Actual source code: ex57f.F90

  1: !
  2: !  Description: Modified from ex2f.F and ex52.c to illustrate how use external packages MUMPS
  3: !               Solves a linear system in parallel with KSP (Fortran code).
  4: !               Also shows how to set a user-defined monitoring routine.
  5: !
  6: ! -----------------------------------------------------------------------

  8:       program main
  9: #include <petsc/finclude/petscksp.h>
 10:       use petscksp
 11:       implicit none

 13: !
 14: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 15: !                   Variable declarations
 16: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 17: !
 18: !  Variables:
 19: !     ksp     - linear solver context
 20: !     ksp      - Krylov subspace method context
 21: !     pc       - preconditioner context
 22: !     x, b, u  - approx solution, right-hand side, exact solution vectors
 23: !     A        - matrix that defines linear system
 24: !     its      - iterations for convergence
 25: !     norm     - norm of error in solution
 26: !     rctx     - random number generator context
 27: !
 28: !  Note that vectors are declared as PETSc "Vec" objects.  These vectors
 29: !  are mathematical objects that contain more than just an array of
 30: !  double precision numbers. I.e., vectors in PETSc are not just
 31: !        double precision x(*).
 32: !  However, local vector data can be easily accessed via VecGetArray().
 33: !  See the Fortran section of the PETSc users manual for details.
 34: !
 35: #ifdef PETSC_HAVE_MUMPS
 36:       PetscInt        icntl,ival
 37:       Mat             F
 38: #endif
 39:       PC              pc
 40:       PetscReal       norm,zero
 41:       PetscInt i,j,II,JJ,m,n,its
 42:       PetscInt Istart,Iend,ione
 43:       PetscErrorCode  ierr
 44:       PetscMPIInt     rank,size
 45:       PetscBool       flg
 46:       PetscScalar     v,one,neg_one
 47:       Vec             x,b,u
 48:       Mat             A
 49:       KSP             ksp
 50:       PetscRandom     rctx
 51:       character*80    ksptype

 53: !  These variables are not currently used.
 54: !      PC          pc
 55: !      PCType      ptype
 56: !      double precision tol

 58: !  Note: Any user-defined Fortran routines (such as MyKSPMonitor)
 59: !  MUST be declared as external.

 61:       external MyKSPMonitor,MyKSPConverged

 63: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 64: !                 Beginning of program
 65: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

 67:       PetscCallA(PetscInitialize(ierr))
 68:       m = 3
 69:       n = 3
 70:       one  = 1.0
 71:       neg_one = -1.0
 72:       ione    = 1
 73:       zero    = 0.0
 74:       PetscCallA(PetscOptionsGetInt(PETSC_NULL_OPTIONS,PETSC_NULL_CHARACTER,'-m',m,flg,ierr))
 75:       PetscCallA(PetscOptionsGetInt(PETSC_NULL_OPTIONS,PETSC_NULL_CHARACTER,'-n',n,flg,ierr))
 76:       PetscCallMPIA(MPI_Comm_rank(PETSC_COMM_WORLD,rank,ierr))
 77:       PetscCallMPIA(MPI_Comm_size(PETSC_COMM_WORLD,size,ierr))

 79: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 80: !      Compute the matrix and right-hand-side vector that define
 81: !      the linear system, Ax = b.
 82: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

 84: !  Create parallel matrix, specifying only its global dimensions.
 85: !  When using MatCreate(), the matrix format can be specified at
 86: !  runtime. Also, the parallel partitioning of the matrix is
 87: !  determined by PETSc at runtime.

 89:       PetscCallA(MatCreate(PETSC_COMM_WORLD,A,ierr))
 90:       PetscCallA(MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,m*n,m*n,ierr))
 91:       PetscCallA(MatSetFromOptions(A,ierr))
 92:       PetscCallA(MatSetUp(A,ierr))

 94: !  Currently, all PETSc parallel matrix formats are partitioned by
 95: !  contiguous chunks of rows across the processors.  Determine which
 96: !  rows of the matrix are locally owned.

 98:       PetscCallA(MatGetOwnershipRange(A,Istart,Iend,ierr))

100: !  Set matrix elements for the 2-D, five-point stencil in parallel.
101: !   - Each processor needs to insert only elements that it owns
102: !     locally (but any non-local elements will be sent to the
103: !     appropriate processor during matrix assembly).
104: !   - Always specify global row and columns of matrix entries.
105: !   - Note that MatSetValues() uses 0-based row and column numbers
106: !     in Fortran as well as in C.

108: !     Note: this uses the less common natural ordering that orders first
109: !     all the unknowns for x = h then for x = 2h etc; Hence you see JH = II +- n
110: !     instead of JJ = II +- m as you might expect. The more standard ordering
111: !     would first do all variables for y = h, then y = 2h etc.

