompositeRestoreLocalVectors(user->dmpgrid, &Fgen, &Fnet));
320: PetscFunctionReturn(PETSC_SUCCESS);
321: }
323: /* \dot{x} - f(x,y)
324: g(x,y) = 0
325: */
326: PetscErrorCode IFunction(TS ts, PetscReal t, Vec X, Vec Xdot, Vec F, Userctx *user)
327: {
328: SNES snes;
329: PetscScalar *f;
330: const PetscScalar *xdot;
331: PetscInt i;
333: PetscFunctionBegin;
334: user->t = t;
336: PetscCall(TSGetSNES(ts, &snes));
337: PetscCall(ResidualFunction(snes, X, F, user));
338: PetscCall(VecGetArray(F, &f));
339: PetscCall(VecGetArrayRead(Xdot, &xdot));
340: for (i = 0; i < ngen; i++) {
341: f[9 * i] += xdot[9 * i];
342: f[9 * i + 1] += xdot[9 * i + 1];
343: f[9 * i + 2] += xdot[9 * i + 2];
344: f[9 * i + 3] += xdot[9 * i + 3];
345: f[9 * i + 6] += xdot[9 * i + 6];
346: f[9 * i + 7] += xdot[9 * i + 7];
347: f[9 * i + 8] += xdot[9 * i + 8];
348: }
349: PetscCall(VecRestoreArray(F, &f));
350: PetscCall(VecRestoreArrayRead(Xdot, &xdot));
351: PetscFunctionReturn(PETSC_SUCCESS);
352: }
354: /* This function is used for solving the algebraic system only during fault on and
355: off times. It computes the entire F and then zeros out the part corresponding to
356: differential equations
357: F = [0;g(y)];
358: */
359: PetscErrorCode AlgFunction(SNES snes, Vec X, Vec F, void *ctx)
360: {
361: Userctx *user = (Userctx *)ctx;
362: PetscScalar *f;
363: PetscInt i;
365: PetscFunctionBegin;
366: PetscCall(ResidualFunction(snes, X, F, user));
367: PetscCall(VecGetArray(F, &f));
368: for (i = 0; i < ngen; i++) {
369: f[9 * i] = 0;
370: f[9 * i + 1] = 0;
371: f[9 * i + 2] = 0;
372: f[9 * i + 3] = 0;
373: f[9 * i + 6] = 0;
374: f[9 * i + 7] = 0;
375: f[9 * i + 8] = 0;
376: }
377: PetscCall(VecRestoreArray(F, &f));
378: PetscFunctionReturn(PETSC_SUCCESS);
379: }
381: PetscErrorCode PreallocateJacobian(Mat J, Userctx *user)
382: {
383: PetscInt *d_nnz;
384: PetscInt i, idx = 0, start = 0;
385: PetscInt ncols;
387: PetscFunctionBegin;
388: PetscCall(PetscMalloc1(user->neqs_pgrid, &d_nnz));
389: for (i = 0; i < user->neqs_pgrid; i++) d_nnz[i] = 0;
390: /* Generator subsystem */
391: for (i = 0; i < ngen; i++) {
392: d_nnz[idx] += 3;
393: d_nnz[idx + 1] += 2;
394: d_nnz[idx + 2] += 2;
395: d_nnz[idx + 3] += 5;
396: d_nnz[idx + 4] += 6;
397: d_nnz[idx + 5] += 6;
399: d_nnz[user->neqs_gen + 2 * gbus[i]] += 3;
400: d_nnz[user->neqs_gen + 2 * gbus[i] + 1] += 3;
402: d_nnz[idx + 6] += 2;
403: d_nnz[idx + 7] += 2;
404: d_nnz[idx + 8] += 5;
406: idx = idx + 9;
407: }
409: start = user->neqs_gen;
411: for (i = 0; i < nbus; i++) {
412: PetscCall(MatGetRow(user->Ybus, 2 * i, &ncols, NULL, NULL));
413: d_nnz[start + 2 * i] += ncols;
414: d_nnz[start + 2 * i + 1] += ncols;
415: PetscCall(MatRestoreRow(user->Ybus, 2 * i, &ncols, NULL, NULL));
416: }
418: PetscCall(MatSeqAIJSetPreallocation(J, 0, d_nnz));
420: PetscCall(PetscFree(d_nnz));
421: PetscFunctionReturn(PETSC_SUCCESS);
422: }
424: /*
425: J = [-df_dx, -df_dy
426: dg_dx, dg_dy]
427: */
428: PetscErrorCode ResidualJacobian(SNES snes, Vec X, Mat J, Mat B, void *ctx)
429: {
430: Userctx *user = (Userctx *)ctx;
431: Vec Xgen, Xnet;
