Actual source code: matimpl.h
1: #pragma once
3: #include <petscmat.h>
4: #include <petscmatcoarsen.h>
5: #include <petsc/private/petscimpl.h>
7: PETSC_EXTERN PetscBool MatRegisterAllCalled;
8: PETSC_EXTERN PetscBool MatSeqAIJRegisterAllCalled;
9: PETSC_EXTERN PetscBool MatOrderingRegisterAllCalled;
10: PETSC_EXTERN PetscBool MatColoringRegisterAllCalled;
11: PETSC_EXTERN PetscBool MatPartitioningRegisterAllCalled;
12: PETSC_EXTERN PetscBool MatCoarsenRegisterAllCalled;
13: PETSC_EXTERN PetscErrorCode MatRegisterAll(void);
14: PETSC_EXTERN PetscErrorCode MatOrderingRegisterAll(void);
15: PETSC_EXTERN PetscErrorCode MatColoringRegisterAll(void);
16: PETSC_EXTERN PetscErrorCode MatPartitioningRegisterAll(void);
17: PETSC_EXTERN PetscErrorCode MatCoarsenRegisterAll(void);
18: PETSC_EXTERN PetscErrorCode MatSeqAIJRegisterAll(void);
20: /* Gets the root type of the input matrix's type (e.g., MATAIJ for MATSEQAIJ) */
21: PETSC_EXTERN PetscErrorCode MatGetRootType_Private(Mat, MatType *);
23: /* Gets the MPI type corresponding to the input matrix's type (e.g., MATMPIAIJ for MATSEQAIJ) */
24: PETSC_EXTERN PetscErrorCode MatGetMPIMatType_Private(Mat, MatType *);
26: /*
27: This file defines the parts of the matrix data structure that are
28: shared by all matrix types.
29: */
31: /*
32: If you add entries here also add them to the MATOP enum
33: in include/petscmat.h and src/mat/ftn-mod/petscmat.h
34: */
35: typedef struct _MatOps *MatOps;
36: struct _MatOps {
37: /* 0*/
38: PetscErrorCode (*setvalues)(Mat, PetscInt, const PetscInt[], PetscInt, const PetscInt[], const PetscScalar[], InsertMode);
39: PetscErrorCode (*getrow)(Mat, PetscInt, PetscInt *, PetscInt *[], PetscScalar *[]);
40: PetscErrorCode (*restorerow)(Mat, PetscInt, PetscInt *, PetscInt *[], PetscScalar *[]);
41: PetscErrorCode (*mult)(Mat, Vec, Vec);
42: PetscErrorCode (*multadd)(Mat, Vec, Vec, Vec);
43: /* 5*/
44: PetscErrorCode (*multtranspose)(Mat, Vec, Vec);
45: PetscErrorCode (*multtransposeadd)(Mat, Vec, Vec, Vec);
46: PetscErrorCode (*solve)(Mat, Vec, Vec);
47: PetscErrorCode (*solveadd)(Mat, Vec, Vec, Vec);
48: PetscErrorCode (*solvetranspose)(Mat, Vec, Vec);
49: /*10*/
50: PetscErrorCode (*solvetransposeadd)(Mat, Vec, Vec, Vec);
51: PetscErrorCode (*lufactor)(Mat, IS, IS, const MatFactorInfo *);
52: PetscErrorCode (*choleskyfactor)(Mat, IS, const MatFactorInfo *);
53: PetscErrorCode (*sor)(Mat, Vec, PetscReal, MatSORType, PetscReal, PetscInt, PetscInt, Vec);
54: PetscErrorCode (*transpose)(Mat, MatReuse, Mat *);
55: /*15*/
56: PetscErrorCode (*getinfo)(Mat, MatInfoType, MatInfo *);
57: PetscErrorCode (*equal)(Mat, Mat, PetscBool *);
58: PetscErrorCode (*getdiagonal)(Mat, Vec);
59: PetscErrorCode (*diagonalscale)(Mat, Vec, Vec);
60: PetscErrorCode (*norm)(Mat, NormType, PetscReal *);
61: /*20*/
62: PetscErrorCode (*assemblybegin)(Mat, MatAssemblyType);
63: PetscErrorCode (*assemblyend)(Mat, MatAssemblyType);
64: PetscErrorCode (*setoption)(Mat, MatOption, PetscBool);
65: PetscErrorCode (*zeroentries)(Mat);
66: /*24*/
67: PetscErrorCode (*zerorows)(Mat, PetscInt, const PetscInt[], PetscScalar, Vec, Vec);
68: PetscErrorCode (*lufactorsymbolic)(Mat, Mat, IS, IS, const MatFactorInfo *);
69: PetscErrorCode (*lufactornumeric)(Mat, Mat, const MatFactorInfo *);
70: PetscErrorCode (*choleskyfactorsymbolic)(Mat, Mat, IS, const MatFactorInfo *);
71: PetscErrorCode (*choleskyfactornumeric)(Mat, Mat, const MatFactorInfo *);
72: /*29*/
73: PetscErrorCode (*setup)(Mat);
74: PetscErrorCode (*ilufactorsymbolic)(Mat, Mat, IS, IS, const MatFactorInfo *);
75: PetscErrorCode (*iccfactorsymbolic)(Mat, Mat, IS, const MatFactorInfo *);
76: PetscErrorCode (*getdiagonalblock)(Mat, Mat *);
77: PetscErrorCode (*setinf)(Mat);
78: /*34*/
79: PetscErrorCode (*duplicate)(Mat, MatDuplicateOption, Mat *);
80: PetscErrorCode (*forwardsolve)(Mat, Vec, Vec);
81: PetscErrorCode (*backwardsolve)(Mat, Vec, Vec);
82: PetscErrorCode (*ilufactor)(Mat, IS, IS, const MatFactorInfo *);
83: PetscErrorCode (*iccfactor)(Mat, IS, const MatFactorInfo *);
84: /*39*/
85: PetscErrorCode (*axpy)(Mat, PetscScalar, Mat, MatStructure);
86: PetscErrorCode (*createsubmatrices)(Mat, PetscInt, const IS[], const IS[], MatReuse, Mat *[]);
87: PetscErrorCode (*increaseoverlap)(Mat, PetscInt, IS[], PetscInt);
88: PetscErrorCode (*getvalues)(Mat, PetscInt, const PetscInt[], PetscInt, const PetscInt[], PetscScalar[]);
89: PetscErrorCode (*copy)(Mat, Mat, MatStructure);
90: /*44*/
91: PetscErrorCode (*getrowmax)(Mat, Vec, PetscInt[]);
92: PetscErrorCode (*scale)(Mat, PetscScalar);
93: PetscErrorCode (*shift)(Mat, PetscScalar);
94: PetscErrorCode (*diagonalset)(Mat, Vec, InsertMode);
95: PetscErrorCode (*zerorowscolumns)(Mat, PetscInt, const PetscInt[], PetscScalar, Vec, Vec);
96: /*49*/
97: PetscErrorCode (*setrandom)(Mat, PetscRandom);
98: PetscErrorCode (*getrowij)(Mat, PetscInt, PetscBool, PetscBool, PetscInt *, const PetscInt *[], const PetscInt *[], PetscBool *);
99: PetscErrorCode (*restorerowij)(Mat, PetscInt, PetscBool, PetscBool, PetscInt *, const PetscInt *[], const PetscInt *[], PetscBool *);
100: PetscErrorCode (*getcolumnij)(Mat, PetscInt, PetscBool, PetscBool, PetscInt *, const PetscInt *[], const PetscInt *[], PetscBool *);
101: PetscErrorCode (*restorecolumnij)(Mat, PetscInt, PetscBool, PetscBool, PetscInt *, const PetscInt *[], const PetscInt *[], PetscBool *);
102: /*54*/
103: PetscErrorCode (*fdcoloringcreate)(Mat, ISColoring, MatFDColoring);
104: PetscErrorCode (*coloringpatch)(Mat, PetscInt, PetscInt, ISColoringValue[], ISColoring *);
105: PetscErrorCode (*setunfactored)(Mat);
106: PetscErrorCode (*permute)(Mat, IS, IS, Mat *);
107: PetscErrorCode (*setvaluesblocked)(Mat, PetscInt, const PetscInt[], PetscInt, const PetscInt[], const PetscScalar[], InsertMode);
108: /*59*/
109: PetscErrorCode (*createsubmatrix)(Mat, IS, IS, MatReuse, Mat *);
110: PetscErrorCode (*destroy)(Mat);
111: PetscErrorCode (*view)(Mat, PetscViewer);
112: PetscErrorCode (*convertfrom)(Mat, MatType, MatReuse, Mat *);
113: PetscErrorCode (*placeholder_63)(void);
114: /*64*/
115: PetscErrorCode (*matmatmultsymbolic)(Mat, Mat, Mat, PetscReal, Mat);
116: PetscErrorCode (*matmatmultnumeric)(Mat, Mat, Mat, Mat);
117: PetscErrorCode (*setlocaltoglobalmapping)(Mat, ISLocalToGlobalMapping, ISLocalToGlobalMapping);
118: PetscErrorCode (*setvalueslocal)(Mat, PetscInt, const PetscInt[], PetscInt, const PetscInt[], const PetscScalar[], InsertMode);
119: PetscErrorCode (*zerorowslocal)(Mat, PetscInt, const PetscInt[], PetscScalar, Vec, Vec);
120: /*69*/
121: PetscErrorCode (*getrowmaxabs)(Mat, Vec, PetscInt[]);
122: PetscErrorCode (*getrowminabs)(Mat, Vec, PetscInt[]);
123: PetscErrorCode (*convert)(Mat, MatType, MatReuse, Mat *);
124: PetscErrorCode (*hasoperation)(Mat, MatOperation, PetscBool *);
125: PetscErrorCode (*placeholder_73)(void);
126: /*74*/
127: PetscErrorCode (*setvaluesadifor)(Mat, PetscInt, void *);
128: PetscErrorCode (*fdcoloringapply)(Mat, MatFDColoring, Vec, void *);
129: PetscErrorCode (*setfromoptions)(Mat, PetscOptionItems);
130: PetscErrorCode (*placeholder_77)(void);
131: PetscErrorCode (*placeholder_78)(void);
132: /*79*/
133: PetscErrorCode (*findzerodiagonals)(Mat, IS *);
134: PetscErrorCode (*mults)(Mat, Vecs, Vecs);
135: PetscErrorCode (*solves)(Mat, Vecs, Vecs);
136: PetscErrorCode (*getinertia)(Mat, PetscInt *, PetscInt *, PetscInt *);
137: PetscErrorCode (*load)(Mat, PetscViewer);
138: /*84*/
139: PetscErrorCode (*issymmetric)(Mat, PetscReal, PetscBool *);
140: PetscErrorCode (*ishermitian)(Mat, PetscReal, PetscBool *);
141: PetscErrorCode (*isstructurallysymmetric)(Mat, PetscBool *);
142: PetscErrorCode (*setvaluesblockedlocal)(Mat, PetscInt, const PetscInt[], PetscInt, const PetscInt[], const PetscScalar[], InsertMode);
143: PetscErrorCode (*getvecs)(Mat, Vec *, Vec *);
144: /*89*/
145: PetscErrorCode (*placeholder_89)(void);
146: PetscErrorCode (*matmultsymbolic)(Mat, Mat, PetscReal, Mat);
147: PetscErrorCode (*matmultnumeric)(Mat, Mat, Mat);
148: PetscErrorCode (*placeholder_92)(void);
149: PetscErrorCode (*ptapsymbolic)(Mat, Mat, PetscReal, Mat); /* double dispatch wrapper routine */
150: /*94*/
151: PetscErrorCode (*ptapnumeric)(Mat, Mat, Mat); /* double dispatch wrapper routine */
152: PetscErrorCode (*placeholder_95)(void);
153: PetscErrorCode (*mattransposemultsymbolic)(Mat, Mat, PetscReal, Mat);
154: PetscErrorCode (*mattransposemultnumeric)(Mat, Mat, Mat);
155: PetscErrorCode (*bindtocpu)(Mat, PetscBool);
156: /*99*/
157: PetscErrorCode (*productsetfromoptions)(Mat);
158: PetscErrorCode (*productsymbolic)(Mat);
159: PetscErrorCode (*productnumeric)(Mat);
160: PetscErrorCode (*conjugate)(Mat); /* complex conjugate */
161: PetscErrorCode (*viewnative)(Mat, PetscViewer);
162: /*104*/
163: PetscErrorCode (*setvaluesrow)(Mat, PetscInt, const PetscScalar[]);
164: PetscErrorCode (*realpart)(Mat);
165: PetscErrorCode (*imaginarypart)(Mat);
166: PetscErrorCode (*getrowuppertriangular)(Mat);
167: PetscErrorCode (*restorerowuppertriangular)(Mat);
168: /*109*/
169: PetscErrorCode (*matsolve)(Mat, Mat, Mat);
170: PetscErrorCode (*matsolvetranspose)(Mat, Mat, Mat);
171: PetscErrorCode (*getrowmin)(Mat, Vec, PetscInt[]);
172: PetscErrorCode (*getcolumnvector)(Mat, Vec, PetscInt);
173: PetscErrorCode (*missingdiagonal)(Mat, PetscBool *, PetscInt *);
174: /*114*/
175: PetscErrorCode (*getseqnonzerostructure)(Mat, Mat *);
176: PetscErrorCode (*create)(Mat);
177: PetscErrorCode (*getghosts)(Mat, PetscInt *, const PetscInt *[]);
178: PetscErrorCode (*getlocalsubmatrix)(Mat, IS, IS, Mat *);
179: PetscErrorCode (*restorelocalsubmatrix)(Mat, IS, IS, Mat *);
180: /*119*/
181: PetscErrorCode (*multdiagonalblock)(Mat, Vec, Vec);
182: PetscErrorCode (*hermitiantranspose)(Mat, MatReuse, Mat *);
183: PetscErrorCode (*multhermitiantranspose)(Mat, Vec, Vec);
184: PetscErrorCode (*multhermitiantransposeadd)(Mat, Vec, Vec, Vec);
185: PetscErrorCode (*getmultiprocblock)(Mat, MPI_Comm, MatReuse, Mat *);
186: /*124*/
187: PetscErrorCode (*findnonzerorows)(Mat, IS *);
188: PetscErrorCode (*getcolumnreductions)(Mat, PetscInt, PetscReal *);
189: PetscErrorCode (*invertblockdiagonal)(Mat, const PetscScalar **);
190: PetscErrorCode (*invertvariableblockdiagonal)(Mat, PetscInt, const PetscInt *, PetscScalar *);
191: PetscErrorCode (*createsubmatricesmpi)(Mat, PetscInt, const IS[], const IS[], MatReuse, Mat **);
192: /*129*/
193: PetscErrorCode (*setvaluesbatch)(Mat, PetscInt, PetscInt, PetscInt *, const PetscScalar *);
194: PetscErrorCode (*placeholder_130)(void);
195: PetscErrorCode (*transposematmultsymbolic)(Mat, Mat, PetscReal, Mat);
196: PetscErrorCode (*transposematmultnumeric)(Mat, Mat, Mat);
197: PetscErrorCode (*transposecoloringcreate)(Mat, ISColoring, MatTransposeColoring);
198: /*134*/
