Actual source code: pcmpi.c
1: /*
2: This file creates an MPI parallel KSP from a sequential PC that lives on MPI rank 0.
3: It is intended to allow using PETSc MPI parallel linear solvers from non-MPI codes.
5: That program may use OpenMP to compute the right-hand side and matrix for the linear system
7: The code uses MPI_COMM_WORLD below but maybe it should be PETSC_COMM_WORLD
9: The resulting KSP and PC can only be controlled via the options database, though some common commands
10: could be passed through the server.
12: */
13: #include <petsc/private/pcimpl.h>
14: #include <petsc/private/kspimpl.h>
15: #include <petscts.h>
16: #include <petsctao.h>
17: #if defined(PETSC_HAVE_PTHREAD_MUTEX)
18: #include <pthread.h>
19: #endif
21: #define PC_MPI_MAX_RANKS 256
22: #define PC_MPI_COMM_WORLD MPI_COMM_WORLD
24: typedef struct {
25: KSP ksps[PC_MPI_MAX_RANKS]; /* The addresses of the MPI parallel KSP on each process, NULL when not on a process. */
26: PetscMPIInt sendcount[PC_MPI_MAX_RANKS], displ[PC_MPI_MAX_RANKS]; /* For scatter/gather of rhs/solution */
27: PetscMPIInt NZ[PC_MPI_MAX_RANKS], NZdispl[PC_MPI_MAX_RANKS]; /* For scatter of nonzero values in matrix (and nonzero column indices initially */
28: PetscInt mincntperrank; /* minimum number of desired matrix rows per active rank in MPI parallel KSP solve */
29: PetscBool alwaysuseserver; /* for debugging use the server infrastructure even if only one MPI process is used for the solve */
30: } PC_MPI;
32: typedef enum {
33: PCMPI_EXIT, /* exit the PC server loop, means the controlling sequential program is done */
34: PCMPI_CREATE,
35: PCMPI_SET_MAT, /* set original matrix (or one with different nonzero pattern) */
36: PCMPI_UPDATE_MAT_VALUES, /* update current matrix with new nonzero values */
37: PCMPI_SOLVE,
38: PCMPI_VIEW,
39: PCMPI_DESTROY /* destroy a PC that is no longer needed */
40: } PCMPICommand;
42: static MPI_Comm PCMPIComms[PC_MPI_MAX_RANKS];
43: static PetscBool PCMPICommSet = PETSC_FALSE;
44: static PetscInt PCMPISolveCounts[PC_MPI_MAX_RANKS], PCMPIKSPCounts[PC_MPI_MAX_RANKS], PCMPIMatCounts[PC_MPI_MAX_RANKS], PCMPISolveCountsSeq = 0, PCMPIKSPCountsSeq = 0;
45: static PetscInt PCMPIIterations[PC_MPI_MAX_RANKS], PCMPISizes[PC_MPI_MAX_RANKS], PCMPIIterationsSeq = 0, PCMPISizesSeq = 0;
46: static PetscLogEvent EventServerDist, EventServerDistMPI;
47: #if defined(PETSC_HAVE_PTHREAD_MUTEX)
48: static pthread_mutex_t *PCMPIServerLocks;
49: #else
50: static void *PCMPIServerLocks;
51: #endif
53: static PetscErrorCode PCMPICommsCreate(void)
54: {
55: MPI_Comm comm = PC_MPI_COMM_WORLD;
56: PetscMPIInt size, rank, i;
58: PetscFunctionBegin;
59: PetscCallMPI(MPI_Comm_size(comm, &size));
60: PetscCheck(size <= PC_MPI_MAX_RANKS, PETSC_COMM_SELF, PETSC_ERR_SUP, "No support for using more than PC_MPI_MAX_RANKS MPI ranks in an MPI linear solver server solve");
61: PetscCallMPI(MPI_Comm_rank(comm, &rank));
62: /* comm for size 1 is useful only for debugging */
63: for (i = 0; i < size; i++) {
64: PetscMPIInt color = rank < i + 1 ? 0 : MPI_UNDEFINED;
65: PetscCallMPI(MPI_Comm_split(comm, color, 0, &PCMPIComms[i]));
66: PCMPISolveCounts[i] = 0;
67: PCMPIKSPCounts[i] = 0;
68: PCMPIIterations[i] = 0;
69: PCMPISizes[i] = 0;
70: }
71: PCMPICommSet = PETSC_TRUE;
72: PetscFunctionReturn(PETSC_SUCCESS);
73: }
75: static PetscErrorCode PCMPICommsDestroy(void)
76: {
77: MPI_Comm comm = PC_MPI_COMM_WORLD;