432: PetscScalar *xgen, *xnet;
433: PetscInt i, idx = 0;
434: PetscScalar Vr, Vi, Vm, Vm2;
435: PetscScalar Eqp, Edp, delta; /* Generator variables */
436: PetscScalar Efd; /* Exciter variables */
437: PetscScalar Id, Iq; /* Generator dq axis currents */
438: PetscScalar Vd, Vq;
439: PetscScalar val[10];
440: PetscInt row[2], col[10];
441: PetscInt net_start = user->neqs_gen;
442: PetscScalar Zdq_inv[4], det;
443: PetscScalar dVd_dVr, dVd_dVi, dVq_dVr, dVq_dVi, dVd_ddelta, dVq_ddelta;
444: PetscScalar dIGr_ddelta, dIGi_ddelta, dIGr_dId, dIGr_dIq, dIGi_dId, dIGi_dIq;
445: PetscScalar dSE_dEfd;
446: PetscScalar dVm_dVd, dVm_dVq, dVm_dVr, dVm_dVi;
447: PetscInt ncols;
448: const PetscInt *cols;
449: const PetscScalar *yvals;
450: PetscInt k;
451: PetscScalar PD, QD, Vm0, *v0, Vm4;
452: PetscScalar dPD_dVr, dPD_dVi, dQD_dVr, dQD_dVi;
453: PetscScalar dIDr_dVr, dIDr_dVi, dIDi_dVr, dIDi_dVi;
455: PetscFunctionBegin;
456: PetscCall(MatZeroEntries(B));
457: PetscCall(DMCompositeGetLocalVectors(user->dmpgrid, &Xgen, &Xnet));
458: PetscCall(DMCompositeScatter(user->dmpgrid, X, Xgen, Xnet));
460: PetscCall(VecGetArray(Xgen, &xgen));
461: PetscCall(VecGetArray(Xnet, &xnet));
463: /* Generator subsystem */
464: for (i = 0; i < ngen; i++) {
465: Eqp = xgen[idx];
466: Edp = xgen[idx + 1];
467: delta = xgen[idx + 2];
468: Id = xgen[idx + 4];
469: Iq = xgen[idx + 5];
470: Efd = xgen[idx + 6];
472: /* fgen[idx] = (Eqp + (Xd[i] - Xdp[i])*Id - Efd)/Td0p[i]; */
473: row[0] = idx;
474: col[0] = idx;
475: col[1] = idx + 4;
476: col[2] = idx + 6;
477: val[0] = 1 / Td0p[i];
478: val[1] = (Xd[i] - Xdp[i]) / Td0p[i];
479: val[2] = -1 / Td0p[i];
481: PetscCall(MatSetValues(J, 1, row, 3, col, val, INSERT_VALUES));
483: /* fgen[idx+1] = (Edp - (Xq[i] - Xqp[i])*Iq)/Tq0p[i]; */
484: row[0] = idx + 1;
485: col[0] = idx + 1;
486: col[1] = idx + 5;
487: val[0] = 1 / Tq0p[i];
488: val[1] = -(Xq[i] - Xqp[i]) / Tq0p[i];
489: PetscCall(MatSetValues(J, 1, row, 2, col, val, INSERT_VALUES));
491: /* fgen[idx+2] = - w + w_s; */
492: row[0] = idx + 2;
493: col[0] = idx + 2;
494: col[1] = idx + 3;
495: val[0] = 0;
496: val[1] = -1;
497: PetscCall(MatSetValues(J, 1, row, 2, col, val, INSERT_VALUES));
499: /* fgen[idx+3] = (-TM[i] + Edp*Id + Eqp*Iq + (Xqp[i] - Xdp[i])*Id*Iq + D[i]*(w - w_s))/M[i]; */
500: row[0] = idx + 3;
501: col[0] = idx;
502: col[1] = idx + 1;
503: col[2] = idx + 3;
504: col[3] = idx + 4;
505: col[4] = idx + 5;
506: val[0] = Iq / M[i];
507: val[1] = Id / M[i];
508: val[2] = D[i] / M[i];
509: val[3] = (Edp + (Xqp[i] - Xdp[i]) * Iq) / M[i];
510: val[4] = (Eqp + (Xqp[i] - Xdp[i]) * Id) / M[i];
511: PetscCall(MatSetValues(J, 1, row, 5, col, val, INSERT_VALUES));
513: Vr = xnet[2 * gbus[i]]; /* Real part of generator terminal voltage */
514: Vi = xnet[2 * gbus[i] + 1]; /* Imaginary part of the generator terminal voltage */
515: PetscCall(ri2dq(Vr, Vi, delta, &Vd, &Vq));
517: det = Rs[i] * Rs[i] + Xdp[i] * Xqp[i];
519: Zdq_inv[0] = Rs[i] / det;
520: Zdq_inv[1] = Xqp[i] / det;
521: Zdq_inv[2] = -Xdp[i] / det;
522: Zdq_inv[3] = Rs[i] / det;
524: dVd_dVr = PetscSinScalar(delta);