199: PetscErrorCode (*transcoloringapplysptoden)(MatTransposeColoring, Mat, Mat);
200: PetscErrorCode (*transcoloringapplydentosp)(MatTransposeColoring, Mat, Mat);
201: PetscErrorCode (*placeholder_136)(void);
202: PetscErrorCode (*rartsymbolic)(Mat, Mat, PetscReal, Mat); /* double dispatch wrapper routine */
203: PetscErrorCode (*rartnumeric)(Mat, Mat, Mat); /* double dispatch wrapper routine */
204: /*139*/
205: PetscErrorCode (*setblocksizes)(Mat, PetscInt, PetscInt);
206: PetscErrorCode (*aypx)(Mat, PetscScalar, Mat, MatStructure);
207: PetscErrorCode (*residual)(Mat, Vec, Vec, Vec);
208: PetscErrorCode (*fdcoloringsetup)(Mat, ISColoring, MatFDColoring);
209: PetscErrorCode (*findoffblockdiagonalentries)(Mat, IS *);
210: PetscErrorCode (*creatempimatconcatenateseqmat)(MPI_Comm, Mat, PetscInt, MatReuse, Mat *);
211: /*145*/
212: PetscErrorCode (*destroysubmatrices)(PetscInt, Mat *[]);
213: PetscErrorCode (*mattransposesolve)(Mat, Mat, Mat);
214: PetscErrorCode (*getvalueslocal)(Mat, PetscInt, const PetscInt[], PetscInt, const PetscInt[], PetscScalar[]);
215: PetscErrorCode (*creategraph)(Mat, PetscBool, PetscBool, PetscReal, PetscInt, PetscInt[], Mat *);
216: PetscErrorCode (*dummy)(Mat);
217: /*150*/
218: PetscErrorCode (*transposesymbolic)(Mat, Mat *);
219: PetscErrorCode (*eliminatezeros)(Mat, PetscBool);
220: PetscErrorCode (*getrowsumabs)(Mat, Vec);
221: PetscErrorCode (*getfactor)(Mat, MatSolverType, MatFactorType, Mat *);
222: PetscErrorCode (*getblockdiagonal)(Mat, Mat *); // NOTE: the caller of get{block, vblock}diagonal owns the returned matrix;
223: /*155*/
224: PetscErrorCode (*getvblockdiagonal)(Mat, Mat *); // they must destroy it after use
225: PetscErrorCode (*copyhashtoxaij)(Mat, Mat);
226: };
227: /*
228: If you add MatOps entries above also add them to the MATOP enum
229: in include/petscmat.h and src/mat/ftn-mod/petscmat.h
230: */
232: #include <petscsys.h>
234: typedef struct _p_MatRootName *MatRootName;
235: struct _p_MatRootName {
236: char *rname, *sname, *mname;
237: MatRootName next;
238: };
240: PETSC_EXTERN MatRootName MatRootNameList;
242: /*
243: Utility private matrix routines used outside Mat
244: */
245: PETSC_SINGLE_LIBRARY_INTERN PetscErrorCode MatFindNonzeroRowsOrCols_Basic(Mat, PetscBool, PetscReal, IS *);
246: PETSC_EXTERN PetscErrorCode MatShellGetScalingShifts(Mat, PetscScalar *, PetscScalar *, Vec *, Vec *, Vec *, Mat *, IS *, IS *);
248: #define MAT_SHELL_NOT_ALLOWED (void *)-1
250: /*
251: Utility private matrix routines
252: */
253: PETSC_INTERN PetscErrorCode MatConvert_Basic(Mat, MatType, MatReuse, Mat *);
254: PETSC_INTERN PetscErrorCode MatConvert_Shell(Mat, MatType, MatReuse, Mat *);
255: PETSC_INTERN PetscErrorCode MatConvertFrom_Shell(Mat, MatType, MatReuse, Mat *);
256: PETSC_INTERN PetscErrorCode MatShellSetContext_Immutable(Mat, void *);
257: PETSC_INTERN PetscErrorCode MatShellSetContextDestroy_Immutable(Mat, PetscCtxDestroyFn *);
258: PETSC_INTERN PetscErrorCode MatShellSetManageScalingShifts_Immutable(Mat);
259: PETSC_INTERN PetscErrorCode MatCopy_Basic(Mat, Mat, MatStructure);
260: PETSC_INTERN PetscErrorCode MatDiagonalSet_Default(Mat, Vec, InsertMode);
261: #if defined(PETSC_HAVE_SCALAPACK)
262: PETSC_INTERN PetscErrorCode MatConvert_Dense_ScaLAPACK(Mat, MatType, MatReuse, Mat *);
263: #endif
264: PETSC_INTERN PetscErrorCode MatSetPreallocationCOO_Basic(Mat, PetscCount, PetscInt[], PetscInt[]);
265: PETSC_INTERN PetscErrorCode MatSetValuesCOO_Basic(Mat, const PetscScalar[], InsertMode);
267: /* This can be moved to the public header after implementing some missing MatProducts */
268: PETSC_INTERN PetscErrorCode MatCreateFromISLocalToGlobalMapping(ISLocalToGlobalMapping, Mat, PetscBool, PetscBool, MatType, Mat *);
270: /* these callbacks rely on the old matrix function pointers for
271: matmat operations. They are unsafe, and should be removed.
272: However, the amount of work needed to clean up all the
273: implementations is not negligible */
274: PETSC_INTERN PetscErrorCode MatProductSymbolic_AB(Mat);
275: PETSC_INTERN PetscErrorCode MatProductNumeric_AB(Mat);
276: PETSC_INTERN PetscErrorCode MatProductSymbolic_AtB(Mat);
277: PETSC_INTERN PetscErrorCode MatProductNumeric_AtB(Mat);
278: PETSC_INTERN PetscErrorCode MatProductSymbolic_ABt(Mat);
279: PETSC_INTERN PetscErrorCode MatProductNumeric_ABt(Mat);
280: PETSC_INTERN PetscErrorCode MatProductNumeric_PtAP(Mat);
281: PETSC_INTERN PetscErrorCode MatProductNumeric_RARt(Mat);
282: PETSC_INTERN PetscErrorCode MatProductSymbolic_ABC(Mat);
283: PETSC_INTERN PetscErrorCode MatProductNumeric_ABC(Mat);
285: PETSC_INTERN PetscErrorCode MatProductCreate_Private(Mat, Mat, Mat, Mat);
286: /* this callback handles all the different triple products and
287: does not rely on the function pointers; used by cuSPARSE/hipSPARSE and KOKKOS-KERNELS */
288: PETSC_INTERN PetscErrorCode MatProductSymbolic_ABC_Basic(Mat);
290: /* CreateGraph is common to AIJ seq and mpi */
291: PETSC_INTERN PetscErrorCode MatCreateGraph_Simple_AIJ(Mat, PetscBool, PetscBool, PetscReal, PetscInt, PetscInt[], Mat *);
293: #if defined(PETSC_CLANG_STATIC_ANALYZER)
294: template <typename Tm>
295: extern void MatCheckPreallocated(Tm, int);
296: template <typename Tm>
297: extern void MatCheckProduct(Tm, int);
298: #else /* PETSC_CLANG_STATIC_ANALYZER */
299: #define MatCheckPreallocated(A, arg) \
300: do { \
301: if (!(A)->preallocated) PetscCall(MatSetUp(A)); \
302: } while (0)
304: #if defined(PETSC_USE_DEBUG)
305: #define MatCheckProduct(A, arg) \
306: do { \
307: PetscCheck((A)->product, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONGSTATE, "Argument %d \"%s\" is not a matrix obtained from MatProductCreate()", (arg), #A); \
308: } while (0)
309: #else
310: #define MatCheckProduct(A, arg) \
311: do { \
312: } while (0)
313: #endif
314: #endif /* PETSC_CLANG_STATIC_ANALYZER */
316: /*
317: The stash is used to temporarily store inserted matrix values that
318: belong to another processor. During the assembly phase the stashed
319: values are moved to the correct processor and
320: */
322: typedef struct _MatStashSpace *PetscMatStashSpace;
324: struct _MatStashSpace {
325: PetscMatStashSpace next;
326: PetscScalar *space_head, *val;
327: PetscInt *idx, *idy;
328: PetscInt total_space_size;
329: PetscInt local_used;
330: PetscInt local_remaining;
331: };
333: PETSC_EXTERN PetscErrorCode PetscMatStashSpaceGet(PetscInt, PetscInt, PetscMatStashSpace *);
334: PETSC_EXTERN PetscErrorCode PetscMatStashSpaceContiguous(PetscInt, PetscMatStashSpace *, PetscScalar *, PetscInt *, PetscInt *);
335: PETSC_EXTERN PetscErrorCode PetscMatStashSpaceDestroy(PetscMatStashSpace *);
337: typedef struct {
338: PetscInt count;
339: } MatStashHeader;
341: typedef struct {
342: void *buffer; /* Of type blocktype, dynamically constructed */
343: PetscInt count;
344: char pending;
345: } MatStashFrame;
347: typedef struct _MatStash MatStash;
348: struct _MatStash {
349: PetscInt nmax; /* maximum stash size */
350: PetscInt umax; /* user specified max-size */
351: PetscInt oldnmax; /* the nmax value used previously */
352: PetscInt n; /* stash size */
353: PetscInt bs; /* block size of the stash */
354: PetscInt reallocs; /* preserve the no of mallocs invoked */
355: PetscMatStashSpace space_head, space; /* linked list to hold stashed global row/column numbers and matrix values */
357: PetscErrorCode (*ScatterBegin)(Mat, MatStash *, PetscInt *);
358: PetscErrorCode (*ScatterGetMesg)(MatStash *, PetscMPIInt *, PetscInt **, PetscInt **, PetscScalar **, PetscInt *);
359: PetscErrorCode (*ScatterEnd)(MatStash *);
360: PetscErrorCode (*ScatterDestroy)(MatStash *);
362: /* The following variables are used for communication */
363: MPI_Comm comm;
364: PetscMPIInt size, rank;
365: PetscMPIInt tag1, tag2;
366: MPI_Request *send_waits; /* array of send requests */
367: MPI_Request *recv_waits; /* array of receive requests */
368: MPI_Status *send_status; /* array of send status */
369: PetscMPIInt nsends, nrecvs; /* numbers of sends and receives */
370: PetscScalar *svalues; /* sending data */
371: PetscInt *sindices;
372: PetscScalar **rvalues; /* receiving data (values) */
373: PetscInt **rindices; /* receiving data (indices) */
374: PetscMPIInt nprocessed; /* number of messages already processed */
375: PetscMPIInt *flg_v; /* indicates what messages have arrived so far and from whom */
376: PetscBool reproduce;
377: PetscMPIInt reproduce_count;
379: /* The following variables are used for BTS communication */
380: PetscBool first_assembly_done; /* Is the first time matrix assembly done? */
381: PetscBool use_status; /* Use MPI_Status to determine number of items in each message */
382: PetscMPIInt nsendranks;
383: PetscMPIInt nrecvranks;
384: PetscMPIInt *sendranks;
385: PetscMPIInt *recvranks;
386: MatStashHeader *sendhdr, *recvhdr;
387: MatStashFrame *sendframes; /* pointers to the main messages */
388: MatStashFrame *recvframes;
389: MatStashFrame *recvframe_active;
390: PetscInt recvframe_i; /* index of block within active frame */
391: PetscInt recvframe_count; /* Count actually sent for current frame */
392: PetscMPIInt recvcount; /* Number of receives processed so far */
393: PetscMPIInt *some_indices; /* From last call to MPI_Waitsome */
394: MPI_Status *some_statuses; /* Statuses from last call to MPI_Waitsome */
395: PetscMPIInt some_count; /* Number of requests completed in last call to MPI_Waitsome */
396: PetscMPIInt some_i; /* Index of request currently being processed */
397: MPI_Request *sendreqs;
398: MPI_Request *recvreqs;
399: PetscSegBuffer segsendblocks;
400: PetscSegBuffer segrecvframe;
401: PetscSegBuffer segrecvblocks;
402: MPI_Datatype blocktype;
403: size_t blocktype_size;
404: InsertMode *insertmode; /* Pointer to check mat->insertmode and set upon message arrival in case no local values have been set. */
405: };
407: #if !defined(PETSC_HAVE_MPIUNI)
408: PETSC_INTERN PetscErrorCode MatStashScatterDestroy_BTS(MatStash *);
409: #endif
410: PETSC_INTERN PetscErrorCode MatStashCreate_Private(MPI_Comm, PetscInt, MatStash *);
411: PETSC_INTERN PetscErrorCode MatStashDestroy_Private(MatStash *);
412: PETSC_INTERN PetscErrorCode MatStashScatterEnd_Private(MatStash *);
413: PETSC_INTERN PetscErrorCode MatStashSetInitialSize_Private(MatStash *, PetscInt);
414: PETSC_INTERN PetscErrorCode MatStashGetInfo_Private(MatStash *, PetscInt *, PetscInt *);
415: PETSC_INTERN PetscErrorCode MatStashValuesRow_Private(MatStash *, PetscInt, PetscInt, const PetscInt[], const PetscScalar[], PetscBool);
416: PETSC_INTERN PetscErrorCode MatStashValuesCol_Private(MatStash *, PetscInt, PetscInt, const PetscInt[], const PetscScalar[], PetscInt, PetscBool);
417: PETSC_INTERN PetscErrorCode MatStashValuesRowBlocked_Private(MatStash *, PetscInt, PetscInt, const PetscInt[], const PetscScalar[], PetscInt, PetscInt, PetscInt);
