Actual source code: ex14f.F90

  1: !
  2: !
  3: !  Solves a nonlinear system in parallel with a user-defined
  4: !  Newton method that uses KSP to solve the linearized Newton systems.  This solver
  5: !  is a very simplistic inexact Newton method.  The intent of this code is to
  6: !  demonstrate the repeated solution of linear systems with the same nonzero pattern.
  7: !
  8: !  This is NOT the recommended approach for solving nonlinear problems with PETSc!
  9: !  We urge users to employ the SNES component for solving nonlinear problems whenever
 10: !  possible, as it offers many advantages over coding nonlinear solvers independently.
 11: !
 12: !  We solve the  Bratu (SFI - solid fuel ignition) problem in a 2D rectangular
 13: !  domain, using distributed arrays (DMDAs) to partition the parallel grid.
 14: !
 15: !  The command line options include:
 16: !  -par <parameter>, where <parameter> indicates the problem's nonlinearity
 17: !     problem SFI:  <parameter> = Bratu parameter (0 <= par <= 6.81)
 18: !  -mx <xg>, where <xg> = number of grid points in the x-direction
 19: !  -my <yg>, where <yg> = number of grid points in the y-direction
 20: !  -Nx <npx>, where <npx> = number of processors in the x-direction
 21: !  -Ny <npy>, where <npy> = number of processors in the y-direction
 22: !  -mf use matrix-free for matrix-vector product
 23: !

 25: !  ------------------------------------------------------------------------
 26: !
 27: !    Solid Fuel Ignition (SFI) problem.  This problem is modeled by
 28: !    the partial differential equation
 29: !
 30: !            -Laplacian u - lambda*exp(u) = 0,  0 < x,y < 1,
 31: !
 32: !    with boundary conditions
 33: !
 34: !             u = 0  for  x = 0, x = 1, y = 0, y = 1.
 35: !
 36: !    A finite difference approximation with the usual 5-point stencil
 37: !    is used to discretize the boundary value problem to obtain a nonlinear
 38: !    system of equations.
 39: !
 40: !    The SNES version of this problem is:  snes/tutorials/ex5f.F
 41: !
 42: !  -------------------------------------------------------------------------
 43:       module ex14fmodule
 44: #include <petsc/finclude/petscksp.h>
 45:       use petscdmda
 46:       use petscksp
 47:       Vec      localX
 48:       PetscInt mx,my
 49:       Mat B
 50:       DM da
 51:       end module

 53:       program main
 54:       use ex14fmodule
 55:       implicit none

 57:       MPI_Comm comm
 58:       Vec      X,Y,F
 59:       Mat      J
 60:       KSP      ksp

 62:       PetscInt  Nx,Ny,N,ifive,ithree
 63:       PetscBool  flg,nooutput,usemf
 64: !
 65: !      This is the routine to use for matrix-free approach
 66: !
 67:       external mymult

 69: !     --------------- Data to define nonlinear solver --------------
 70:       PetscReal   rtol,ttol
 71:       PetscReal   fnorm,ynorm,xnorm
 72:       PetscInt            max_nonlin_its,one
 73:       PetscInt            lin_its
 74:       PetscInt           i,m
 75:       PetscScalar        mone
 76:       PetscErrorCode ierr

 78:       mone           = -1.0
 79:       rtol           = 1.e-8
 80:       max_nonlin_its = 10
 81:       one            = 1
 82:       ifive          = 5
 83:       ithree         = 3

 85:       PetscCallA(PetscInitialize(ierr))
 86:       comm = PETSC_COMM_WORLD

 88: !  Initialize problem parameters

 90: !
 91:       mx = 4
 92:       my = 4
 93:       PetscCallA(PetscOptionsGetInt(PETSC_NULL_OPTIONS,PETSC_NULL_CHARACTER,'-mx',mx,flg,ierr))
 94:       PetscCallA(PetscOptionsGetInt(PETSC_NULL_OPTIONS,PETSC_NULL_CHARACTER,'-my',my,flg,ierr))
 95:       N = mx*my