525: dVd_dVi = -PetscCosScalar(delta);
526: dVq_dVr = PetscCosScalar(delta);
527: dVq_dVi = PetscSinScalar(delta);
528: dVd_ddelta = Vr * PetscCosScalar(delta) + Vi * PetscSinScalar(delta);
529: dVq_ddelta = -Vr * PetscSinScalar(delta) + Vi * PetscCosScalar(delta);
531: /* fgen[idx+4] = Zdq_inv[0]*(-Edp + Vd) + Zdq_inv[1]*(-Eqp + Vq) + Id; */
532: row[0] = idx + 4;
533: col[0] = idx;
534: col[1] = idx + 1;
535: col[2] = idx + 2;
536: val[0] = -Zdq_inv[1];
537: val[1] = -Zdq_inv[0];
538: val[2] = Zdq_inv[0] * dVd_ddelta + Zdq_inv[1] * dVq_ddelta;
539: col[3] = idx + 4;
540: col[4] = net_start + 2 * gbus[i];
541: col[5] = net_start + 2 * gbus[i] + 1;
542: val[3] = 1;
543: val[4] = Zdq_inv[0] * dVd_dVr + Zdq_inv[1] * dVq_dVr;
544: val[5] = Zdq_inv[0] * dVd_dVi + Zdq_inv[1] * dVq_dVi;
545: PetscCall(MatSetValues(J, 1, row, 6, col, val, INSERT_VALUES));
547: /* fgen[idx+5] = Zdq_inv[2]*(-Edp + Vd) + Zdq_inv[3]*(-Eqp + Vq) + Iq; */
548: row[0] = idx + 5;
549: col[0] = idx;
550: col[1] = idx + 1;
551: col[2] = idx + 2;
552: val[0] = -Zdq_inv[3];
553: val[1] = -Zdq_inv[2];
554: val[2] = Zdq_inv[2] * dVd_ddelta + Zdq_inv[3] * dVq_ddelta;
555: col[3] = idx + 5;
556: col[4] = net_start + 2 * gbus[i];
557: col[5] = net_start + 2 * gbus[i] + 1;
558: val[3] = 1;
559: val[4] = Zdq_inv[2] * dVd_dVr + Zdq_inv[3] * dVq_dVr;
560: val[5] = Zdq_inv[2] * dVd_dVi + Zdq_inv[3] * dVq_dVi;
561: PetscCall(MatSetValues(J, 1, row, 6, col, val, INSERT_VALUES));
563: dIGr_ddelta = Id * PetscCosScalar(delta) - Iq * PetscSinScalar(delta);
564: dIGi_ddelta = Id * PetscSinScalar(delta) + Iq * PetscCosScalar(delta);
565: dIGr_dId = PetscSinScalar(delta);
566: dIGr_dIq = PetscCosScalar(delta);
567: dIGi_dId = -PetscCosScalar(delta);
568: dIGi_dIq = PetscSinScalar(delta);
570: /* fnet[2*gbus[i]] -= IGi; */
571: row[0] = net_start + 2 * gbus[i];
572: col[0] = idx + 2;
573: col[1] = idx + 4;
574: col[2] = idx + 5;
575: val[0] = -dIGi_ddelta;
576: val[1] = -dIGi_dId;
577: val[2] = -dIGi_dIq;
578: PetscCall(MatSetValues(J, 1, row, 3, col, val, INSERT_VALUES));
580: /* fnet[2*gbus[i]+1] -= IGr; */
581: row[0] = net_start + 2 * gbus[i] + 1;
582: col[0] = idx + 2;
583: col[1] = idx + 4;
584: col[2] = idx + 5;
585: val[0] = -dIGr_ddelta;
586: val[1] = -dIGr_dId;
587: val[2] = -dIGr_dIq;
588: PetscCall(MatSetValues(J, 1, row, 3, col, val, INSERT_VALUES));
590: Vm = PetscSqrtScalar(Vd * Vd + Vq * Vq);
592: /* fgen[idx+6] = (KE[i]*Efd + SE - VR)/TE[i]; */
593: /* SE = k1[i]*PetscExpScalar(k2[i]*Efd); */
594: dSE_dEfd = k1[i] * k2[i] * PetscExpScalar(k2[i] * Efd);
596: row[0] = idx + 6;
597: col[0] = idx + 6;
598: col[1] = idx + 8;
599: val[0] = (KE[i] + dSE_dEfd) / TE[i];
600: val[1] = -1 / TE[i];
601: PetscCall(MatSetValues(J, 1, row, 2, col, val, INSERT_VALUES));
603: /* Exciter differential equations */
605: /* fgen[idx+7] = (RF - KF[i]*Efd/TF[i])/TF[i]; */
606: row[0] = idx + 7;
607: col[0] = idx + 6;
608: col[1] = idx + 7;
609: val[0] = (-KF[i] / TF[i]) / TF[i];
610: val[1] = 1 / TF[i];
611: PetscCall(MatSetValues(J, 1, row, 2, col, val, INSERT_VALUES));