418: PETSC_INTERN PetscErrorCode MatStashValuesColBlocked_Private(MatStash *, PetscInt, PetscInt, const PetscInt[], const PetscScalar[], PetscInt, PetscInt, PetscInt);
419: PETSC_INTERN PetscErrorCode MatStashScatterBegin_Private(Mat, MatStash *, PetscInt *);
420: PETSC_INTERN PetscErrorCode MatStashScatterGetMesg_Private(MatStash *, PetscMPIInt *, PetscInt **, PetscInt **, PetscScalar **, PetscInt *);
421: PETSC_INTERN PetscErrorCode MatGetInfo_External(Mat, MatInfoType, MatInfo *);
423: typedef struct {
424: PetscInt dim;
425: PetscInt dims[4];
426: PetscInt starts[4];
427: PetscBool noc; /* this is a single component problem, hence user will not set MatStencil.c */
428: } MatStencilInfo;
430: /* Info about using compressed row format */
431: typedef struct {
432: PetscBool use; /* indicates compressed rows have been checked and will be used */
433: PetscInt nrows; /* number of non-zero rows */
434: PetscInt *i; /* compressed row pointer */
435: PetscInt *rindex; /* compressed row index */
436: } Mat_CompressedRow;
437: PETSC_EXTERN PetscErrorCode MatCheckCompressedRow(Mat, PetscInt, Mat_CompressedRow *, PetscInt *, PetscInt, PetscReal);
439: typedef struct { /* used by MatCreateRedundantMatrix() for reusing matredundant */
440: PetscInt nzlocal, nsends, nrecvs;
441: PetscMPIInt *send_rank, *recv_rank;
442: PetscInt *sbuf_nz, *rbuf_nz, *sbuf_j, **rbuf_j;
443: PetscScalar *sbuf_a, **rbuf_a;
444: MPI_Comm subcomm; /* when user does not provide a subcomm */
445: IS isrow, iscol;
446: Mat *matseq;
447: } Mat_Redundant;
449: typedef struct { /* used by MatProduct() */
450: MatProductType type;
451: char *alg;
452: Mat A, B, C, Dwork;
453: PetscBool symbolic_used_the_fact_A_is_symmetric; /* Symbolic phase took advantage of the fact that A is symmetric, and optimized e.g. AtB as AB. Then, .. */
454: PetscBool symbolic_used_the_fact_B_is_symmetric; /* .. in the numeric phase, if a new A is not symmetric (but has the same sparsity as the old A therefore .. */
455: PetscBool symbolic_used_the_fact_C_is_symmetric; /* MatMatMult(A,B,MAT_REUSE_MATRIX,..&C) is still legitimate), we need to redo symbolic! */
456: PetscObjectParameterDeclare(PetscReal, fill);
457: PetscBool api_user; /* used to distinguish command line options and to indicate the matrix values are ready to be consumed at symbolic phase if needed */
458: PetscBool setfromoptionscalled;
460: /* Some products may display the information on the algorithm used */
461: PetscErrorCode (*view)(Mat, PetscViewer);
463: /* many products have intermediate data structures, each specific to Mat types and product type */
464: PetscBool clear; /* whether or not to clear the data structures after MatProductNumeric has been called */
465: void *data; /* where to stash those structures */
466: PetscErrorCode (*destroy)(void *); /* destroy routine */
467: } Mat_Product;
469: struct _p_Mat {
470: PETSCHEADER(struct _MatOps);
471: PetscLayout rmap, cmap;
472: void *data; /* implementation-specific data */
473: MatFactorType factortype; /* MAT_FACTOR_LU, ILU, CHOLESKY or ICC */
474: PetscBool trivialsymbolic; /* indicates the symbolic factorization doesn't actually do a symbolic factorization, it is delayed to the numeric factorization */
475: PetscBool canuseordering; /* factorization can use ordering provide to routine (most PETSc implementations) */
476: MatOrderingType preferredordering[MAT_FACTOR_NUM_TYPES]; /* what is the preferred (or default) ordering for the matrix solver type */
477: PetscBool assembled; /* is the matrix assembled? */
478: PetscBool was_assembled; /* new values inserted into assembled mat */
479: PetscInt num_ass; /* number of times matrix has been assembled */
480: PetscObjectState nonzerostate; /* each time new nonzeros locations are introduced into the matrix this is updated */
481: PetscObjectState ass_nonzerostate; /* nonzero state at last assembly */
482: MatInfo info; /* matrix information */
483: InsertMode insertmode; /* have values been inserted in matrix or added? */
484: MatStash stash, bstash; /* used for assembling off-proc mat emements */
485: MatNullSpace nullsp; /* null space (operator is singular) */
486: MatNullSpace transnullsp; /* null space of transpose of operator */
487: MatNullSpace nearnullsp; /* near null space to be used by multigrid methods */
488: PetscInt congruentlayouts; /* are the rows and columns layouts congruent? */
489: PetscBool preallocated;
490: MatStencilInfo stencil; /* information for structured grid */
491: PetscBool3 symmetric, hermitian, structurally_symmetric, spd;
492: PetscBool symmetry_eternal, structural_symmetry_eternal, spd_eternal;
493: PetscBool nooffprocentries, nooffproczerorows;
494: PetscBool assembly_subset; /* set by MAT_SUBSET_OFF_PROC_ENTRIES */
495: PetscBool submat_singleis; /* for efficient PCSetUp_ASM() */
496: PetscBool structure_only;
497: PetscBool sortedfull; /* full, sorted rows are inserted */
498: PetscBool force_diagonals; /* set by MAT_FORCE_DIAGONAL_ENTRIES */
499: #if defined(PETSC_HAVE_DEVICE)
500: PetscOffloadMask offloadmask; /* a mask which indicates where the valid matrix data is (GPU, CPU or both) */
501: PetscBool boundtocpu;
502: PetscBool bindingpropagates;
503: #endif
504: char *defaultrandtype;
505: void *spptr; /* pointer for special library like SuperLU */
506: char *solvertype;
507: PetscBool checksymmetryonassembly, checknullspaceonassembly;
508: PetscReal checksymmetrytol;
509: Mat schur; /* Schur complement matrix */
510: MatFactorSchurStatus schur_status; /* status of the Schur complement matrix */
511: Mat_Redundant *redundant; /* used by MatCreateRedundantMatrix() */
512: PetscBool erroriffailure; /* Generate an error if detected (for example a zero pivot) instead of returning */
513: MatFactorError factorerrortype; /* type of error in factorization */
514: PetscReal factorerror_zeropivot_value; /* If numerical zero pivot was detected this is the computed value */
515: PetscInt factorerror_zeropivot_row; /* Row where zero pivot was detected */
516: PetscInt nblocks, *bsizes; /* support for MatSetVariableBlockSizes() */
517: PetscInt p_cstart, p_rank, p_cend, n_rank; /* Information from parallel MatComputeVariableBlockEnvelope() */
518: PetscBool p_parallel;
519: char *defaultvectype;
520: Mat_Product *product;
521: PetscBool form_explicit_transpose; /* hint to generate an explicit mat tranpsose for operations like MatMultTranspose() */
522: PetscBool transupdated; /* whether or not the explicitly generated transpose is up-to-date */
523: char *factorprefix; /* the prefix to use with factored matrix that is created */
524: PetscBool hash_active; /* indicates MatSetValues() is being handled by hashing */
525: };
527: PETSC_INTERN PetscErrorCode MatAXPY_Basic(Mat, PetscScalar, Mat, MatStructure);
528: PETSC_INTERN PetscErrorCode MatAXPY_BasicWithPreallocation(Mat, Mat, PetscScalar, Mat, MatStructure);
529: PETSC_INTERN PetscErrorCode MatAXPY_Basic_Preallocate(Mat, Mat, Mat *);
530: PETSC_INTERN PetscErrorCode MatAXPY_Dense_Nest(Mat, PetscScalar, Mat);
532: PETSC_INTERN PetscErrorCode MatSetUp_Default(Mat);
534: /*
535: Utility for MatZeroRows
536: */
537: PETSC_INTERN PetscErrorCode MatZeroRowsMapLocal_Private(Mat, PetscInt, const PetscInt *, PetscInt *, PetscInt **);
539: /*
540: Utility for MatView/MatLoad
541: */
542: PETSC_INTERN PetscErrorCode MatView_Binary_BlockSizes(Mat, PetscViewer);
543: PETSC_INTERN PetscErrorCode MatLoad_Binary_BlockSizes(Mat, PetscViewer);
545: /*
546: Object for partitioning graphs
547: */
549: typedef struct _MatPartitioningOps *MatPartitioningOps;
550: struct _MatPartitioningOps {
551: PetscErrorCode (*apply)(MatPartitioning, IS *);
552: PetscErrorCode (*applynd)(MatPartitioning, IS *);
553: PetscErrorCode (*setfromoptions)(MatPartitioning, PetscOptionItems);
554: PetscErrorCode (*destroy)(MatPartitioning);
555: PetscErrorCode (*view)(MatPartitioning, PetscViewer);
556: PetscErrorCode (*improve)(MatPartitioning, IS *);
557: };
559: struct _p_MatPartitioning {
560: PETSCHEADER(struct _MatPartitioningOps);
561: Mat adj;
562: PetscInt *vertex_weights;
563: PetscReal *part_weights;
564: PetscInt n; /* number of partitions */
565: PetscInt ncon; /* number of vertex weights per vertex */
566: void *data;
567: PetscInt setupcalled;
568: PetscBool use_edge_weights; /* A flag indicates whether or not to use edge weights */
569: };
571: /* needed for parallel nested dissection by ParMetis and PTSCOTCH */
572: PETSC_INTERN PetscErrorCode MatPartitioningSizesToSep_Private(PetscInt, PetscInt[], PetscInt[], PetscInt[]);
574: /*
575: Object for coarsen graphs
576: */
577: typedef struct _MatCoarsenOps *MatCoarsenOps;
578: struct _MatCoarsenOps {
579: PetscErrorCode (*apply)(MatCoarsen);
580: PetscErrorCode (*setfromoptions)(MatCoarsen, PetscOptionItems);
581: PetscErrorCode (*destroy)(MatCoarsen);
582: PetscErrorCode (*view)(MatCoarsen, PetscViewer);
583: };
585: #define MAT_COARSEN_STRENGTH_INDEX_SIZE 3
586: struct _p_MatCoarsen {
587: PETSCHEADER(struct _MatCoarsenOps);
588: Mat graph;
589: void *subctx;
590: /* */
591: PetscBool strict_aggs;
592: IS perm;
593: PetscCoarsenData *agg_lists;
594: PetscInt max_it; /* number of iterations in HEM */
595: PetscReal threshold; /* HEM can filter interim graphs */
596: PetscInt strength_index_size;
597: PetscInt strength_index[MAT_COARSEN_STRENGTH_INDEX_SIZE];
598: };
600: PETSC_EXTERN PetscErrorCode MatCoarsenMISKSetDistance(MatCoarsen, PetscInt);
601: PETSC_EXTERN PetscErrorCode MatCoarsenMISKGetDistance(MatCoarsen, PetscInt *);
603: /*
604: Used in aijdevice.h
605: */
606: typedef struct {
607: PetscInt *i;
608: PetscInt *j;
609: PetscScalar *a;
610: PetscInt n;
611: PetscInt ignorezeroentries;
612: } PetscCSRDataStructure;
614: /*
615: MatFDColoring is used to compute Jacobian matrices efficiently
616: via coloring. The data structure is explained below in an example.
618: Color = 0 1 0 2 | 2 3 0
619: ---------------------------------------------------
620: 00 01 | 05
621: 10 11 | 14 15 Processor 0
622: 22 23 | 25
623: 32 33 |
624: ===================================================
625: | 44 45 46
626: 50 | 55 Processor 1
627: | 64 66
628: ---------------------------------------------------
630: ncolors = 4;
632: ncolumns = {2,1,1,0}
633: columns = {{0,2},{1},{3},{}}
634: nrows = {4,2,3,3}
635: rows = {{0,1,2,3},{0,1},{1,2,3},{0,1,2}}
636: vwscale = {dx(0),dx(1),dx(2),dx(3)} MPI Vec
637: vscale = {dx(0),dx(1),dx(2),dx(3),dx(4),dx(5)} Seq Vec
639: ncolumns = {1,0,1,1}
640: columns = {{6},{},{4},{5}}
641: nrows = {3,0,2,2}
642: rows = {{0,1,2},{},{1,2},{1,2}}
643: vwscale = {dx(4),dx(5),dx(6)} MPI Vec
644: vscale = {dx(0),dx(4),dx(5),dx(6)} Seq Vec
646: See the routine MatFDColoringApply() for how this data is used
647: to compute the Jacobian.