113:       do 10, II=Istart,Iend-1
114:         v = -1.0
115:         i = II/n
116:         j = II - i*n
117:         if (i.gt.0) then
118:           JJ = II - n
119:           PetscCallA(MatSetValues(A,ione,[II],ione,[JJ],[v],INSERT_VALUES,ierr))
120:         endif
121:         if (i.lt.m-1) then
122:           JJ = II + n
123:           PetscCallA(MatSetValues(A,ione,[II],ione,[JJ],[v],INSERT_VALUES,ierr))
124:         endif
125:         if (j.gt.0) then
126:           JJ = II - 1
127:           PetscCallA(MatSetValues(A,ione,[II],ione,[JJ],[v],INSERT_VALUES,ierr))
128:         endif
129:         if (j.lt.n-1) then
130:           JJ = II + 1
131:           PetscCallA(MatSetValues(A,ione,[II],ione,[JJ],[v],INSERT_VALUES,ierr))
132:         endif
133:         v = 4.0
134:         PetscCallA( MatSetValues(A,ione,[II],ione,[II],[v],INSERT_VALUES,ierr))
135:  10   continue
136:       PetscCallA(MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY,ierr))
137:       PetscCallA(MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY,ierr))

139: !   Check if A is symmetric
140:       if (size == 1) then
141:         PetscCallA(MatIsSymmetric(A,zero,flg,ierr))
142:         if (flg .eqv. PETSC_FALSE) then
143:           write(6,120)
144:         endif
145:       endif

147: !  Create parallel vectors.
148: !   - Here, the parallel partitioning of the vector is determined by
149: !     PETSc at runtime.  We could also specify the local dimensions
150: !     if desired -- or use the more general routine VecCreate().
151: !   - When solving a linear system, the vectors and matrices MUST
152: !     be partitioned accordingly.  PETSc automatically generates
153: !     appropriately partitioned matrices and vectors when MatCreate()
154: !     and VecCreate() are used with the same communicator.
155: !   - Note: We form 1 vector from scratch and then duplicate as needed.

157:       PetscCallA(VecCreateFromOptions(PETSC_COMM_WORLD,PETSC_NULL_CHARACTER,ione,PETSC_DECIDE,m*n,u,ierr))
158:       PetscCallA(VecSetFromOptions(u,ierr))
159:       PetscCallA(VecDuplicate(u,b,ierr))
160:       PetscCallA(VecDuplicate(b,x,ierr))

162: !  Set exact solution; then compute right-hand-side vector.
163: !  By default we use an exact solution of a vector with all
164: !  elements of 1.0;  Alternatively, using the runtime option
165: !  -random_sol forms a solution vector with random components.

167:       PetscCallA(PetscOptionsHasName(PETSC_NULL_OPTIONS,PETSC_NULL_CHARACTER,'-random_exact_sol',flg,ierr))
168:       if (flg) then
169:          PetscCallA(PetscRandomCreate(PETSC_COMM_WORLD,rctx,ierr))
170:          PetscCallA(PetscRandomSetFromOptions(rctx,ierr))
171:          PetscCallA(VecSetRandom(u,rctx,ierr))
172:          PetscCallA(PetscRandomDestroy(rctx,ierr))
173:       else
174:          PetscCallA(VecSet(u,one,ierr))
175:       endif
176:       PetscCallA(MatMult(A,u,b,ierr))

178: !  View the exact solution vector if desired

180:       PetscCallA(PetscOptionsHasName(PETSC_NULL_OPTIONS,PETSC_NULL_CHARACTER,'-view_exact_sol',flg,ierr))
181:       if (flg) then
182:          PetscCallA(VecView(u,PETSC_VIEWER_STDOUT_WORLD,ierr))
183:       endif

185: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
186: !         Create the linear solver and set various options
187: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

189: !  Create linear solver context

191:       PetscCallA(KSPCreate(PETSC_COMM_WORLD,ksp,ierr))

193: !  Set operators. Here the matrix that defines the linear system
194: !  also serves as the preconditioning matrix.

196:       PetscCallA(KSPSetOperators(ksp,A,A,ierr))

198:       PetscCallA(KSPSetType(ksp,KSPPREONLY,ierr))
199:       PetscCallA(KSPGetType(ksp,ksptype,ierr))
200:       PetscCheckA(ksptype == KSPPREONLY,PETSC_COMM_WORLD,PETSC_ERR_PLIB,'Error')
201:       PetscCallA(KSPGetPC(ksp,pc,ierr))
202:       PetscCallA(PCSetType(pc,PCCHOLESKY,ierr))
203: #ifdef PETSC_HAVE_MUMPS
204:       PetscCallA(PCFactorSetMatSolverType(pc,MATSOLVERMUMPS,ierr))
205:       PetscCallA(PCFactorSetUpMatSolverType(pc,ierr))
206:       PetscCallA(PCFactorGetMatrix(pc,F,ierr))
207:       PetscCallA(KSPSetFromOptions(ksp,ierr))
208:       icntl = 7; ival = 2;
209:       PetscCallA(MatMumpsSetIcntl(F,icntl,ival,ierr))
210: #endif

212: !  Set runtime options, e.g.,
213: !      -ksp_type <type> -pc_type <type> -ksp_monitor -ksp_rtol <rtol>
214: !  These options will override those specified above as long as
215: !  KSPSetFromOptions() is called _after_ any other customization
216: !  routines.