613: /* fgen[idx+8] = (VR - KA[i]*RF + KA[i]*KF[i]*Efd/TF[i] - KA[i]*(Vref[i] - Vm))/TA[i]; */
614: /* Vm = (Vd^2 + Vq^2)^0.5; */
615: dVm_dVd = Vd / Vm;
616: dVm_dVq = Vq / Vm;
617: dVm_dVr = dVm_dVd * dVd_dVr + dVm_dVq * dVq_dVr;
618: dVm_dVi = dVm_dVd * dVd_dVi + dVm_dVq * dVq_dVi;
619: row[0] = idx + 8;
620: col[0] = idx + 6;
621: col[1] = idx + 7;
622: col[2] = idx + 8;
623: val[0] = (KA[i] * KF[i] / TF[i]) / TA[i];
624: val[1] = -KA[i] / TA[i];
625: val[2] = 1 / TA[i];
626: col[3] = net_start + 2 * gbus[i];
627: col[4] = net_start + 2 * gbus[i] + 1;
628: val[3] = KA[i] * dVm_dVr / TA[i];
629: val[4] = KA[i] * dVm_dVi / TA[i];
630: PetscCall(MatSetValues(J, 1, row, 5, col, val, INSERT_VALUES));
631: idx = idx + 9;
632: }
634: for (i = 0; i < nbus; i++) {
635: PetscCall(MatGetRow(user->Ybus, 2 * i, &ncols, &cols, &yvals));
636: row[0] = net_start + 2 * i;
637: for (k = 0; k < ncols; k++) {
638: col[k] = net_start + cols[k];
639: val[k] = yvals[k];
640: }
641: PetscCall(MatSetValues(J, 1, row, ncols, col, val, INSERT_VALUES));
642: PetscCall(MatRestoreRow(user->Ybus, 2 * i, &ncols, &cols, &yvals));
644: PetscCall(MatGetRow(user->Ybus, 2 * i + 1, &ncols, &cols, &yvals));
645: row[0] = net_start + 2 * i + 1;
646: for (k = 0; k < ncols; k++) {
647: col[k] = net_start + cols[k];
648: val[k] = yvals[k];
649: }
650: PetscCall(MatSetValues(J, 1, row, ncols, col, val, INSERT_VALUES));
651: PetscCall(MatRestoreRow(user->Ybus, 2 * i + 1, &ncols, &cols, &yvals));
652: }
654: PetscCall(MatAssemblyBegin(J, MAT_FLUSH_ASSEMBLY));
655: PetscCall(MatAssemblyEnd(J, MAT_FLUSH_ASSEMBLY));
657: PetscCall(VecGetArray(user->V0, &v0));
658: for (i = 0; i < nload; i++) {
659: Vr = xnet[2 * lbus[i]]; /* Real part of load bus voltage */
660: Vi = xnet[2 * lbus[i] + 1]; /* Imaginary part of the load bus voltage */
661: Vm = PetscSqrtScalar(Vr * Vr + Vi * Vi);
662: Vm2 = Vm * Vm;
663: Vm4 = Vm2 * Vm2;
664: Vm0 = PetscSqrtScalar(v0[2 * lbus[i]] * v0[2 * lbus[i]] + v0[2 * lbus[i] + 1] * v0[2 * lbus[i] + 1]);
665: PD = QD = 0.0;
666: dPD_dVr = dPD_dVi = dQD_dVr = dQD_dVi = 0.0;
667: for (k = 0; k < ld_nsegsp[i]; k++) {
668: PD += ld_alphap[k] * PD0[i] * PetscPowScalar(Vm / Vm0, ld_betap[k]);
669: dPD_dVr += ld_alphap[k] * ld_betap[k] * PD0[i] * PetscPowScalar(1 / Vm0, ld_betap[k]) * Vr * PetscPowScalar(Vm, ld_betap[k] - 2);
670: dPD_dVi += ld_alphap[k] * ld_betap[k] * PD0[i] * PetscPowScalar(1 / Vm0, ld_betap[k]) * Vi * PetscPowScalar(Vm, ld_betap[k] - 2);
671: }
672: for (k = 0; k < ld_nsegsq[i]; k++) {
673: QD += ld_alphaq[k] * QD0[i] * PetscPowScalar(Vm / Vm0, ld_betaq[k]);
674: dQD_dVr += ld_alphaq[k] * ld_betaq[k] * QD0[i] * PetscPowScalar(1 / Vm0, ld_betaq[k]) * Vr * PetscPowScalar(Vm, ld_betaq[k] - 2);
675: dQD_dVi += ld_alphaq[k] * ld_betaq[k] * QD0[i] * PetscPowScalar(1 / Vm0, ld_betaq[k]) * Vi * PetscPowScalar(Vm, ld_betaq[k] - 2);
676: }
678: /* IDr = (PD*Vr + QD*Vi)/Vm2; */
679: /* IDi = (-QD*Vr + PD*Vi)/Vm2; */
681: dIDr_dVr = (dPD_dVr * Vr + dQD_dVr * Vi + PD) / Vm2 - ((PD * Vr + QD * Vi) * 2 * Vr) / Vm4;
682: dIDr_dVi = (dPD_dVi * Vr + dQD_dVi * Vi + QD) / Vm2 - ((PD * Vr + QD * Vi) * 2 * Vi) / Vm4;