649: */
650: typedef struct {
651: PetscInt row;
652: PetscInt col;
653: PetscScalar *valaddr; /* address of value */
654: } MatEntry;
656: typedef struct {
657: PetscInt row;
658: PetscScalar *valaddr; /* address of value */
659: } MatEntry2;
661: struct _p_MatFDColoring {
662: PETSCHEADER(int);
663: PetscInt M, N, m; /* total rows, columns; local rows */
664: PetscInt rstart; /* first row owned by local processor */
665: PetscInt ncolors; /* number of colors */
666: PetscInt *ncolumns; /* number of local columns for a color */
667: PetscInt **columns; /* lists the local columns of each color (using global column numbering) */
668: IS *isa; /* these are the IS that contain the column values given in columns */
669: PetscInt *nrows; /* number of local rows for each color */
670: MatEntry *matentry; /* holds (row, column, address of value) for Jacobian matrix entry */
671: MatEntry2 *matentry2; /* holds (row, address of value) for Jacobian matrix entry */
672: PetscScalar *dy; /* store a block of F(x+dx)-F(x) when J is in BAIJ format */
673: PetscReal error_rel; /* square root of relative error in computing function */
674: PetscReal umin; /* minimum allowable u'dx value */
675: Vec w1, w2, w3; /* work vectors used in computing Jacobian */
676: PetscBool fset; /* indicates that the initial function value F(X) is set */
677: PetscErrorCode (*f)(void); /* function that defines Jacobian */
678: void *fctx; /* optional user-defined context for use by the function f */
679: Vec vscale; /* holds FD scaling, i.e. 1/dx for each perturbed column */
680: PetscInt currentcolor; /* color for which function evaluation is being done now */
681: const char *htype; /* "wp" or "ds" */
682: ISColoringType ctype; /* IS_COLORING_GLOBAL or IS_COLORING_LOCAL */
683: PetscInt brows, bcols; /* number of block rows or columns for speedup inserting the dense matrix into sparse Jacobian */
684: PetscBool setupcalled; /* true if setup has been called */
685: PetscBool viewed; /* true if the -mat_fd_coloring_view has been triggered already */
686: void (*ftn_func_pointer)(void), *ftn_func_cntx; /* serve the same purpose as *fortran_func_pointers in PETSc objects */
687: PetscObjectId matid; /* matrix this object was created with, must always be the same */
688: };
690: typedef struct _MatColoringOps *MatColoringOps;
691: struct _MatColoringOps {
692: PetscErrorCode (*destroy)(MatColoring);
693: PetscErrorCode (*setfromoptions)(MatColoring, PetscOptionItems);
694: PetscErrorCode (*view)(MatColoring, PetscViewer);
695: PetscErrorCode (*apply)(MatColoring, ISColoring *);
696: PetscErrorCode (*weights)(MatColoring, PetscReal **, PetscInt **);
697: };
699: struct _p_MatColoring {
700: PETSCHEADER(struct _MatColoringOps);
701: Mat mat;
702: PetscInt dist; /* distance of the coloring */
703: PetscInt maxcolors; /* the maximum number of colors returned, maxcolors=1 for MIS */
704: void *data; /* inner context */
705: PetscBool valid; /* check to see if what is produced is a valid coloring */
706: MatColoringWeightType weight_type; /* type of weight computation to be performed */
707: PetscReal *user_weights; /* custom weights and permutation */
708: PetscInt *user_lperm;
709: PetscBool valid_iscoloring; /* check to see if matcoloring is produced a valid iscoloring */
710: };
712: struct _p_MatTransposeColoring {
713: PETSCHEADER(int);
714: PetscInt M, N, m; /* total rows, columns; local rows */
715: PetscInt rstart; /* first row owned by local processor */
716: PetscInt ncolors; /* number of colors */
717: PetscInt *ncolumns; /* number of local columns for a color */
718: PetscInt *nrows; /* number of local rows for each color */
719: PetscInt currentcolor; /* color for which function evaluation is being done now */
720: ISColoringType ctype; /* IS_COLORING_GLOBAL or IS_COLORING_LOCAL */
722: PetscInt *colorforrow, *colorforcol; /* pointer to rows and columns */
723: PetscInt *rows; /* lists the local rows for each color (using the local row numbering) */
724: PetscInt *den2sp; /* maps (row,color) in the dense matrix to index of sparse matrix array a->a */
725: PetscInt *columns; /* lists the local columns of each color (using global column numbering) */
726: PetscInt brows; /* number of rows for efficient implementation of MatTransColoringApplyDenToSp() */
727: PetscInt *lstart; /* array used for loop over row blocks of Csparse */
728: };
730: /*
731: Null space context for preconditioner/operators
732: */
733: struct _p_MatNullSpace {
734: PETSCHEADER(int);
735: PetscBool has_cnst;
736: PetscInt n;
737: Vec *vecs;
738: PetscScalar *alpha; /* for projections */
739: PetscErrorCode (*remove)(MatNullSpace, Vec, void *); /* for user provided removal function */
740: void *rmctx; /* context for remove() function */
741: };
743: /*
744: Internal data structure for MATMPIDENSE
745: */
746: typedef struct {
747: Mat A; /* local submatrix */
749: /* The following variables are used for matrix assembly */
750: PetscBool donotstash; /* Flag indicating if values should be stashed */
751: MPI_Request *send_waits; /* array of send requests */
752: MPI_Request *recv_waits; /* array of receive requests */
753: PetscInt nsends, nrecvs; /* numbers of sends and receives */
754: PetscScalar *svalues, *rvalues; /* sending and receiving data */
755: PetscInt rmax; /* maximum message length */
757: /* The following variables are used for matrix-vector products */
758: Vec lvec; /* local vector */
759: PetscSF Mvctx; /* for mat-mult communications */
760: PetscBool roworiented; /* if true, row-oriented input (default) */
762: /* Support for MatDenseGetColumnVec and MatDenseGetSubMatrix */
763: Mat cmat; /* matrix representation of a given subset of columns */
764: Vec cvec; /* vector representation of a given column */
765: const PetscScalar *ptrinuse; /* holds array to be restored (just a placeholder) */
766: PetscInt vecinuse; /* if cvec is in use (col = vecinuse-1) */
767: PetscInt matinuse; /* if cmat is in use (cbegin = matinuse-1) */
768: } Mat_MPIDense;
770: /*
771: Checking zero pivot for LU, ILU preconditioners.
772: */
773: typedef struct {
774: PetscInt nshift, nshift_max;
775: PetscReal shift_amount, shift_lo, shift_hi, shift_top, shift_fraction;
776: PetscBool newshift;
777: PetscReal rs; /* active row sum of abs(off-diagonals) */
778: PetscScalar pv; /* pivot of the active row */
779: } FactorShiftCtx;
781: PETSC_EXTERN PetscErrorCode MatTransposeCheckNonzeroState_Private(Mat, Mat);
783: /*
784: Used by MatTranspose() and potentially other functions to track the matrix used in the generation of another matrix
785: */
786: typedef struct {
787: PetscObjectId id;
788: PetscObjectState state;
789: PetscObjectState nonzerostate;
790: } MatParentState;
792: PETSC_EXTERN PetscErrorCode MatFactorDumpMatrix(Mat);
793: PETSC_INTERN PetscErrorCode MatSetBlockSizes_Default(Mat, PetscInt, PetscInt);
795: PETSC_SINGLE_LIBRARY_INTERN PetscErrorCode MatShift_Basic(Mat, PetscScalar);
797: static inline PetscErrorCode MatPivotCheck_nz(PETSC_UNUSED Mat mat, const MatFactorInfo *info, FactorShiftCtx *sctx, PETSC_UNUSED PetscInt row)
798: {
799: PetscReal _rs = sctx->rs;
800: PetscReal _zero = info->zeropivot * _rs;
802: PetscFunctionBegin;
803: if (PetscAbsScalar(sctx->pv) <= _zero && !PetscIsNanScalar(sctx->pv)) {
804: /* force |diag| > zeropivot*rs */
805: if (!sctx->nshift) sctx->shift_amount = info->shiftamount;
806: else sctx->shift_amount *= 2.0;
807: sctx->newshift = PETSC_TRUE;
808: (sctx->nshift)++;
809: } else {
810: sctx->newshift = PETSC_FALSE;
811: }
812: PetscFunctionReturn(PETSC_SUCCESS);
813: }
815: static inline PetscErrorCode MatPivotCheck_pd(PETSC_UNUSED Mat mat, const MatFactorInfo *info, FactorShiftCtx *sctx, PETSC_UNUSED PetscInt row)
816: {
817: PetscReal _rs = sctx->rs;
818: PetscReal _zero = info->zeropivot * _rs;
820: PetscFunctionBegin;
821: if (PetscRealPart(sctx->pv) <= _zero && !PetscIsNanScalar(sctx->pv)) {
822: /* force matfactor to be diagonally dominant */
823: if (sctx->nshift == sctx->nshift_max) {
824: sctx->shift_fraction = sctx->shift_hi;
825: } else {
826: sctx->shift_lo = sctx->shift_fraction;
827: sctx->shift_fraction = (sctx->shift_hi + sctx->shift_lo) / (PetscReal)2.;
828: }
829: sctx->shift_amount = sctx->shift_fraction * sctx->shift_top;
830: sctx->nshift++;
831: sctx->newshift = PETSC_TRUE;
832: } else {
833: sctx->newshift = PETSC_FALSE;
834: }
835: PetscFunctionReturn(PETSC_SUCCESS);
836: }
838: static inline PetscErrorCode MatPivotCheck_inblocks(PETSC_UNUSED Mat mat, const MatFactorInfo *info, FactorShiftCtx *sctx, PETSC_UNUSED PetscInt row)
839: {
840: PetscReal _zero = info->zeropivot;
842: PetscFunctionBegin;
843: if (PetscAbsScalar(sctx->pv) <= _zero && !PetscIsNanScalar(sctx->pv)) {
844: sctx->pv += info->shiftamount;
845: sctx->shift_amount = 0.0;
846: sctx->nshift++;
847: }
848: sctx->newshift = PETSC_FALSE;
849: PetscFunctionReturn(PETSC_SUCCESS);
850: }
852: static inline PetscErrorCode MatPivotCheck_none(Mat fact, Mat mat, const MatFactorInfo *info, FactorShiftCtx *sctx, PetscInt row)
853: {
854: PetscReal _zero = info->zeropivot;
856: PetscFunctionBegin;
857: sctx->newshift = PETSC_FALSE;
858: if (PetscAbsScalar(sctx->pv) <= _zero && !PetscIsNanScalar(sctx->pv)) {
859: PetscCheck(!mat->erroriffailure, PETSC_COMM_SELF, PETSC_ERR_MAT_LU_ZRPVT, "Zero pivot row %" PetscInt_FMT " value %g tolerance %g", row, (double)PetscAbsScalar(sctx->pv), (double)_zero);
860: PetscCall(PetscInfo(mat, "Detected zero pivot in factorization in row %" PetscInt_FMT " value %g tolerance %g\n", row, (double)PetscAbsScalar(sctx->pv), (double)_zero));
861: fact->factorerrortype = MAT_FACTOR_NUMERIC_ZEROPIVOT;
862: fact->factorerror_zeropivot_value = PetscAbsScalar(sctx->pv);
863: fact->factorerror_zeropivot_row = row;
864: }
865: PetscFunctionReturn(PETSC_SUCCESS);
866: }
868: static inline PetscErrorCode MatPivotCheck(Mat fact, Mat mat, const MatFactorInfo *info, FactorShiftCtx *sctx, PetscInt row)
869: {
870: PetscFunctionBegin;
871: if (info->shifttype == (PetscReal)MAT_SHIFT_NONZERO) PetscCall(MatPivotCheck_nz(mat, info, sctx, row));
872: else if (info->shifttype == (PetscReal)MAT_SHIFT_POSITIVE_DEFINITE) PetscCall(MatPivotCheck_pd(mat, info, sctx, row));
873: else if (info->shifttype == (PetscReal)MAT_SHIFT_INBLOCKS) PetscCall(MatPivotCheck_inblocks(mat, info, sctx, row));
874: else PetscCall(MatPivotCheck_none(fact, mat, info, sctx, row));
875: PetscFunctionReturn(PETSC_SUCCESS);
876: }
878: #include <petscbt.h>
879: /*
880: Create and initialize a linked list
881: Input Parameters:
882: idx_start - starting index of the list
883: lnk_max - max value of lnk indicating the end of the list
884: nlnk - max length of the list
885: Output Parameters:
886: lnk - list initialized
887: bt - PetscBT (bitarray) with all bits set to false
888: lnk_empty - flg indicating the list is empty
889: */
890: #define PetscLLCreate(idx_start, lnk_max, nlnk, lnk, bt) ((PetscErrorCode)(PetscMalloc1(nlnk, &lnk) || PetscBTCreate(nlnk, &(bt)) || (lnk[idx_start] = lnk_max, PETSC_SUCCESS)))