 97:       nooutput = .false.
 98:       PetscCallA(PetscOptionsHasName(PETSC_NULL_OPTIONS,PETSC_NULL_CHARACTER,'-no_output',nooutput,ierr))

100: !  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
101: !     Create linear solver context
102: !  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

104:       PetscCallA(KSPCreate(comm,ksp,ierr))

106: !  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
107: !     Create vector data structures
108: !  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

110: !
111: !  Create distributed array (DMDA) to manage parallel grid and vectors
112: !
113:       Nx = PETSC_DECIDE
114:       Ny = PETSC_DECIDE
115:       PetscCallA(PetscOptionsGetInt(PETSC_NULL_OPTIONS,PETSC_NULL_CHARACTER,'-Nx',Nx,flg,ierr))
116:       PetscCallA(PetscOptionsGetInt(PETSC_NULL_OPTIONS,PETSC_NULL_CHARACTER,'-Ny',Ny,flg,ierr))
117:       PetscCallA(DMDACreate2d(comm,DM_BOUNDARY_NONE,DM_BOUNDARY_NONE,DMDA_STENCIL_STAR,mx,my,Nx,Ny,one,one,PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,da,ierr))
118:       PetscCallA(DMSetFromOptions(da,ierr))
119:       PetscCallA(DMSetUp(da,ierr))
120: !
121: !  Extract global and local vectors from DMDA then duplicate for remaining
122: !  vectors that are the same types
123: !
124:        PetscCallA(DMCreateGlobalVector(da,X,ierr))
125:        PetscCallA(DMCreateLocalVector(da,localX,ierr))
126:        PetscCallA(VecDuplicate(X,F,ierr))
127:        PetscCallA(VecDuplicate(X,Y,ierr))

129: !  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
130: !     Create matrix data structure for Jacobian
131: !  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
132: !
133: !     Note:  For the parallel case, vectors and matrices MUST be partitioned
134: !     accordingly.  When using distributed arrays (DMDAs) to create vectors,
135: !     the DMDAs determine the problem partitioning.  We must explicitly
136: !     specify the local matrix dimensions upon its creation for compatibility
137: !     with the vector distribution.
138: !
139: !     Note: Here we only approximately preallocate storage space for the
140: !     Jacobian.  See the users manual for a discussion of better techniques
141: !     for preallocating matrix memory.
142: !
143:       PetscCallA(VecGetLocalSize(X,m,ierr))
144:       PetscCallA(MatCreateFromOptions(comm,PETSC_NULL_CHARACTER,one,m,m,N,N,B,ierr))

146: !  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
147: !     if usemf is on then matrix-vector product is done via matrix-free
148: !     approach. Note this is just an example, and not realistic because
149: !     we still use the actual formed matrix, but in reality one would
150: !     provide their own subroutine that would directly do the matrix
151: !     vector product and call MatMult()
152: !     Note: we put B into a module so it will be visible to the
153: !     mymult() routine
154:       usemf = .false.
155:       PetscCallA(PetscOptionsHasName(PETSC_NULL_OPTIONS,PETSC_NULL_CHARACTER,'-mf',usemf,ierr))
156:       if (usemf) then
157:          PetscCallA(MatCreateShell(comm,m,m,N,N,PETSC_NULL_INTEGER,J,ierr))
158:          PetscCallA(MatShellSetOperation(J,MATOP_MULT,mymult,ierr))
159:       else
160: !        If not doing matrix-free then matrix operator, J,  and matrix used
161: !        to construct preconditioner, B, are the same
162:         J = B
163:       endif

165: !  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
166: !     Customize linear solver set runtime options
167: !  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
168: !
169: !     Set runtime options (e.g., -ksp_monitor -ksp_rtol <rtol> -ksp_type <type>)
170: !
171:        PetscCallA(KSPSetFromOptions(ksp,ierr))