684: dIDi_dVr = (-dQD_dVr * Vr + dPD_dVr * Vi - QD) / Vm2 - ((-QD * Vr + PD * Vi) * 2 * Vr) / Vm4;
685: dIDi_dVi = (-dQD_dVi * Vr + dPD_dVi * Vi + PD) / Vm2 - ((-QD * Vr + PD * Vi) * 2 * Vi) / Vm4;
687: /* fnet[2*lbus[i]] += IDi; */
688: row[0] = net_start + 2 * lbus[i];
689: col[0] = net_start + 2 * lbus[i];
690: col[1] = net_start + 2 * lbus[i] + 1;
691: val[0] = dIDi_dVr;
692: val[1] = dIDi_dVi;
693: PetscCall(MatSetValues(J, 1, row, 2, col, val, ADD_VALUES));
694: /* fnet[2*lbus[i]+1] += IDr; */
695: row[0] = net_start + 2 * lbus[i] + 1;
696: col[0] = net_start + 2 * lbus[i];
697: col[1] = net_start + 2 * lbus[i] + 1;
698: val[0] = dIDr_dVr;
699: val[1] = dIDr_dVi;
700: PetscCall(MatSetValues(J, 1, row, 2, col, val, ADD_VALUES));
701: }
702: PetscCall(VecRestoreArray(user->V0, &v0));
704: PetscCall(VecRestoreArray(Xgen, &xgen));
705: PetscCall(VecRestoreArray(Xnet, &xnet));
707: PetscCall(DMCompositeRestoreLocalVectors(user->dmpgrid, &Xgen, &Xnet));
709: PetscCall(MatAssemblyBegin(J, MAT_FINAL_ASSEMBLY));
710: PetscCall(MatAssemblyEnd(J, MAT_FINAL_ASSEMBLY));
711: PetscFunctionReturn(PETSC_SUCCESS);
712: }
714: /*
715: J = [I, 0
716: dg_dx, dg_dy]
717: */
718: PetscErrorCode AlgJacobian(SNES snes, Vec X, Mat A, Mat B, void *ctx)
719: {
720: Userctx *user = (Userctx *)ctx;
722: PetscFunctionBegin;
723: PetscCall(ResidualJacobian(snes, X, A, B, ctx));
724: PetscCall(MatSetOption(A, MAT_KEEP_NONZERO_PATTERN, PETSC_TRUE));
725: PetscCall(MatZeroRowsIS(A, user->is_diff, 1.0, NULL, NULL));
726: PetscFunctionReturn(PETSC_SUCCESS);
727: }
729: /*
730: J = [a*I-df_dx, -df_dy
731: dg_dx, dg_dy]
732: */
734: PetscErrorCode IJacobian(TS ts, PetscReal t, Vec X, Vec Xdot, PetscReal a, Mat A, Mat B, Userctx *user)
735: {
736: SNES snes;
737: PetscScalar atmp = (PetscScalar)a;
738: PetscInt i, row;
740: PetscFunctionBegin;
741: user->t = t;
743: PetscCall(TSGetSNES(ts, &snes));
744: PetscCall(ResidualJacobian(snes, X, A, B, user));
745: for (i = 0; i < ngen; i++) {
746: row = 9 * i;
747: PetscCall(MatSetValues(A, 1, &row, 1, &row, &atmp, ADD_VALUES));
748: row = 9 * i + 1;
749: PetscCall(MatSetValues(A, 1, &row, 1, &row, &atmp, ADD_VALUES));
750: row = 9 * i + 2;
751: PetscCall(MatSetValues(A, 1, &row, 1, &row, &atmp, ADD_VALUES));
752: row = 9 * i + 3;
753: PetscCall(MatSetValues(A, 1, &row, 1, &row, &atmp, ADD_VALUES));
754: row = 9 * i + 6;
755: PetscCall(MatSetValues(A, 1, &row, 1, &row, &atmp, ADD_VALUES));
756: row = 9 * i + 7;
757: PetscCall(MatSetValues(A, 1, &row, 1, &row, &atmp, ADD_VALUES));
758: row = 9 * i + 8;
759: PetscCall(MatSetValues(A, 1, &row, 1, &row, &atmp, ADD_VALUES));
760: }
761: PetscCall(MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY));
762: PetscCall(MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY));
763: PetscFunctionReturn(PETSC_SUCCESS);
764: }
766: int main(int argc, char **argv)
767: {
768: TS ts;
769: SNES snes_alg;
770: PetscMPIInt size;
771: Userctx user;
772: PetscViewer Xview, Ybusview;
773: Vec X;
774: Mat J;
775: PetscInt i;
776: /* sensitivity context */
777: PetscScalar *y_ptr;
778: Vec lambda[1];