892: #define PetscLLCreate_new(idx_start, lnk_max, nlnk, lnk, bt, lnk_empty) ((PetscErrorCode)(PetscMalloc1(nlnk, &lnk) || PetscBTCreate(nlnk, &(bt)) || (lnk_empty = PETSC_TRUE, 0) || (lnk[idx_start] = lnk_max, PETSC_SUCCESS)))
894: static inline PetscErrorCode PetscLLInsertLocation_Private(PetscBool assume_sorted, PetscInt k, PetscInt idx_start, PetscInt entry, PetscInt *PETSC_RESTRICT nlnk, PetscInt *PETSC_RESTRICT lnkdata, PetscInt *PETSC_RESTRICT lnk)
895: {
896: PetscInt location;
898: PetscFunctionBegin;
899: /* start from the beginning if entry < previous entry */
900: if (!assume_sorted && k && entry < *lnkdata) *lnkdata = idx_start;
901: /* search for insertion location */
902: do {
903: location = *lnkdata;
904: *lnkdata = lnk[location];
905: } while (entry > *lnkdata);
906: /* insertion location is found, add entry into lnk */
907: lnk[location] = entry;
908: lnk[entry] = *lnkdata;
909: ++(*nlnk);
910: *lnkdata = entry; /* next search starts from here if next_entry > entry */
911: PetscFunctionReturn(PETSC_SUCCESS);
912: }
914: static inline PetscErrorCode PetscLLAdd_Private(PetscInt nidx, const PetscInt *PETSC_RESTRICT indices, PetscInt idx_start, PetscInt *PETSC_RESTRICT nlnk, PetscInt *PETSC_RESTRICT lnk, PetscBT bt, PetscBool assume_sorted)
915: {
916: PetscFunctionBegin;
917: *nlnk = 0;
918: for (PetscInt k = 0, lnkdata = idx_start; k < nidx; ++k) {
919: const PetscInt entry = indices[k];
921: if (!PetscBTLookupSet(bt, entry)) PetscCall(PetscLLInsertLocation_Private(assume_sorted, k, idx_start, entry, nlnk, &lnkdata, lnk));
922: }
923: PetscFunctionReturn(PETSC_SUCCESS);
924: }
926: /*
927: Add an index set into a sorted linked list
928: Input Parameters:
929: nidx - number of input indices
930: indices - integer array
931: idx_start - starting index of the list
932: lnk - linked list(an integer array) that is created
933: bt - PetscBT (bitarray), bt[idx]=true marks idx is in lnk
934: output Parameters:
935: nlnk - number of newly added indices
936: lnk - the sorted(increasing order) linked list containing new and non-redundate entries from indices
937: bt - updated PetscBT (bitarray)
938: */
939: static inline PetscErrorCode PetscLLAdd(PetscInt nidx, const PetscInt *PETSC_RESTRICT indices, PetscInt idx_start, PetscInt *PETSC_RESTRICT nlnk, PetscInt *PETSC_RESTRICT lnk, PetscBT bt)
940: {
941: PetscFunctionBegin;
942: PetscCall(PetscLLAdd_Private(nidx, indices, idx_start, nlnk, lnk, bt, PETSC_FALSE));
943: PetscFunctionReturn(PETSC_SUCCESS);
944: }
946: /*
947: Add a SORTED ascending index set into a sorted linked list - same as PetscLLAdd() bus skip 'if (_k && _entry < _lnkdata) _lnkdata = idx_start;'
948: Input Parameters:
949: nidx - number of input indices
950: indices - sorted integer array
951: idx_start - starting index of the list
952: lnk - linked list(an integer array) that is created
953: bt - PetscBT (bitarray), bt[idx]=true marks idx is in lnk
954: output Parameters:
955: nlnk - number of newly added indices
956: lnk - the sorted(increasing order) linked list containing new and non-redundate entries from indices
957: bt - updated PetscBT (bitarray)
958: */
959: static inline PetscErrorCode PetscLLAddSorted(PetscInt nidx, const PetscInt *PETSC_RESTRICT indices, PetscInt idx_start, PetscInt *PETSC_RESTRICT nlnk, PetscInt *PETSC_RESTRICT lnk, PetscBT bt)
960: {
961: PetscFunctionBegin;
962: PetscCall(PetscLLAdd_Private(nidx, indices, idx_start, nlnk, lnk, bt, PETSC_TRUE));
963: PetscFunctionReturn(PETSC_SUCCESS);
964: }
966: /*
967: Add a permuted index set into a sorted linked list
968: Input Parameters:
969: nidx - number of input indices
970: indices - integer array
971: perm - permutation of indices
972: idx_start - starting index of the list
973: lnk - linked list(an integer array) that is created
974: bt - PetscBT (bitarray), bt[idx]=true marks idx is in lnk
975: output Parameters:
976: nlnk - number of newly added indices
977: lnk - the sorted(increasing order) linked list containing new and non-redundate entries from indices
978: bt - updated PetscBT (bitarray)
979: */
980: static inline PetscErrorCode PetscLLAddPerm(PetscInt nidx, const PetscInt *PETSC_RESTRICT indices, const PetscInt *PETSC_RESTRICT perm, PetscInt idx_start, PetscInt *PETSC_RESTRICT nlnk, PetscInt *PETSC_RESTRICT lnk, PetscBT bt)
981: {
982: PetscFunctionBegin;
983: *nlnk = 0;
984: for (PetscInt k = 0, lnkdata = idx_start; k < nidx; ++k) {
985: const PetscInt entry = perm[indices[k]];
987: if (!PetscBTLookupSet(bt, entry)) PetscCall(PetscLLInsertLocation_Private(PETSC_FALSE, k, idx_start, entry, nlnk, &lnkdata, lnk));
988: }
989: PetscFunctionReturn(PETSC_SUCCESS);
990: }
992: #if 0
993: /* this appears to be unused? */
994: static inline PetscErrorCode PetscLLAddSorted_new(PetscInt nidx, PetscInt *indices, PetscInt idx_start, PetscBool *lnk_empty, PetscInt *nlnk, PetscInt *lnk, PetscBT bt)
995: {
996: PetscInt lnkdata = idx_start;
998: PetscFunctionBegin;
999: if (*lnk_empty) {
1000: for (PetscInt k = 0; k < nidx; ++k) {
1001: const PetscInt entry = indices[k], location = lnkdata;
1003: PetscCall(PetscBTSet(bt,entry)); /* mark the new entry */
1004: lnkdata = lnk[location];
1005: /* insertion location is found, add entry into lnk */
1006: lnk[location] = entry;
1007: lnk[entry] = lnkdata;
1008: lnkdata = entry; /* next search starts from here */
1009: }
1010: /* lnk[indices[nidx-1]] = lnk[idx_start];
1011: lnk[idx_start] = indices[0];
1012: PetscCall(PetscBTSet(bt,indices[0]));
1013: for (_k=1; _k<nidx; _k++) {
1014: PetscCall(PetscBTSet(bt,indices[_k]));
1015: lnk[indices[_k-1]] = indices[_k];
1016: }
1017: */
1018: *nlnk = nidx;
1019: *lnk_empty = PETSC_FALSE;
1020: } else {
1021: *nlnk = 0;
1022: for (PetscInt k = 0; k < nidx; ++k) {
1023: const PetscInt entry = indices[k];
1025: if (!PetscBTLookupSet(bt,entry)) PetscCall(PetscLLInsertLocation_Private(PETSC_TRUE,k,idx_start,entry,nlnk,&lnkdata,lnk));
1026: }
1027: }
1028: PetscFunctionReturn(PETSC_SUCCESS);
1029: }
1030: #endif
1032: /*
1033: Add a SORTED index set into a sorted linked list used for LUFactorSymbolic()
1034: Same as PetscLLAddSorted() with an additional operation:
1035: count the number of input indices that are no larger than 'diag'
1036: Input Parameters:
1037: indices - sorted integer array
1038: idx_start - starting index of the list, index of pivot row
1039: lnk - linked list(an integer array) that is created
1040: bt - PetscBT (bitarray), bt[idx]=true marks idx is in lnk
1041: diag - index of the active row in LUFactorSymbolic
1042: nzbd - number of input indices with indices <= idx_start
1043: im - im[idx_start] is initialized as num of nonzero entries in row=idx_start
1044: output Parameters:
1045: nlnk - number of newly added indices
1046: lnk - the sorted(increasing order) linked list containing new and non-redundate entries from indices
1047: bt - updated PetscBT (bitarray)
1048: im - im[idx_start]: unchanged if diag is not an entry
1049: : num of entries with indices <= diag if diag is an entry
1050: */
1051: static inline PetscErrorCode PetscLLAddSortedLU(const PetscInt *PETSC_RESTRICT indices, PetscInt idx_start, PetscInt *PETSC_RESTRICT nlnk, PetscInt *PETSC_RESTRICT lnk, PetscBT bt, PetscInt diag, PetscInt nzbd, PetscInt *PETSC_RESTRICT im)
1052: {
1053: const PetscInt nidx = im[idx_start] - nzbd; /* num of entries with idx_start < index <= diag */
1055: PetscFunctionBegin;
1056: *nlnk = 0;
1057: for (PetscInt k = 0, lnkdata = idx_start; k < nidx; ++k) {
1058: const PetscInt entry = indices[k];
1060: ++nzbd;
1061: if (entry == diag) im[idx_start] = nzbd;
1062: if (!PetscBTLookupSet(bt, entry)) PetscCall(PetscLLInsertLocation_Private(PETSC_TRUE, k, idx_start, entry, nlnk, &lnkdata, lnk));
1063: }
1064: PetscFunctionReturn(PETSC_SUCCESS);
1065: }
1067: /*
1068: Copy data on the list into an array, then initialize the list
1069: Input Parameters:
1070: idx_start - starting index of the list
1071: lnk_max - max value of lnk indicating the end of the list
1072: nlnk - number of data on the list to be copied
1073: lnk - linked list
1074: bt - PetscBT (bitarray), bt[idx]=true marks idx is in lnk
1075: output Parameters:
1076: indices - array that contains the copied data
1077: lnk - linked list that is cleaned and initialize
1078: bt - PetscBT (bitarray) with all bits set to false
1079: */
1080: static inline PetscErrorCode PetscLLClean(PetscInt idx_start, PetscInt lnk_max, PetscInt nlnk, PetscInt *PETSC_RESTRICT lnk, PetscInt *PETSC_RESTRICT indices, PetscBT bt)
1081: {
1082: PetscFunctionBegin;
1083: for (PetscInt j = 0, idx = idx_start; j < nlnk; ++j) {
1084: idx = lnk[idx];
1085: indices[j] = idx;
1086: PetscCall(PetscBTClear(bt, idx));
1087: }
1088: lnk[idx_start] = lnk_max;
1089: PetscFunctionReturn(PETSC_SUCCESS);
1090: }
1092: /*
1093: Free memories used by the list
1094: */
1095: #define PetscLLDestroy(lnk, bt) ((PetscErrorCode)(PetscFree(lnk) || PetscBTDestroy(&(bt))))
1097: /* Routines below are used for incomplete matrix factorization */
1098: /*
1099: Create and initialize a linked list and its levels
1100: Input Parameters:
1101: idx_start - starting index of the list
1102: lnk_max - max value of lnk indicating the end of the list
1103: nlnk - max length of the list
1104: Output Parameters:
1105: lnk - list initialized
1106: lnk_lvl - array of size nlnk for storing levels of lnk
1107: bt - PetscBT (bitarray) with all bits set to false
1108: */
1109: #define PetscIncompleteLLCreate(idx_start, lnk_max, nlnk, lnk, lnk_lvl, bt) \
1110: ((PetscErrorCode)(PetscIntMultError(2, nlnk, NULL) || PetscMalloc1(2 * nlnk, &lnk) || PetscBTCreate(nlnk, &(bt)) || (lnk[idx_start] = lnk_max, lnk_lvl = lnk + nlnk, PETSC_SUCCESS)))
1112: static inline PetscErrorCode PetscIncompleteLLInsertLocation_Private(PetscBool assume_sorted, PetscInt k, PetscInt idx_start, PetscInt entry, PetscInt *PETSC_RESTRICT nlnk, PetscInt *PETSC_RESTRICT lnkdata, PetscInt *PETSC_RESTRICT lnk, PetscInt *PETSC_RESTRICT lnklvl, PetscInt newval)
1113: {
1114: PetscFunctionBegin;
1115: PetscCall(PetscLLInsertLocation_Private(assume_sorted, k, idx_start, entry, nlnk, lnkdata, lnk));
1116: lnklvl[entry] = newval;
1117: PetscFunctionReturn(PETSC_SUCCESS);
1118: }
1120: /*
1121: Initialize a sorted linked list used for ILU and ICC
1122: Input Parameters:
1123: nidx - number of input idx
1124: idx - integer array used for storing column indices
1125: idx_start - starting index of the list
1126: perm - indices of an IS
1127: lnk - linked list(an integer array) that is created
1128: lnklvl - levels of lnk
1129: bt - PetscBT (bitarray), bt[idx]=true marks idx is in lnk
1130: output Parameters:
1131: nlnk - number of newly added idx
1132: lnk - the sorted(increasing order) linked list containing new and non-redundate entries from idx
1133: lnklvl - levels of lnk
1134: bt - updated PetscBT (bitarray)
1135: */
1136: static inline PetscErrorCode PetscIncompleteLLInit(PetscInt nidx, const PetscInt *PETSC_RESTRICT idx, PetscInt idx_start, const PetscInt *PETSC_RESTRICT perm, PetscInt *PETSC_RESTRICT nlnk, PetscInt *PETSC_RESTRICT lnk, PetscInt *PETSC_RESTRICT lnklvl, PetscBT bt)