173: !  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
174: !     Evaluate initial guess
175: !  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

177:        PetscCallA(FormInitialGuess(X,ierr))
178:        PetscCallA(ComputeFunction(X,F,ierr))
179:        PetscCallA(VecNorm(F,NORM_2,fnorm,ierr))
180:        ttol = fnorm*rtol
181:        if (.not. nooutput) then
182:          print*, 'Initial function norm ',fnorm
183:        endif

185: !  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
186: !     Solve nonlinear system with a user-defined method
187: !  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

189: !  This solver is a very simplistic inexact Newton method, with no
190: !  no damping strategies or bells and whistles. The intent of this code
191: !  is merely to demonstrate the repeated solution with KSP of linear
192: !  systems with the same nonzero structure.
193: !
194: !  This is NOT the recommended approach for solving nonlinear problems
195: !  with PETSc!  We urge users to employ the SNES component for solving
196: !  nonlinear problems whenever possible with application codes, as it
197: !  offers many advantages over coding nonlinear solvers independently.

199:        do 10 i=0,max_nonlin_its

201: !  Compute the Jacobian matrix.  See the comments in this routine for
202: !  important information about setting the flag mat_flag.

204:          PetscCallA(ComputeJacobian(X,B,ierr))

206: !  Solve J Y = F, where J is the Jacobian matrix.
207: !    - First, set the KSP linear operators.  Here the matrix that
208: !      defines the linear system also serves as the preconditioning
209: !      matrix.
210: !    - Then solve the Newton system.

212:          PetscCallA(KSPSetOperators(ksp,J,B,ierr))
213:          PetscCallA(KSPSolve(ksp,F,Y,ierr))

215: !  Compute updated iterate

217:          PetscCallA(VecNorm(Y,NORM_2,ynorm,ierr))
218:          PetscCallA(VecAYPX(Y,mone,X,ierr))
219:          PetscCallA(VecCopy(Y,X,ierr))
220:          PetscCallA(VecNorm(X,NORM_2,xnorm,ierr))
221:          PetscCallA(KSPGetIterationNumber(ksp,lin_its,ierr))
222:          if (.not. nooutput) then
223:            print*,'linear solve iterations = ',lin_its,' xnorm = ',xnorm,' ynorm = ',ynorm
224:          endif

226: !  Evaluate nonlinear function at new location

228:          PetscCallA(ComputeFunction(X,F,ierr))
229:          PetscCallA(VecNorm(F,NORM_2,fnorm,ierr))
230:          if (.not. nooutput) then
231:            print*, 'Iteration ',i+1,' function norm',fnorm
232:          endif

234: !  Test for convergence

236:        if (fnorm .le. ttol) then
237:          if (.not. nooutput) then
238:            print*,'Converged: function norm ',fnorm,' tolerance ',ttol
239:          endif
240:          goto 20
241:        endif
242:  10   continue
243:  20   continue

245:       write(6,100) i+1
246:  100  format('Number of SNES iterations =',I2)

248: !     Check if mymult() produces a linear operator
249:       if (usemf) then
250:          N = 5
251:          PetscCallA(MatIsLinear(J,N,flg,ierr))
252:          if (.not. flg) then
253:             print *, 'IsLinear',flg
254:          endif
255:       endif

257: !  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
258: !     Free work space.  All PETSc objects should be destroyed when they
259: !     are no longer needed.
260: !  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

262:        PetscCallA(MatDestroy(B,ierr))
263:        if (usemf) then
264:          PetscCallA(MatDestroy(J,ierr))
265:        endif
266:        PetscCallA(VecDestroy(localX,ierr))
267:        PetscCallA(VecDestroy(X,ierr))
268:        PetscCallA(VecDestroy(Y,ierr))
269:        PetscCallA(VecDestroy(F,ierr))
270:        PetscCallA(KSPDestroy(ksp,ierr))
271:        PetscCallA(DMDestroy(da,ierr))
272:        PetscCallA(PetscFinalize(ierr))
273:        end