779: PetscInt *idx2;
780: Vec Xdot;
781: Vec F_alg;
782: PetscInt row_loc, col_loc;
783: PetscScalar val;
785: PetscFunctionBeginUser;
786: PetscCall(PetscInitialize(&argc, &argv, "petscoptions", help));
787: PetscCallMPI(MPI_Comm_size(PETSC_COMM_WORLD, &size));
788: PetscCheck(size == 1, PETSC_COMM_WORLD, PETSC_ERR_WRONG_MPI_SIZE, "Only for sequential runs");
790: user.neqs_gen = 9 * ngen; /* # eqs. for generator subsystem */
791: user.neqs_net = 2 * nbus; /* # eqs. for network subsystem */
792: user.neqs_pgrid = user.neqs_gen + user.neqs_net;
794: /* Create indices for differential and algebraic equations */
795: PetscCall(PetscMalloc1(7 * ngen, &idx2));
796: for (i = 0; i < ngen; i++) {
797: idx2[7 * i] = 9 * i;
798: idx2[7 * i + 1] = 9 * i + 1;
799: idx2[7 * i + 2] = 9 * i + 2;
800: idx2[7 * i + 3] = 9 * i + 3;
801: idx2[7 * i + 4] = 9 * i + 6;
802: idx2[7 * i + 5] = 9 * i + 7;
803: idx2[7 * i + 6] = 9 * i + 8;
804: }
805: PetscCall(ISCreateGeneral(PETSC_COMM_WORLD, 7 * ngen, idx2, PETSC_COPY_VALUES, &user.is_diff));
806: PetscCall(ISComplement(user.is_diff, 0, user.neqs_pgrid, &user.is_alg));
807: PetscCall(PetscFree(idx2));
809: /* Read initial voltage vector and Ybus */
810: PetscCall(PetscViewerBinaryOpen(PETSC_COMM_WORLD, "X.bin", FILE_MODE_READ, &Xview));
811: PetscCall(PetscViewerBinaryOpen(PETSC_COMM_WORLD, "Ybus.bin", FILE_MODE_READ, &Ybusview));
813: PetscCall(VecCreate(PETSC_COMM_WORLD, &user.V0));
814: PetscCall(VecSetSizes(user.V0, PETSC_DECIDE, user.neqs_net));
815: PetscCall(VecLoad(user.V0, Xview));
817: PetscCall(MatCreate(PETSC_COMM_WORLD, &user.Ybus));
818: PetscCall(MatSetSizes(user.Ybus, PETSC_DECIDE, PETSC_DECIDE, user.neqs_net, user.neqs_net));
819: PetscCall(MatSetType(user.Ybus, MATBAIJ));
820: /* PetscCall(MatSetBlockSize(user.Ybus,2)); */
821: PetscCall(MatLoad(user.Ybus, Ybusview));
823: /* Set run time options */
824: PetscOptionsBegin(PETSC_COMM_WORLD, NULL, "Transient stability fault options", "");
825: {
826: user.tfaulton = 1.0;
827: user.tfaultoff = 1.2;
828: user.Rfault = 0.0001;
829: user.faultbus = 8;
830: PetscCall(PetscOptionsReal("-tfaulton", "", "", user.tfaulton, &user.tfaulton, NULL));
831: PetscCall(PetscOptionsReal("-tfaultoff", "", "", user.tfaultoff, &user.tfaultoff, NULL));
832: PetscCall(PetscOptionsInt("-faultbus", "", "", user.faultbus, &user.faultbus, NULL));
833: user.t0 = 0.0;
834: user.tmax = 5.0;
835: PetscCall(PetscOptionsReal("-t0", "", "", user.t0, &user.t0, NULL));
836: PetscCall(PetscOptionsReal("-tmax", "", "", user.tmax, &user.tmax, NULL));
837: }
838: PetscOptionsEnd();
840: PetscCall(PetscViewerDestroy(&Xview));
841: PetscCall(PetscViewerDestroy(&Ybusview));
843: /* Create DMs for generator and network subsystems */
844: PetscCall(DMDACreate1d(PETSC_COMM_WORLD, DM_BOUNDARY_NONE, user.neqs_gen, 1, 1, NULL, &user.dmgen));
845: PetscCall(DMSetOptionsPrefix(user.dmgen, "dmgen_"));
846: PetscCall(DMSetFromOptions(user.dmgen));
847: PetscCall(DMSetUp(user.dmgen));
848: PetscCall(DMDACreate1d(PETSC_COMM_WORLD, DM_BOUNDARY_NONE, user.neqs_net, 1, 1, NULL, &user.dmnet));