218:       PetscCallA(KSPSetFromOptions(ksp,ierr))

220: !  Set convergence test routine if desired

222:       PetscCallA(PetscOptionsHasName(PETSC_NULL_OPTIONS,PETSC_NULL_CHARACTER,'-my_ksp_convergence',flg,ierr))
223:       if (flg) then
224:         PetscCallA(KSPSetConvergenceTest(ksp,MyKSPConverged,0,PETSC_NULL_FUNCTION,ierr))
225:       endif
226: !
227: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
228: !                      Solve the linear system
229: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

231:       PetscCallA(KSPSolve(ksp,b,x,ierr))

233: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
234: !                     Check solution and clean up
235: ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

237: !  Check the error
238:       PetscCallA(VecAXPY(x,neg_one,u,ierr))
239:       PetscCallA(VecNorm(x,NORM_2,norm,ierr))
240:       PetscCallA(KSPGetIterationNumber(ksp,its,ierr))
241:       if (rank .eq. 0) then
242:          write(6,100) norm,its
243:       endif
244:   100 format('Norm of error ',e11.4,' iterations ',i5)
245:   120 format('Matrix A is non-symmetric ')

247: !  Free work space.  All PETSc objects should be destroyed when they
248: !  are no longer needed.

250:       PetscCallA(KSPDestroy(ksp,ierr))
251:       PetscCallA(VecDestroy(u,ierr))
252:       PetscCallA(VecDestroy(x,ierr))
253:       PetscCallA(VecDestroy(b,ierr))
254:       PetscCallA(MatDestroy(A,ierr))

256: !  Always call PetscFinalize() before exiting a program.  This routine
257: !    - finalizes the PETSc libraries as well as MPI
258: !    - provides summary and diagnostic information if certain runtime
259: !      options are chosen (e.g., -log_view).  See PetscFinalize()
260: !      manpage for more information.

262:       PetscCallA(PetscFinalize(ierr))
263:       end

265: ! --------------------------------------------------------------
266: !
267: !  MyKSPMonitor - This is a user-defined routine for monitoring
268: !  the KSP iterative solvers.
269: !
270: !  Input Parameters:
271: !    ksp   - iterative context
272: !    n     - iteration number
273: !    rnorm - 2-norm (preconditioned) residual value (may be estimated)
274: !    dummy - optional user-defined monitor context (unused here)
275: !
276:       subroutine MyKSPMonitor(ksp,n,rnorm,dummy,ierr)
277:       use petscksp
278:       implicit none

280:       KSP              ksp
281:       Vec              x
282:       PetscErrorCode ierr
283:       PetscInt n,dummy
284:       PetscMPIInt rank
285:       PetscReal rnorm

287: !  Build the solution vector

289:       PetscCallA(KSPBuildSolution(ksp,PETSC_NULL_VEC,x,ierr))

291: !  Write the solution vector and residual norm to stdout
292: !   - Note that the parallel viewer PETSC_VIEWER_STDOUT_WORLD
293: !     handles data from multiple processors so that the
294: !     output is not jumbled.

296:       PetscCallMPIA(MPI_Comm_rank(PETSC_COMM_WORLD,rank,ierr))
297:       if (rank .eq. 0) write(6,100) n
298:       PetscCallA(VecView(x,PETSC_VIEWER_STDOUT_WORLD,ierr))
299:       if (rank .eq. 0) write(6,200) n,rnorm

301:  100  format('iteration ',i5,' solution vector:')
302:  200  format('iteration ',i5,' residual norm ',e11.4)
303:       ierr = 0
304:       end

306: ! --------------------------------------------------------------
307: !
308: !  MyKSPConverged - This is a user-defined routine for testing
309: !  convergence of the KSP iterative solvers.
310: !
311: !  Input Parameters:
312: !    ksp   - iterative context
313: !    n     - iteration number
314: !    rnorm - 2-norm (preconditioned) residual value (may be estimated)
315: !    dummy - optional user-defined monitor context (unused here)
316: !
317:       subroutine MyKSPConverged(ksp,n,rnorm,flag,dummy,ierr)
318:       use petscksp
319:       implicit none

321:       KSP              ksp
322:       PetscErrorCode ierr
323:       PetscInt n,dummy
324:       KSPConvergedReason flag
325:       PetscReal rnorm

327:       if (rnorm .le. .05) then
328:         flag = 1
329:       else
330:         flag = 0
331:       endif
332:       ierr = 0

334:       end

336: !/*TEST
337: !
338: !     test:
339: !
340: !TEST*/