1137: {
1138: PetscFunctionBegin;
1139: *nlnk = 0;
1140: for (PetscInt k = 0, lnkdata = idx_start; k < nidx; ++k) {
1141: const PetscInt entry = perm[idx[k]];
1143: if (!PetscBTLookupSet(bt, entry)) PetscCall(PetscIncompleteLLInsertLocation_Private(PETSC_FALSE, k, idx_start, entry, nlnk, &lnkdata, lnk, lnklvl, 0));
1144: }
1145: PetscFunctionReturn(PETSC_SUCCESS);
1146: }
1148: static inline PetscErrorCode PetscIncompleteLLAdd_Private(PetscInt nidx, const PetscInt *PETSC_RESTRICT idx, PetscReal level, const PetscInt *PETSC_RESTRICT idxlvl, PetscInt idx_start, PetscInt *PETSC_RESTRICT nlnk, PetscInt *PETSC_RESTRICT lnk, PetscInt *PETSC_RESTRICT lnklvl, PetscBT bt, PetscInt prow_offset, PetscBool assume_sorted)
1149: {
1150: PetscFunctionBegin;
1151: *nlnk = 0;
1152: for (PetscInt k = 0, lnkdata = idx_start; k < nidx; ++k) {
1153: const PetscInt incrlev = idxlvl[k] + prow_offset + 1;
1155: if (incrlev <= level) {
1156: const PetscInt entry = idx[k];
1158: if (!PetscBTLookupSet(bt, entry)) PetscCall(PetscIncompleteLLInsertLocation_Private(assume_sorted, k, idx_start, entry, nlnk, &lnkdata, lnk, lnklvl, incrlev));
1159: else if (lnklvl[entry] > incrlev) lnklvl[entry] = incrlev; /* existing entry */
1160: }
1161: }
1162: PetscFunctionReturn(PETSC_SUCCESS);
1163: }
1165: /*
1166: Add a SORTED index set into a sorted linked list for ICC
1167: Input Parameters:
1168: nidx - number of input indices
1169: idx - sorted integer array used for storing column indices
1170: level - level of fill, e.g., ICC(level)
1171: idxlvl - level of idx
1172: idx_start - starting index of the list
1173: lnk - linked list(an integer array) that is created
1174: lnklvl - levels of lnk
1175: bt - PetscBT (bitarray), bt[idx]=true marks idx is in lnk
1176: idxlvl_prow - idxlvl[prow], where prow is the row number of the idx
1177: output Parameters:
1178: nlnk - number of newly added indices
1179: lnk - the sorted(increasing order) linked list containing new and non-redundate entries from idx
1180: lnklvl - levels of lnk
1181: bt - updated PetscBT (bitarray)
1182: Note: the level of U(i,j) is set as lvl(i,j) = min{ lvl(i,j), lvl(prow,i)+lvl(prow,j)+1)
1183: where idx = non-zero columns of U(prow,prow+1:n-1), prow<i
1184: */
1185: static inline PetscErrorCode PetscICCLLAddSorted(PetscInt nidx, const PetscInt *PETSC_RESTRICT idx, PetscReal level, const PetscInt *PETSC_RESTRICT idxlvl, PetscInt idx_start, PetscInt *PETSC_RESTRICT nlnk, PetscInt *PETSC_RESTRICT lnk, PetscInt *PETSC_RESTRICT lnklvl, PetscBT bt, PetscInt idxlvl_prow)
1186: {
1187: PetscFunctionBegin;
1188: PetscCall(PetscIncompleteLLAdd_Private(nidx, idx, level, idxlvl, idx_start, nlnk, lnk, lnklvl, bt, idxlvl_prow, PETSC_TRUE));
1189: PetscFunctionReturn(PETSC_SUCCESS);
1190: }
1192: /*
1193: Add a SORTED index set into a sorted linked list for ILU
1194: Input Parameters:
1195: nidx - number of input indices
1196: idx - sorted integer array used for storing column indices
1197: level - level of fill, e.g., ICC(level)
1198: idxlvl - level of idx
1199: idx_start - starting index of the list
1200: lnk - linked list(an integer array) that is created
1201: lnklvl - levels of lnk
1202: bt - PetscBT (bitarray), bt[idx]=true marks idx is in lnk
1203: prow - the row number of idx
1204: output Parameters:
1205: nlnk - number of newly added idx
1206: lnk - the sorted(increasing order) linked list containing new and non-redundate entries from idx
1207: lnklvl - levels of lnk
1208: bt - updated PetscBT (bitarray)
1210: Note: the level of factor(i,j) is set as lvl(i,j) = min{ lvl(i,j), lvl(i,prow)+lvl(prow,j)+1)
1211: where idx = non-zero columns of U(prow,prow+1:n-1), prow<i
1212: */
1213: static inline PetscErrorCode PetscILULLAddSorted(PetscInt nidx, const PetscInt *PETSC_RESTRICT idx, PetscInt level, const PetscInt *PETSC_RESTRICT idxlvl, PetscInt idx_start, PetscInt *PETSC_RESTRICT nlnk, PetscInt *PETSC_RESTRICT lnk, PetscInt *PETSC_RESTRICT lnklvl, PetscBT bt, PetscInt prow)
1214: {
1215: PetscFunctionBegin;
1216: PetscCall(PetscIncompleteLLAdd_Private(nidx, idx, level, idxlvl, idx_start, nlnk, lnk, lnklvl, bt, lnklvl[prow], PETSC_TRUE));
1217: PetscFunctionReturn(PETSC_SUCCESS);
1218: }
1220: /*
1221: Add a index set into a sorted linked list
1222: Input Parameters:
1223: nidx - number of input idx
1224: idx - integer array used for storing column indices
1225: level - level of fill, e.g., ICC(level)
1226: idxlvl - level of idx
1227: idx_start - starting index of the list
1228: lnk - linked list(an integer array) that is created
1229: lnklvl - levels of lnk
1230: bt - PetscBT (bitarray), bt[idx]=true marks idx is in lnk
1231: output Parameters:
1232: nlnk - number of newly added idx
1233: lnk - the sorted(increasing order) linked list containing new and non-redundate entries from idx
1234: lnklvl - levels of lnk
1235: bt - updated PetscBT (bitarray)
1236: */
1237: static inline PetscErrorCode PetscIncompleteLLAdd(PetscInt nidx, const PetscInt *PETSC_RESTRICT idx, PetscReal level, const PetscInt *PETSC_RESTRICT idxlvl, PetscInt idx_start, PetscInt *PETSC_RESTRICT nlnk, PetscInt *PETSC_RESTRICT lnk, PetscInt *PETSC_RESTRICT lnklvl, PetscBT bt)
1238: {
1239: PetscFunctionBegin;
1240: PetscCall(PetscIncompleteLLAdd_Private(nidx, idx, level, idxlvl, idx_start, nlnk, lnk, lnklvl, bt, 0, PETSC_FALSE));
1241: PetscFunctionReturn(PETSC_SUCCESS);
1242: }
1244: /*
1245: Add a SORTED index set into a sorted linked list
1246: Input Parameters:
1247: nidx - number of input indices
1248: idx - sorted integer array used for storing column indices
1249: level - level of fill, e.g., ICC(level)
1250: idxlvl - level of idx
1251: idx_start - starting index of the list
1252: lnk - linked list(an integer array) that is created
1253: lnklvl - levels of lnk
1254: bt - PetscBT (bitarray), bt[idx]=true marks idx is in lnk
1255: output Parameters:
1256: nlnk - number of newly added idx
1257: lnk - the sorted(increasing order) linked list containing new and non-redundate entries from idx
1258: lnklvl - levels of lnk
1259: bt - updated PetscBT (bitarray)
1260: */
1261: static inline PetscErrorCode PetscIncompleteLLAddSorted(PetscInt nidx, const PetscInt *PETSC_RESTRICT idx, PetscReal level, const PetscInt *PETSC_RESTRICT idxlvl, PetscInt idx_start, PetscInt *PETSC_RESTRICT nlnk, PetscInt *PETSC_RESTRICT lnk, PetscInt *PETSC_RESTRICT lnklvl, PetscBT bt)
1262: {
1263: PetscFunctionBegin;
1264: PetscCall(PetscIncompleteLLAdd_Private(nidx, idx, level, idxlvl, idx_start, nlnk, lnk, lnklvl, bt, 0, PETSC_TRUE));
1265: PetscFunctionReturn(PETSC_SUCCESS);
1266: }
1268: /*
1269: Copy data on the list into an array, then initialize the list
1270: Input Parameters:
1271: idx_start - starting index of the list
1272: lnk_max - max value of lnk indicating the end of the list
1273: nlnk - number of data on the list to be copied
1274: lnk - linked list
1275: lnklvl - level of lnk
1276: bt - PetscBT (bitarray), bt[idx]=true marks idx is in lnk
1277: output Parameters:
1278: indices - array that contains the copied data
1279: lnk - linked list that is cleaned and initialize
1280: lnklvl - level of lnk that is reinitialized
1281: bt - PetscBT (bitarray) with all bits set to false
1282: */
1283: static inline PetscErrorCode PetscIncompleteLLClean(PetscInt idx_start, PetscInt lnk_max, PetscInt nlnk, PetscInt *PETSC_RESTRICT lnk, PetscInt *PETSC_RESTRICT lnklvl, PetscInt *PETSC_RESTRICT indices, PetscInt *PETSC_RESTRICT indiceslvl, PetscBT bt)
1284: {
1285: PetscFunctionBegin;
1286: for (PetscInt j = 0, idx = idx_start; j < nlnk; ++j) {
1287: idx = lnk[idx];
1288: indices[j] = idx;
1289: indiceslvl[j] = lnklvl[idx];
1290: lnklvl[idx] = -1;
1291: PetscCall(PetscBTClear(bt, idx));
1292: }
1293: lnk[idx_start] = lnk_max;
1294: PetscFunctionReturn(PETSC_SUCCESS);
1295: }
1297: /*
1298: Free memories used by the list
1299: */
1300: #define PetscIncompleteLLDestroy(lnk, bt) ((PetscErrorCode)(PetscFree(lnk) || PetscBTDestroy(&(bt))))
1302: #if !defined(PETSC_CLANG_STATIC_ANALYZER)
1303: #define MatCheckSameLocalSize(A, ar1, B, ar2) \
1304: do { \
1305: PetscCheckSameComm(A, ar1, B, ar2); \
1306: PetscCheck(((A)->rmap->n == (B)->rmap->n) && ((A)->cmap->n == (B)->cmap->n), PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Incompatible matrix local sizes: parameter # %d (%" PetscInt_FMT " x %" PetscInt_FMT ") != parameter # %d (%" PetscInt_FMT " x %" PetscInt_FMT ")", ar1, \
1307: (A)->rmap->n, (A)->cmap->n, ar2, (B)->rmap->n, (B)->cmap->n); \
1308: } while (0)
1309: #define MatCheckSameSize(A, ar1, B, ar2) \
1310: do { \
1311: PetscCheck(((A)->rmap->N == (B)->rmap->N) && ((A)->cmap->N == (B)->cmap->N), PetscObjectComm((PetscObject)(A)), PETSC_ERR_ARG_INCOMP, "Incompatible matrix global sizes: parameter # %d (%" PetscInt_FMT " x %" PetscInt_FMT ") != parameter # %d (%" PetscInt_FMT " x %" PetscInt_FMT ")", ar1, \
1312: (A)->rmap->N, (A)->cmap->N, ar2, (B)->rmap->N, (B)->cmap->N); \
1313: MatCheckSameLocalSize(A, ar1, B, ar2); \
1314: } while (0)
1315: #else
1316: template <typename Tm>
1317: extern void MatCheckSameLocalSize(Tm, int, Tm, int);
1318: template <typename Tm>
1319: extern void MatCheckSameSize(Tm, int, Tm, int);
1320: #endif
1322: #define VecCheckMatCompatible(M, x, ar1, b, ar2) \
1323: do { \
1324: PetscCheck((M)->cmap->N == (x)->map->N, PetscObjectComm((PetscObject)(M)), PETSC_ERR_ARG_SIZ, "Vector global length incompatible with matrix: parameter # %d global size %" PetscInt_FMT " != matrix column global size %" PetscInt_FMT, ar1, (x)->map->N, \
1325: (M)->cmap->N); \
1326: PetscCheck((M)->rmap->N == (b)->map->N, PetscObjectComm((PetscObject)(M)), PETSC_ERR_ARG_SIZ, "Vector global length incompatible with matrix: parameter # %d global size %" PetscInt_FMT " != matrix row global size %" PetscInt_FMT, ar2, (b)->map->N, \
1327: (M)->rmap->N); \
1328: } while (0)
1330: /*
1331: Create and initialize a condensed linked list -
1332: same as PetscLLCreate(), but uses a scalable array 'lnk' with size of max number of entries, not O(N).
1333: Barry suggested this approach (Dec. 6, 2011):
1334: I've thought of an alternative way of representing a linked list that is efficient but doesn't have the O(N) scaling issue
1335: (it may be faster than the O(N) even sequentially due to less crazy memory access).
1337: Instead of having some like a 2 -> 4 -> 11 -> 22 list that uses slot 2 4 11 and 22 in a big array use a small array with two slots
1338: for each entry for example [ 2 1 | 4 3 | 22 -1 | 11 2] so the first number (of the pair) is the value while the second tells you where
1339: in the list the next entry is. Inserting a new link means just append another pair at the end. For example say we want to insert 13 into the
1340: list it would then become [2 1 | 4 3 | 22 -1 | 11 4 | 13 2 ] you just add a pair at the end and fix the point for the one that points to it.
1341: That is 11 use to point to the 2 slot, after the change 11 points to the 4th slot which has the value 13. Note that values are always next
1342: to each other so memory access is much better than using the big array.