849: PetscCall(DMSetOptionsPrefix(user.dmnet, "dmnet_"));
850: PetscCall(DMSetFromOptions(user.dmnet));
851: PetscCall(DMSetUp(user.dmnet));
852: /* Create a composite DM packer and add the two DMs */
853: PetscCall(DMCompositeCreate(PETSC_COMM_WORLD, &user.dmpgrid));
854: PetscCall(DMSetOptionsPrefix(user.dmpgrid, "pgrid_"));
855: PetscCall(DMCompositeAddDM(user.dmpgrid, user.dmgen));
856: PetscCall(DMCompositeAddDM(user.dmpgrid, user.dmnet));
858: PetscCall(DMCreateGlobalVector(user.dmpgrid, &X));
860: PetscCall(MatCreate(PETSC_COMM_WORLD, &J));
861: PetscCall(MatSetSizes(J, PETSC_DECIDE, PETSC_DECIDE, user.neqs_pgrid, user.neqs_pgrid));
862: PetscCall(MatSetFromOptions(J));
863: PetscCall(PreallocateJacobian(J, &user));
865: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
866: Create timestepping solver context
867: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
868: PetscCall(TSCreate(PETSC_COMM_WORLD, &ts));
869: PetscCall(TSSetProblemType(ts, TS_NONLINEAR));
870: PetscCall(TSSetType(ts, TSCN));
871: PetscCall(TSSetIFunction(ts, NULL, (TSIFunctionFn *)IFunction, &user));
872: PetscCall(TSSetIJacobian(ts, J, J, (TSIJacobianFn *)IJacobian, &user));
873: PetscCall(TSSetApplicationContext(ts, &user));
875: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
876: Set initial conditions
877: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
878: PetscCall(SetInitialGuess(X, &user));
879: /* Just to set up the Jacobian structure */
880: PetscCall(VecDuplicate(X, &Xdot));
881: PetscCall(IJacobian(ts, 0.0, X, Xdot, 0.0, J, J, &user));
882: PetscCall(VecDestroy(&Xdot));
884: /*
885: Save trajectory of solution so that TSAdjointSolve() may be used
886: */
887: PetscCall(TSSetSaveTrajectory(ts));
889: PetscCall(TSSetMaxTime(ts, user.tmax));
890: PetscCall(TSSetTimeStep(ts, 0.01));
891: PetscCall(TSSetExactFinalTime(ts, TS_EXACTFINALTIME_MATCHSTEP));
892: PetscCall(TSSetFromOptions(ts));
894: user.alg_flg = PETSC_FALSE;
895: /* Prefault period */
896: PetscCall(TSSolve(ts, X));
898: /* Create the nonlinear solver for solving the algebraic system */
899: /* Note that although the algebraic system needs to be solved only for
900: Idq and V, we reuse the entire system including xgen. The xgen
901: variables are held constant by setting their residuals to 0 and
902: putting a 1 on the Jacobian diagonal for xgen rows
903: */
904: PetscCall(VecDuplicate(X, &F_alg));
905: PetscCall(SNESCreate(PETSC_COMM_WORLD, &snes_alg));
906: PetscCall(SNESSetFunction(snes_alg, F_alg, AlgFunction, &user));
907: PetscCall(MatZeroEntries(J));
908: PetscCall(SNESSetJacobian(snes_alg, J, J, AlgJacobian, &user));
909: PetscCall(SNESSetOptionsPrefix(snes_alg, "alg_"));
910: PetscCall(SNESSetFromOptions(snes_alg));
912: /* Apply disturbance - resistive fault at user.faultbus */
913: /* This is done by adding shunt conductance to the diagonal location
914: in the Ybus matrix */
915: row_loc = 2 * user.faultbus;
916: col_loc = 2 * user.faultbus + 1; /* Location for G */
917: val = 1 / user.Rfault;
918: PetscCall(MatSetValues(user.Ybus, 1, &row_loc, 1, &col_loc, &val, ADD_VALUES));