275: ! -------------------------------------------------------------------
276: !
277: !   FormInitialGuess - Forms initial approximation.
278: !
279: !   Input Parameters:
280: !   X - vector
281: !
282: !   Output Parameter:
283: !   X - vector
284: !
285:       subroutine FormInitialGuess(X,ierr)
286:       use ex14fmodule
287:       implicit none

289:       PetscErrorCode    ierr
290:       Vec       X
291:       PetscInt  i,j,row
292:       PetscInt  xs,ys,xm
293:       PetscInt  ym
294:       PetscReal one,lambda,temp1,temp,hx,hy
295:       PetscScalar,pointer ::xx(:)

297:       one    = 1.0
298:       lambda = 6.0
299:       hx     = one/(mx-1)
300:       hy     = one/(my-1)
301:       temp1  = lambda/(lambda + one)

303: !  Get a pointer to vector data.
304: !    - VecGetArray() returns a pointer to the data array.
305: !    - You MUST call VecRestoreArray() when you no longer need access to
306: !      the array.
307:        PetscCall(VecGetArrayF90(X,xx,ierr))

309: !  Get local grid boundaries (for 2-dimensional DMDA):
310: !    xs, ys   - starting grid indices (no ghost points)
311: !    xm, ym   - widths of local grid (no ghost points)

313:        PetscCall(DMDAGetCorners(da,xs,ys,PETSC_NULL_INTEGER,xm,ym,PETSC_NULL_INTEGER,ierr))

315: !  Compute initial guess over the locally owned part of the grid

317:       do 30 j=ys,ys+ym-1
318:         temp = (min(j,my-j-1))*hy
319:         do 40 i=xs,xs+xm-1
320:           row = i - xs + (j - ys)*xm + 1
321:           if (i .eq. 0 .or. j .eq. 0 .or. i .eq. mx-1 .or. j .eq. my-1) then
322:             xx(row) = 0.0
323:             continue
324:           endif
325:           xx(row) = temp1*sqrt(min((min(i,mx-i-1))*hx,temp))
326:  40     continue
327:  30   continue

329: !     Restore vector

331:        PetscCall(VecRestoreArrayF90(X,xx,ierr))
332:        end

334: ! -------------------------------------------------------------------
335: !
336: !   ComputeFunction - Evaluates nonlinear function, F(x).
337: !
338: !   Input Parameters:
339: !.  X - input vector
340: !
341: !   Output Parameter:
342: !.  F - function vector
343: !
344:       subroutine  ComputeFunction(X,F,ierr)
345:       use ex14fmodule
346:       implicit none

348:       Vec              X,F
349:       PetscInt         gys,gxm,gym
350:       PetscErrorCode ierr
351:       PetscInt i,j,row,xs,ys,xm,ym,gxs
352:       PetscInt rowf
353:       PetscReal two,one,lambda,hx
354:       PetscReal hy,hxdhy,hydhx,sc
355:       PetscScalar      u,uxx,uyy
356:       PetscScalar,pointer ::xx(:),ff(:)

358:       two    = 2.0
359:       one    = 1.0
360:       lambda = 6.0

362:       hx     = one/(mx-1)
363:       hy     = one/(my-1)
364:       sc     = hx*hy*lambda
365:       hxdhy  = hx/hy
366:       hydhx  = hy/hx

368: !  Scatter ghost points to local vector, using the 2-step process
369: !     DMGlobalToLocalBegin(), DMGlobalToLocalEnd().
370: !  By placing code between these two statements, computations can be
371: !  done while messages are in transition.
372: !
373:       PetscCall(DMGlobalToLocalBegin(da,X,INSERT_VALUES,localX,ierr))
374:       PetscCall(DMGlobalToLocalEnd(da,X,INSERT_VALUES,localX,ierr))