1344: Example:
1345: nlnk_max=5, lnk_max=36:
1346: Initial list: [0, 0 | 36, 2 | 0, 0 | 0, 0 | 0, 0 | 0, 0 | 0, 0]
1347: here, head_node has index 2 with value lnk[2]=lnk_max=36,
1348: 0-th entry is used to store the number of entries in the list,
1349: The initial lnk represents head -> tail(marked by 36) with number of entries = lnk[0]=0.
1351: Now adding a sorted set {2,4}, the list becomes
1352: [2, 0 | 36, 4 |2, 6 | 4, 2 | 0, 0 | 0, 0 | 0, 0 ]
1353: represents head -> 2 -> 4 -> tail with number of entries = lnk[0]=2.
1355: Then adding a sorted set {0,3,35}, the list
1356: [5, 0 | 36, 8 | 2, 10 | 4, 12 | 0, 4 | 3, 6 | 35, 2 ]
1357: represents head -> 0 -> 2 -> 3 -> 4 -> 35 -> tail with number of entries = lnk[0]=5.
1359: Input Parameters:
1360: nlnk_max - max length of the list
1361: lnk_max - max value of the entries
1362: Output Parameters:
1363: lnk - list created and initialized
1364: bt - PetscBT (bitarray) with all bits set to false. Note: bt has size lnk_max, not nln_max!
1365: */
1366: static inline PetscErrorCode PetscLLCondensedCreate(PetscInt nlnk_max, PetscInt lnk_max, PetscInt **lnk, PetscBT *bt)
1367: {
1368: PetscInt *llnk, lsize = 0;
1370: PetscFunctionBegin;
1371: PetscCall(PetscIntMultError(2, nlnk_max + 2, &lsize));
1372: PetscCall(PetscMalloc1(lsize, lnk));
1373: PetscCall(PetscBTCreate(lnk_max, bt));
1374: llnk = *lnk;
1375: llnk[0] = 0; /* number of entries on the list */
1376: llnk[2] = lnk_max; /* value in the head node */
1377: llnk[3] = 2; /* next for the head node */
1378: PetscFunctionReturn(PETSC_SUCCESS);
1379: }
1381: /*
1382: Add a SORTED ascending index set into a sorted linked list. See PetscLLCondensedCreate() for detailed description.
1383: Input Parameters:
1384: nidx - number of input indices
1385: indices - sorted integer array
1386: lnk - condensed linked list(an integer array) that is created
1387: bt - PetscBT (bitarray), bt[idx]=true marks idx is in lnk
1388: output Parameters:
1389: lnk - the sorted(increasing order) linked list containing previous and newly added non-redundate indices
1390: bt - updated PetscBT (bitarray)
1391: */
1392: static inline PetscErrorCode PetscLLCondensedAddSorted(PetscInt nidx, const PetscInt indices[], PetscInt lnk[], PetscBT bt)
1393: {
1394: PetscInt location = 2; /* head */
1395: PetscInt nlnk = lnk[0]; /* num of entries on the input lnk */
1397: PetscFunctionBegin;
1398: for (PetscInt k = 0; k < nidx; k++) {
1399: const PetscInt entry = indices[k];
1400: if (!PetscBTLookupSet(bt, entry)) { /* new entry */
1401: PetscInt next, lnkdata;
1403: /* search for insertion location */
1404: do {
1405: next = location + 1; /* link from previous node to next node */
1406: location = lnk[next]; /* idx of next node */
1407: lnkdata = lnk[location]; /* value of next node */
1408: } while (entry > lnkdata);
1409: /* insertion location is found, add entry into lnk */
1410: const PetscInt newnode = 2 * (nlnk + 2); /* index for this new node */
1411: lnk[next] = newnode; /* connect previous node to the new node */
1412: lnk[newnode] = entry; /* set value of the new node */
1413: lnk[newnode + 1] = location; /* connect new node to next node */
1414: location = newnode; /* next search starts from the new node */
1415: nlnk++;
1416: }
1417: }
1418: lnk[0] = nlnk; /* number of entries in the list */
1419: PetscFunctionReturn(PETSC_SUCCESS);
1420: }
1422: static inline PetscErrorCode PetscLLCondensedClean(PetscInt lnk_max, PETSC_UNUSED PetscInt nidx, PetscInt *indices, PetscInt lnk[], PetscBT bt)
1423: {
1424: const PetscInt nlnk = lnk[0]; /* num of entries on the list */
1425: PetscInt next = lnk[3]; /* head node */
1427: PetscFunctionBegin;
1428: for (PetscInt k = 0; k < nlnk; k++) {
1429: indices[k] = lnk[next];
1430: next = lnk[next + 1];
1431: PetscCall(PetscBTClear(bt, indices[k]));
1432: }
1433: lnk[0] = 0; /* num of entries on the list */
1434: lnk[2] = lnk_max; /* initialize head node */
1435: lnk[3] = 2; /* head node */
1436: PetscFunctionReturn(PETSC_SUCCESS);
1437: }
1439: static inline PetscErrorCode PetscLLCondensedView(PetscInt *lnk)
1440: {
1441: PetscFunctionBegin;
1442: PetscCall(PetscPrintf(PETSC_COMM_SELF, "LLCondensed of size %" PetscInt_FMT ", (val, next)\n", lnk[0]));
1443: for (PetscInt k = 2; k < lnk[0] + 2; ++k) PetscCall(PetscPrintf(PETSC_COMM_SELF, " %" PetscInt_FMT ": (%" PetscInt_FMT ", %" PetscInt_FMT ")\n", 2 * k, lnk[2 * k], lnk[2 * k + 1]));
1444: PetscFunctionReturn(PETSC_SUCCESS);
1445: }
1447: /*
1448: Free memories used by the list
1449: */
1450: static inline PetscErrorCode PetscLLCondensedDestroy(PetscInt *lnk, PetscBT bt)
1451: {
1452: PetscFunctionBegin;
1453: PetscCall(PetscFree(lnk));
1454: PetscCall(PetscBTDestroy(&bt));
1455: PetscFunctionReturn(PETSC_SUCCESS);
1456: }
1458: /*
1459: Same as PetscLLCondensedCreate(), but does not use non-scalable O(lnk_max) bitarray
1460: Input Parameters:
1461: nlnk_max - max length of the list
1462: Output Parameters:
1463: lnk - list created and initialized
1464: */
1465: static inline PetscErrorCode PetscLLCondensedCreate_Scalable(PetscInt nlnk_max, PetscInt **lnk)
1466: {
1467: PetscInt *llnk, lsize = 0;
1469: PetscFunctionBegin;
1470: PetscCall(PetscIntMultError(2, nlnk_max + 2, &lsize));
1471: PetscCall(PetscMalloc1(lsize, lnk));
1472: llnk = *lnk;
1473: llnk[0] = 0; /* number of entries on the list */
1474: llnk[2] = PETSC_INT_MAX; /* value in the head node */
1475: llnk[3] = 2; /* next for the head node */
1476: PetscFunctionReturn(PETSC_SUCCESS);
1477: }
1479: static inline PetscErrorCode PetscLLCondensedExpand_Scalable(PetscInt nlnk_max, PetscInt **lnk)
1480: {
1481: PetscInt lsize = 0;
1483: PetscFunctionBegin;
1484: PetscCall(PetscIntMultError(2, nlnk_max + 2, &lsize));
1485: PetscCall(PetscRealloc(lsize * sizeof(PetscInt), lnk));
1486: PetscFunctionReturn(PETSC_SUCCESS);
1487: }
1489: static inline PetscErrorCode PetscLLCondensedAddSorted_Scalable(PetscInt nidx, const PetscInt indices[], PetscInt lnk[])
1490: {
1491: PetscInt location = 2; /* head */
1492: PetscInt nlnk = lnk[0]; /* num of entries on the input lnk */
1494: for (PetscInt k = 0; k < nidx; k++) {
1495: const PetscInt entry = indices[k];
1496: PetscInt next, lnkdata;
1498: /* search for insertion location */
1499: do {
1500: next = location + 1; /* link from previous node to next node */
1501: location = lnk[next]; /* idx of next node */
1502: lnkdata = lnk[location]; /* value of next node */
1503: } while (entry > lnkdata);
1504: if (entry < lnkdata) {
1505: /* insertion location is found, add entry into lnk */
1506: const PetscInt newnode = 2 * (nlnk + 2); /* index for this new node */
1507: lnk[next] = newnode; /* connect previous node to the new node */
1508: lnk[newnode] = entry; /* set value of the new node */
1509: lnk[newnode + 1] = location; /* connect new node to next node */
1510: location = newnode; /* next search starts from the new node */
1511: nlnk++;
1512: }
1513: }
1514: lnk[0] = nlnk; /* number of entries in the list */
1515: return PETSC_SUCCESS;
1516: }
1518: static inline PetscErrorCode PetscLLCondensedClean_Scalable(PETSC_UNUSED PetscInt nidx, PetscInt *indices, PetscInt *lnk)
1519: {
1520: const PetscInt nlnk = lnk[0];
1521: PetscInt next = lnk[3]; /* head node */
1523: for (PetscInt k = 0; k < nlnk; k++) {
1524: indices[k] = lnk[next];
1525: next = lnk[next + 1];
1526: }
1527: lnk[0] = 0; /* num of entries on the list */
1528: lnk[3] = 2; /* head node */
1529: return PETSC_SUCCESS;
1530: }
1532: static inline PetscErrorCode PetscLLCondensedDestroy_Scalable(PetscInt *lnk)
1533: {
1534: return PetscFree(lnk);
1535: }
1537: /*
1538: lnk[0] number of links
1539: lnk[1] number of entries
1540: lnk[3n] value
1541: lnk[3n+1] len
1542: lnk[3n+2] link to next value
1544: The next three are always the first link
1546: lnk[3] PETSC_INT_MIN+1
1547: lnk[4] 1
1548: lnk[5] link to first real entry
1550: The next three are always the last link
1552: lnk[6] PETSC_INT_MAX - 1
1553: lnk[7] 1
1554: lnk[8] next valid link (this is the same as lnk[0] but without the decreases)
1555: */
1557: static inline PetscErrorCode PetscLLCondensedCreate_fast(PetscInt nlnk_max, PetscInt **lnk)
1558: {
1559: PetscInt *llnk;
1560: PetscInt lsize = 0;
1562: PetscFunctionBegin;
1563: PetscCall(PetscIntMultError(3, nlnk_max + 3, &lsize));
1564: PetscCall(PetscMalloc1(lsize, lnk));
1565: llnk = *lnk;
1566: llnk[0] = 0; /* nlnk: number of entries on the list */
1567: llnk[1] = 0; /* number of integer entries represented in list */
1568: llnk[3] = PETSC_INT_MIN + 1; /* value in the first node */
1569: llnk[4] = 1; /* count for the first node */
1570: llnk[5] = 6; /* next for the first node */
1571: llnk[6] = PETSC_INT_MAX - 1; /* value in the last node */
1572: llnk[7] = 1; /* count for the last node */
1573: llnk[8] = 0; /* next valid node to be used */
1574: PetscFunctionReturn(PETSC_SUCCESS);
1575: }
1577: static inline PetscErrorCode PetscLLCondensedAddSorted_fast(PetscInt nidx, const PetscInt indices[], PetscInt lnk[])
1578: {
1579: for (PetscInt k = 0, prev = 3 /* first value */; k < nidx; k++) {
1580: const PetscInt entry = indices[k];
1581: PetscInt next = lnk[prev + 2];
1583: /* search for insertion location */
1584: while (entry >= lnk[next]) {
1585: prev = next;
1586: next = lnk[next + 2];
1587: }
1588: /* entry is in range of previous list */
1589: if (entry < lnk[prev] + lnk[prev + 1]) continue;
1590: lnk[1]++;
1591: /* entry is right after previous list */
1592: if (entry == lnk[prev] + lnk[prev + 1]) {
1593: lnk[prev + 1]++;
1594: if (lnk[next] == entry + 1) { /* combine two contiguous strings */
1595: lnk[prev + 1] += lnk[next + 1];
1596: lnk[prev + 2] = lnk[next + 2];
1597: next = lnk[next + 2];
1598: lnk[0]--;
1599: }
1600: continue;
1601: }
1602: /* entry is right before next list */