919: row_loc = 2 * user.faultbus + 1;
920: col_loc = 2 * user.faultbus; /* Location for G */
921: val = 1 / user.Rfault;
922: PetscCall(MatSetValues(user.Ybus, 1, &row_loc, 1, &col_loc, &val, ADD_VALUES));
924: PetscCall(MatAssemblyBegin(user.Ybus, MAT_FINAL_ASSEMBLY));
925: PetscCall(MatAssemblyEnd(user.Ybus, MAT_FINAL_ASSEMBLY));
927: user.alg_flg = PETSC_TRUE;
928: /* Solve the algebraic equations */
929: PetscCall(SNESSolve(snes_alg, NULL, X));
931: /* Disturbance period */
932: user.alg_flg = PETSC_FALSE;
933: PetscCall(TSSetTime(ts, user.tfaulton));
934: PetscCall(TSSetMaxTime(ts, user.tfaultoff));
935: PetscCall(TSSolve(ts, X));
937: /* Remove the fault */
938: row_loc = 2 * user.faultbus;
939: col_loc = 2 * user.faultbus + 1;
940: val = -1 / user.Rfault;
941: PetscCall(MatSetValues(user.Ybus, 1, &row_loc, 1, &col_loc, &val, ADD_VALUES));
942: row_loc = 2 * user.faultbus + 1;
943: col_loc = 2 * user.faultbus;
944: val = -1 / user.Rfault;
945: PetscCall(MatSetValues(user.Ybus, 1, &row_loc, 1, &col_loc, &val, ADD_VALUES));
947: PetscCall(MatAssemblyBegin(user.Ybus, MAT_FINAL_ASSEMBLY));
948: PetscCall(MatAssemblyEnd(user.Ybus, MAT_FINAL_ASSEMBLY));
950: PetscCall(MatZeroEntries(J));
952: user.alg_flg = PETSC_TRUE;
954: /* Solve the algebraic equations */
955: PetscCall(SNESSolve(snes_alg, NULL, X));
957: /* Post-disturbance period */
958: user.alg_flg = PETSC_TRUE;
959: PetscCall(TSSetTime(ts, user.tfaultoff));
960: PetscCall(TSSetMaxTime(ts, user.tmax));
961: PetscCall(TSSolve(ts, X));
963: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
964: Adjoint model starts here
965: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
966: PetscCall(TSSetPostStep(ts, NULL));
967: PetscCall(MatCreateVecs(J, &lambda[0], NULL));
968: /* Set initial conditions for the adjoint integration */
969: PetscCall(VecZeroEntries(lambda[0]));
970: PetscCall(VecGetArray(lambda[0], &y_ptr));
971: y_ptr[0] = 1.0;
972: PetscCall(VecRestoreArray(lambda[0], &y_ptr));
973: PetscCall(TSSetCostGradients(ts, 1, lambda, NULL));
975: PetscCall(TSAdjointSolve(ts));
977: PetscCall(PetscPrintf(PETSC_COMM_WORLD, "\n sensitivity wrt initial conditions: \n"));
978: PetscCall(VecView(lambda[0], PETSC_VIEWER_STDOUT_WORLD));
979: PetscCall(VecDestroy(&lambda[0]));
981: PetscCall(SNESDestroy(&snes_alg));
982: PetscCall(VecDestroy(&F_alg));
983: PetscCall(MatDestroy(&J));
984: PetscCall(MatDestroy(&user.Ybus));
985: PetscCall(VecDestroy(&X));
986: PetscCall(VecDestroy(&user.V0));
987: PetscCall(DMDestroy(&user.dmgen));
988: PetscCall(DMDestroy(&user.dmnet));
989: PetscCall(DMDestroy(&user.dmpgrid));
990: PetscCall(ISDestroy(&user.is_diff));
991: PetscCall(ISDestroy(&user.is_alg));
992: PetscCall(TSDestroy(&ts));
993: PetscCall(PetscFinalize());
994: return 0;
995: }
997: /*TEST
999: build:
1000: requires: double !complex !defined(PETSC_USE_64BIT_INDICES)
1002: test:
1003: args: -viewer_binary_skip_info
1004: localrunfiles: petscoptions X.bin Ybus.bin
1006: test:
1007: suffix: 2
1008: args: -viewer_binary_skip_info -ts_type beuler
1009: localrunfiles: petscoptions X.bin Ybus.bin
1011: TEST*/