376: !  Get pointers to vector data

378:       PetscCall(VecGetArrayReadF90(localX,xx,ierr))
379:       PetscCall(VecGetArrayF90(F,ff,ierr))

381: !  Get local grid boundaries

383:       PetscCall(DMDAGetCorners(da,xs,ys,PETSC_NULL_INTEGER,xm,ym,PETSC_NULL_INTEGER,ierr))
384:       PetscCall(DMDAGetGhostCorners(da,gxs,gys,PETSC_NULL_INTEGER,gxm,gym,PETSC_NULL_INTEGER,ierr))

386: !  Compute function over the locally owned part of the grid
387:       rowf = 0
388:       do 50 j=ys,ys+ym-1

390:         row  = (j - gys)*gxm + xs - gxs
391:         do 60 i=xs,xs+xm-1
392:           row  = row + 1
393:           rowf = rowf + 1

395:           if (i .eq. 0 .or. j .eq. 0 .or. i .eq. mx-1 .or. j .eq. my-1) then
396:             ff(rowf) = xx(row)
397:             goto 60
398:           endif
399:           u   = xx(row)
400:           uxx = (two*u - xx(row-1) - xx(row+1))*hydhx
401:           uyy = (two*u - xx(row-gxm) - xx(row+gxm))*hxdhy
402:           ff(rowf) = uxx + uyy - sc*exp(u)
403:  60     continue
404:  50   continue

406: !  Restore vectors

408:        PetscCall(VecRestoreArrayReadF90(localX,xx,ierr))
409:        PetscCall(VecRestoreArrayF90(F,ff,ierr))
410:        end

412: ! -------------------------------------------------------------------
413: !
414: !   ComputeJacobian - Evaluates Jacobian matrix.
415: !
416: !   Input Parameters:
417: !   x - input vector
418: !
419: !   Output Parameters:
420: !   jac - Jacobian matrix
421: !   flag - flag indicating matrix structure
422: !
423: !   Notes:
424: !   Due to grid point reordering with DMDAs, we must always work
425: !   with the local grid points, and then transform them to the new
426: !   global numbering with the 'ltog' mapping
427: !   We cannot work directly with the global numbers for the original
428: !   uniprocessor grid!
429: !
430:       subroutine ComputeJacobian(X,jac,ierr)
431:       use ex14fmodule
432:       implicit none

434:       Vec         X
435:       Mat         jac
436:       PetscErrorCode ierr
437:       PetscInt xs,ys,xm,ym
438:       PetscInt gxs,gys,gxm,gym
439:       PetscInt grow(1),i,j
440:       PetscInt row,ione
441:       PetscInt col(5),ifive
442:       PetscScalar two,one,lambda
443:       PetscScalar v(5),hx,hy,hxdhy
444:       PetscScalar hydhx,sc
445:       ISLocalToGlobalMapping ltogm
446:       PetscScalar,pointer ::xx(:)
447:       PetscInt,pointer ::ltog(:)

449:       ione   = 1
450:       ifive  = 5
451:       one    = 1.0
452:       two    = 2.0
453:       hx     = one/(mx-1)
454:       hy     = one/(my-1)
455:       sc     = hx*hy
456:       hxdhy  = hx/hy
457:       hydhx  = hy/hx
458:       lambda = 6.0

460: !  Scatter ghost points to local vector, using the 2-step process
461: !     DMGlobalToLocalBegin(), DMGlobalToLocalEnd().
462: !  By placing code between these two statements, computations can be
463: !  done while messages are in transition.