1603: if (entry == lnk[next] - 1) {
1604: lnk[next]--;
1605: lnk[next + 1]++;
1606: prev = next;
1607: next = lnk[prev + 2];
1608: continue;
1609: }
1610: /* add entry into lnk */
1611: lnk[prev + 2] = 3 * ((lnk[8]++) + 3); /* connect previous node to the new node */
1612: prev = lnk[prev + 2];
1613: lnk[prev] = entry; /* set value of the new node */
1614: lnk[prev + 1] = 1; /* number of values in contiguous string is one to start */
1615: lnk[prev + 2] = next; /* connect new node to next node */
1616: lnk[0]++;
1617: }
1618: return PETSC_SUCCESS;
1619: }
1621: static inline PetscErrorCode PetscLLCondensedClean_fast(PETSC_UNUSED PetscInt nidx, PetscInt *indices, PetscInt *lnk)
1622: {
1623: const PetscInt nlnk = lnk[0];
1624: PetscInt next = lnk[5]; /* first node */
1626: for (PetscInt k = 0, cnt = 0; k < nlnk; k++) {
1627: for (PetscInt j = 0; j < lnk[next + 1]; j++) indices[cnt++] = lnk[next] + j;
1628: next = lnk[next + 2];
1629: }
1630: lnk[0] = 0; /* nlnk: number of links */
1631: lnk[1] = 0; /* number of integer entries represented in list */
1632: lnk[3] = PETSC_INT_MIN + 1; /* value in the first node */
1633: lnk[4] = 1; /* count for the first node */
1634: lnk[5] = 6; /* next for the first node */
1635: lnk[6] = PETSC_INT_MAX - 1; /* value in the last node */
1636: lnk[7] = 1; /* count for the last node */
1637: lnk[8] = 0; /* next valid location to make link */
1638: return PETSC_SUCCESS;
1639: }
1641: static inline PetscErrorCode PetscLLCondensedView_fast(const PetscInt *lnk)
1642: {
1643: const PetscInt nlnk = lnk[0];
1644: PetscInt next = lnk[5]; /* first node */
1646: for (PetscInt k = 0; k < nlnk; k++) {
1647: #if 0 /* Debugging code */
1648: printf("%d value %d len %d next %d\n", next, lnk[next], lnk[next + 1], lnk[next + 2]);
1649: #endif
1650: next = lnk[next + 2];
1651: }
1652: return PETSC_SUCCESS;
1653: }
1655: static inline PetscErrorCode PetscLLCondensedDestroy_fast(PetscInt *lnk)
1656: {
1657: return PetscFree(lnk);
1658: }
1660: PETSC_EXTERN PetscErrorCode PetscCDCreate(PetscInt, PetscCoarsenData **);
1661: PETSC_EXTERN PetscErrorCode PetscCDDestroy(PetscCoarsenData *);
1662: PETSC_EXTERN PetscErrorCode PetscCDIntNdSetID(PetscCDIntNd *, PetscInt);
1663: PETSC_EXTERN PetscErrorCode PetscCDIntNdGetID(const PetscCDIntNd *, PetscInt *);
1664: PETSC_EXTERN PetscErrorCode PetscCDAppendID(PetscCoarsenData *, PetscInt, PetscInt);
1665: PETSC_EXTERN PetscErrorCode PetscCDMoveAppend(PetscCoarsenData *, PetscInt, PetscInt);
1666: PETSC_EXTERN PetscErrorCode PetscCDAppendNode(PetscCoarsenData *, PetscInt, PetscCDIntNd *);
1667: PETSC_EXTERN PetscErrorCode PetscCDRemoveNextNode(PetscCoarsenData *, PetscInt, PetscCDIntNd *);
1668: PETSC_EXTERN PetscErrorCode PetscCDCountAt(const PetscCoarsenData *, PetscInt, PetscInt *);
1669: PETSC_EXTERN PetscErrorCode PetscCDIsEmptyAt(const PetscCoarsenData *, PetscInt, PetscBool *);
1670: PETSC_EXTERN PetscErrorCode PetscCDSetChunkSize(PetscCoarsenData *, PetscInt);
1671: PETSC_EXTERN PetscErrorCode PetscCDPrint(const PetscCoarsenData *, PetscInt, MPI_Comm);
1672: PETSC_EXTERN PetscErrorCode PetscCDGetNonemptyIS(PetscCoarsenData *, IS *);
1673: PETSC_EXTERN PetscErrorCode PetscCDGetMat(PetscCoarsenData *, Mat *);
1674: PETSC_EXTERN PetscErrorCode PetscCDSetMat(PetscCoarsenData *, Mat);
1675: PETSC_EXTERN PetscErrorCode PetscCDClearMat(PetscCoarsenData *);
1676: PETSC_EXTERN PetscErrorCode PetscCDRemoveAllAt(PetscCoarsenData *, PetscInt);
1677: PETSC_EXTERN PetscErrorCode PetscCDCount(const PetscCoarsenData *, PetscInt *_sz);
1679: PETSC_EXTERN PetscErrorCode PetscCDGetHeadPos(const PetscCoarsenData *, PetscInt, PetscCDIntNd **);
1680: PETSC_EXTERN PetscErrorCode PetscCDGetNextPos(const PetscCoarsenData *, PetscInt, PetscCDIntNd **);
1681: PETSC_EXTERN PetscErrorCode PetscCDGetASMBlocks(const PetscCoarsenData *, const PetscInt, PetscInt *, IS **);
1683: /* this is extern because it is used in MatFDColoringUseDM() which is in the DM library */
1684: PETSC_EXTERN PetscErrorCode MatFDColoringApply_AIJ(Mat, MatFDColoring, Vec, void *);
1686: PETSC_EXTERN PetscLogEvent MAT_Mult;
1687: PETSC_EXTERN PetscLogEvent MAT_MultAdd;
1688: PETSC_EXTERN PetscLogEvent MAT_MultTranspose;
1689: PETSC_EXTERN PetscLogEvent MAT_MultHermitianTranspose;
1690: PETSC_EXTERN PetscLogEvent MAT_MultTransposeAdd;
1691: PETSC_EXTERN PetscLogEvent MAT_MultHermitianTransposeAdd;
1692: PETSC_EXTERN PetscLogEvent MAT_Solve;
1693: PETSC_EXTERN PetscLogEvent MAT_Solves;
1694: PETSC_EXTERN PetscLogEvent MAT_SolveAdd;
1695: PETSC_EXTERN PetscLogEvent MAT_SolveTranspose;
1696: PETSC_EXTERN PetscLogEvent MAT_SolveTransposeAdd;
1697: PETSC_EXTERN PetscLogEvent MAT_SOR;
1698: PETSC_EXTERN PetscLogEvent MAT_ForwardSolve;
1699: PETSC_EXTERN PetscLogEvent MAT_BackwardSolve;
1700: PETSC_EXTERN PetscLogEvent MAT_LUFactor;
1701: PETSC_EXTERN PetscLogEvent MAT_LUFactorSymbolic;
1702: PETSC_EXTERN PetscLogEvent MAT_LUFactorNumeric;
1703: PETSC_EXTERN PetscLogEvent MAT_QRFactor;
1704: PETSC_EXTERN PetscLogEvent MAT_QRFactorSymbolic;
1705: PETSC_EXTERN PetscLogEvent MAT_QRFactorNumeric;
1706: PETSC_EXTERN PetscLogEvent MAT_CholeskyFactor;
1707: PETSC_EXTERN PetscLogEvent MAT_CholeskyFactorSymbolic;
1708: PETSC_EXTERN PetscLogEvent MAT_CholeskyFactorNumeric;
1709: PETSC_EXTERN PetscLogEvent MAT_ILUFactor;
1710: PETSC_EXTERN PetscLogEvent MAT_ILUFactorSymbolic;
1711: PETSC_EXTERN PetscLogEvent MAT_ICCFactorSymbolic;
1712: PETSC_EXTERN PetscLogEvent MAT_Copy;
1713: PETSC_EXTERN PetscLogEvent MAT_Convert;
1714: PETSC_EXTERN PetscLogEvent MAT_Scale;
1715: PETSC_EXTERN PetscLogEvent MAT_AssemblyBegin;
1716: PETSC_EXTERN PetscLogEvent MAT_AssemblyEnd;
1717: PETSC_EXTERN PetscLogEvent MAT_SetValues;
1718: PETSC_EXTERN PetscLogEvent MAT_GetValues;
1719: PETSC_EXTERN PetscLogEvent MAT_GetRow;
1720: PETSC_EXTERN PetscLogEvent MAT_GetRowIJ;
1721: PETSC_EXTERN PetscLogEvent MAT_CreateSubMats;
1722: PETSC_EXTERN PetscLogEvent MAT_GetOrdering;
1723: PETSC_EXTERN PetscLogEvent MAT_RedundantMat;
1724: PETSC_EXTERN PetscLogEvent MAT_IncreaseOverlap;
1725: PETSC_EXTERN PetscLogEvent MAT_Partitioning;
1726: PETSC_EXTERN PetscLogEvent MAT_PartitioningND;
1727: PETSC_EXTERN PetscLogEvent MAT_Coarsen;
1728: PETSC_EXTERN PetscLogEvent MAT_ZeroEntries;
1729: PETSC_EXTERN PetscLogEvent MAT_Load;
1730: PETSC_EXTERN PetscLogEvent MAT_View;
1731: PETSC_EXTERN PetscLogEvent MAT_AXPY;
1732: PETSC_EXTERN PetscLogEvent MAT_FDColoringCreate;
1733: PETSC_EXTERN PetscLogEvent MAT_TransposeColoringCreate;
1734: PETSC_EXTERN PetscLogEvent MAT_FDColoringSetUp;
1735: PETSC_EXTERN PetscLogEvent MAT_FDColoringApply;
1736: PETSC_EXTERN PetscLogEvent MAT_Transpose;
1737: PETSC_EXTERN PetscLogEvent MAT_FDColoringFunction;
1738: PETSC_EXTERN PetscLogEvent MAT_CreateSubMat;
1739: PETSC_EXTERN PetscLogEvent MAT_MatSolve;
1740: PETSC_EXTERN PetscLogEvent MAT_MatTrSolve;
1741: PETSC_EXTERN PetscLogEvent MAT_MatMultSymbolic;
1742: PETSC_EXTERN PetscLogEvent MAT_MatMultNumeric;
1743: PETSC_EXTERN PetscLogEvent MAT_Getlocalmatcondensed;
1744: PETSC_EXTERN PetscLogEvent MAT_GetBrowsOfAcols;
1745: PETSC_EXTERN PetscLogEvent MAT_GetBrowsOfAocols;
1746: PETSC_EXTERN PetscLogEvent MAT_PtAPSymbolic;
1747: PETSC_EXTERN PetscLogEvent MAT_PtAPNumeric;
1748: PETSC_EXTERN PetscLogEvent MAT_Seqstompinum;
1749: PETSC_EXTERN PetscLogEvent MAT_Seqstompisym;
1750: PETSC_EXTERN PetscLogEvent MAT_Seqstompi;
1751: PETSC_EXTERN PetscLogEvent MAT_Getlocalmat;
1752: PETSC_EXTERN PetscLogEvent MAT_RARtSymbolic;
1753: PETSC_EXTERN PetscLogEvent MAT_RARtNumeric;
1754: PETSC_EXTERN PetscLogEvent MAT_MatTransposeMultSymbolic;
1755: PETSC_EXTERN PetscLogEvent MAT_MatTransposeMultNumeric;
1756: PETSC_EXTERN PetscLogEvent MAT_TransposeMatMultSymbolic;
1757: PETSC_EXTERN PetscLogEvent MAT_TransposeMatMultNumeric;
1758: PETSC_EXTERN PetscLogEvent MAT_MatMatMultSymbolic;
1759: PETSC_EXTERN PetscLogEvent MAT_MatMatMultNumeric;
1760: PETSC_EXTERN PetscLogEvent MAT_Getsymtransreduced;
1761: PETSC_EXTERN PetscLogEvent MAT_GetSeqNonzeroStructure;
1762: PETSC_EXTERN PetscLogEvent MATMFFD_Mult;
1763: PETSC_EXTERN PetscLogEvent MAT_GetMultiProcBlock;
1764: PETSC_EXTERN PetscLogEvent MAT_CUSPARSECopyToGPU;
1765: PETSC_EXTERN PetscLogEvent MAT_CUSPARSECopyFromGPU;
1766: PETSC_EXTERN PetscLogEvent MAT_CUSPARSEGenerateTranspose;
1767: PETSC_EXTERN PetscLogEvent MAT_CUSPARSESolveAnalysis;
1768: PETSC_EXTERN PetscLogEvent MAT_HIPSPARSECopyToGPU;
1769: PETSC_EXTERN PetscLogEvent MAT_HIPSPARSECopyFromGPU;
1770: PETSC_EXTERN PetscLogEvent MAT_HIPSPARSEGenerateTranspose;
1771: PETSC_EXTERN PetscLogEvent MAT_HIPSPARSESolveAnalysis;
1772: PETSC_EXTERN PetscLogEvent MAT_SetValuesBatch;
1773: PETSC_EXTERN PetscLogEvent MAT_CreateGraph;
1774: PETSC_EXTERN PetscLogEvent MAT_ViennaCLCopyToGPU;
1775: PETSC_EXTERN PetscLogEvent MAT_DenseCopyToGPU;
1776: PETSC_EXTERN PetscLogEvent MAT_DenseCopyFromGPU;
1777: PETSC_EXTERN PetscLogEvent MAT_Merge;
1778: PETSC_EXTERN PetscLogEvent MAT_Residual;
1779: PETSC_EXTERN PetscLogEvent MAT_SetRandom;
1780: PETSC_EXTERN PetscLogEvent MAT_FactorFactS;
1781: PETSC_EXTERN PetscLogEvent MAT_FactorInvS;
1782: PETSC_EXTERN PetscLogEvent MAT_PreallCOO;
1783: PETSC_EXTERN PetscLogEvent MAT_SetVCOO;
1784: PETSC_EXTERN PetscLogEvent MATCOLORING_Apply;
1785: PETSC_EXTERN PetscLogEvent MATCOLORING_Comm;
1786: PETSC_EXTERN PetscLogEvent MATCOLORING_Local;
1787: PETSC_EXTERN PetscLogEvent MATCOLORING_ISCreate;
1788: PETSC_EXTERN PetscLogEvent MATCOLORING_SetUp;
1789: PETSC_EXTERN PetscLogEvent MATCOLORING_Weights;
1790: PETSC_EXTERN PetscLogEvent MAT_H2Opus_Build;
1791: PETSC_EXTERN PetscLogEvent MAT_H2Opus_Compress;
1792: PETSC_EXTERN PetscLogEvent MAT_H2Opus_Orthog;
1793: PETSC_EXTERN PetscLogEvent MAT_H2Opus_LR;
1794: PETSC_EXTERN PetscLogEvent MAT_CUDACopyToGPU;
1795: PETSC_EXTERN PetscLogEvent MAT_HIPCopyToGPU;