TaoSetObjectiveAndGradient#
Sets a combined objective function and gradient evaluation routine for the function to be optimized
Synopsis#
#include "petsctao.h"
PetscErrorCode TaoSetObjectiveAndGradient(Tao tao, Vec g, PetscErrorCode (*func)(Tao, Vec, PetscReal *, Vec, void *), void *ctx)
Logically collective
Input Parameters#
tao - the Tao context
g - [optional] the vector to internally hold the gradient computation
func - the gradient function
ctx - [optional] user-defined context for private data for the gradient evaluation routine (may be NULL)
Calling sequence of func#
x - input vector
f - objective value (output)
g - gradient value (output)
ctx - [optional] user-defined function context
Note#
For some optimization methods using a combined function can be more eifficient.
See Also#
Tao
, TaoSolve()
, TaoSetObjective()
, TaoSetHessian()
, TaoSetGradient()
, TaoGetObjectiveAndGradient()
Level#
beginner
Location#
Examples#
src/ts/tutorials/ex20opt_ic.c.html
src/ts/tutorials/ex20opt_p.c.html
src/tao/unconstrained/tutorials/burgers_spectral.c.html
src/tao/unconstrained/tutorials/eptorsion1.c.html
src/tao/unconstrained/tutorials/eptorsion2.c.html
src/tao/unconstrained/tutorials/eptorsion2f.F90.html
src/tao/unconstrained/tutorials/eptorsion3.c.html
src/tao/unconstrained/tutorials/minsurf1.c.html
src/tao/unconstrained/tutorials/minsurf2.c.html
src/tao/unconstrained/tutorials/rosenbrock1.c.html
src/tao/unconstrained/tutorials/rosenbrock1f.F90.html
Index of all Tao routines
Table of Contents for all manual pages
Index of all manual pages