465:       PetscCall(DMGlobalToLocalBegin(da,X,INSERT_VALUES,localX,ierr))
466:       PetscCall(DMGlobalToLocalEnd(da,X,INSERT_VALUES,localX,ierr))

468: !  Get pointer to vector data

470:       PetscCall(VecGetArrayReadF90(localX,xx,ierr))

472: !  Get local grid boundaries

474:       PetscCall(DMDAGetCorners(da,xs,ys,PETSC_NULL_INTEGER,xm,ym,PETSC_NULL_INTEGER,ierr))
475:       PetscCall(DMDAGetGhostCorners(da,gxs,gys,PETSC_NULL_INTEGER,gxm,gym,PETSC_NULL_INTEGER,ierr))

477: !  Get the global node numbers for all local nodes, including ghost points

479:       PetscCall(DMGetLocalToGlobalMapping(da,ltogm,ierr))
480:       PetscCall(ISLocalToGlobalMappingGetIndicesF90(ltogm,ltog,ierr))

482: !  Compute entries for the locally owned part of the Jacobian.
483: !   - Currently, all PETSc parallel matrix formats are partitioned by
484: !     contiguous chunks of rows across the processors. The 'grow'
485: !     parameter computed below specifies the global row number
486: !     corresponding to each local grid point.
487: !   - Each processor needs to insert only elements that it owns
488: !     locally (but any non-local elements will be sent to the
489: !     appropriate processor during matrix assembly).
490: !   - Always specify global row and columns of matrix entries.
491: !   - Here, we set all entries for a particular row at once.

493:       do 10 j=ys,ys+ym-1
494:         row = (j - gys)*gxm + xs - gxs
495:         do 20 i=xs,xs+xm-1
496:           row = row + 1
497:           grow(1) = ltog(row)
498:           if (i .eq. 0 .or. j .eq. 0 .or. i .eq. (mx-1) .or. j .eq. (my-1)) then
499:              PetscCall(MatSetValues(jac,ione,grow,ione,grow,one,INSERT_VALUES,ierr))
500:              go to 20
501:           endif
502:           v(1)   = -hxdhy
503:           col(1) = ltog(row - gxm)
504:           v(2)   = -hydhx
505:           col(2) = ltog(row - 1)
506:           v(3)   = two*(hydhx + hxdhy) - sc*lambda*exp(xx(row))
507:           col(3) = grow(1)
508:           v(4)   = -hydhx
509:           col(4) = ltog(row + 1)
510:           v(5)   = -hxdhy
511:           col(5) = ltog(row + gxm)
512:           PetscCall(MatSetValues(jac,ione,grow,ifive,col,v,INSERT_VALUES,ierr))
513:  20     continue
514:  10   continue

516:       PetscCall(ISLocalToGlobalMappingRestoreIndicesF90(ltogm,ltog,ierr))

518: !  Assemble matrix, using the 2-step process:
519: !    MatAssemblyBegin(), MatAssemblyEnd().
520: !  By placing code between these two statements, computations can be
521: !  done while messages are in transition.

523:       PetscCall(MatAssemblyBegin(jac,MAT_FINAL_ASSEMBLY,ierr))
524:       PetscCall(VecRestoreArrayReadF90(localX,xx,ierr))
525:       PetscCall(MatAssemblyEnd(jac,MAT_FINAL_ASSEMBLY,ierr))
526:       end

528: ! -------------------------------------------------------------------
529: !
530: !   MyMult - user provided matrix multiply
531: !
532: !   Input Parameters:
533: !.  X - input vector
534: !
535: !   Output Parameter:
536: !.  F - function vector
537: !
538:       subroutine  MyMult(J,X,F,ierr)
539:       use ex14fmodule
540:       implicit none

542:       Mat     J
543:       Vec     X,F
544:       PetscErrorCode ierr
545: !
546: !       Here we use the actual formed matrix B; users would
547: !     instead write their own matrix-vector product routine
548: !
549:       PetscCall(MatMult(B,X,F,ierr))
550:       end

552: !/*TEST
553: !
554: !   test:
555: !      args: -no_output -ksp_gmres_cgs_refinement_type refine_always
556: !      output_file: output/ex14_1.out
557: !      requires: !single
558: !
559: !TEST*/