78: PetscMPIInt size, rank, i;
80: PetscFunctionBegin;
81: if (!PCMPICommSet) PetscFunctionReturn(PETSC_SUCCESS);
82: PetscCallMPI(MPI_Comm_size(comm, &size));
83: PetscCallMPI(MPI_Comm_rank(comm, &rank));
84: for (i = 0; i < size; i++) {
85: if (PCMPIComms[i] != MPI_COMM_NULL) PetscCallMPI(MPI_Comm_free(&PCMPIComms[i]));
86: }
87: PCMPICommSet = PETSC_FALSE;
88: PetscFunctionReturn(PETSC_SUCCESS);
89: }
91: static PetscErrorCode PCMPICreate(PC pc)
92: {
93: PC_MPI *km = pc ? (PC_MPI *)pc->data : NULL;
94: MPI_Comm comm = PC_MPI_COMM_WORLD;
95: KSP ksp;
96: PetscInt N[2], mincntperrank = 0;
97: PetscMPIInt size;
98: Mat sA;
99: char *cprefix = NULL;
100: PetscMPIInt len = 0;
102: PetscFunctionBegin;
103: PCMPIServerInSolve = PETSC_TRUE;
104: if (!PCMPICommSet) PetscCall(PCMPICommsCreate());
105: PetscCallMPI(MPI_Comm_size(comm, &size));
106: if (pc) {
107: if (size == 1) PetscCall(PetscPrintf(PETSC_COMM_SELF, "Warning: Running KSP type of MPI on a one rank MPI run, this will be less efficient then not using this type\n"));
108: PetscCall(PCGetOperators(pc, &sA, &sA));
109: PetscCall(MatGetSize(sA, &N[0], &N[1]));
110: }
111: PetscCallMPI(MPI_Bcast(N, 2, MPIU_INT, 0, comm));
113: /* choose a suitable sized MPI_Comm for the problem to be solved on */
114: if (km) mincntperrank = km->mincntperrank;
115: PetscCallMPI(MPI_Bcast(&mincntperrank, 1, MPI_INT, 0, comm));
116: comm = PCMPIComms[PetscMin(size, PetscMax(1, N[0] / mincntperrank)) - 1];
117: if (comm == MPI_COMM_NULL) {
118: ksp = NULL;
119: PCMPIServerInSolve = PETSC_FALSE;
120: PetscFunctionReturn(PETSC_SUCCESS);
121: }
122: PetscCall(PetscLogStagePush(PCMPIStage));
123: PetscCall(KSPCreate(comm, &ksp));
124: PetscCall(KSPSetNestLevel(ksp, 1));
125: PetscCall(PetscObjectSetTabLevel((PetscObject)ksp, 1));
126: PetscCall(PetscLogStagePop());
127: PetscCallMPI(MPI_Gather(&ksp, 1, MPI_AINT, pc ? km->ksps : NULL, 1, MPI_AINT, 0, comm));
128: if (pc) {
129: size_t slen;
130: const char *prefix = NULL;
131: char *found = NULL;
133: PetscCallMPI(MPI_Comm_size(comm, &size));
134: PCMPIKSPCounts[size - 1]++;
135: /* Created KSP gets prefix of PC minus the mpi_linear_solver_server_ portion */
136: PetscCall(PCGetOptionsPrefix(pc, &prefix));
137: PetscCheck(prefix, PETSC_COMM_SELF, PETSC_ERR_PLIB, "PCMPI missing required prefix");
138: PetscCall(PetscStrallocpy(prefix, &cprefix));
139: PetscCall(PetscStrstr(cprefix, "mpi_linear_solver_server_", &found));
140: PetscCheck(found, PETSC_COMM_SELF, PETSC_ERR_PLIB, "PCMPI missing mpi_linear_solver_server_ portion of prefix");
141: *found = 0;
142: PetscCall(PetscStrlen(cprefix, &slen));
143: len = (PetscMPIInt)slen;
144: }
145: PetscCallMPI(MPI_Bcast(&len, 1, MPI_INT, 0, comm));
146: if (len) {
147: if (!pc) PetscCall(PetscMalloc1(len + 1, &cprefix));
148: PetscCallMPI(MPI_Bcast(cprefix, len + 1, MPI_CHAR, 0, comm));
149: PetscCall(KSPSetOptionsPrefix(ksp, cprefix));
150: }
151: PetscCall(PetscFree(cprefix));
152: PCMPIServerInSolve = PETSC_FALSE;
153: PetscFunctionReturn(PETSC_SUCCESS);
154: }
156: static PetscErrorCode PCMPISetMat(PC pc)
157: {
158: PC_MPI *km = pc ? (PC_MPI *)pc->data : NULL;
159: Mat A;
160: PetscInt m, n, j, bs;
161: Mat sA;
162: MPI_Comm comm = PC_MPI_COMM_WORLD;
163: KSP ksp;
164: PetscLayout layout;
165: const PetscInt *IA = NULL, *JA = NULL, *ia, *ja;
166: const PetscInt *range;
167: PetscMPIInt *NZ = NULL, sendcounti[PC_MPI_MAX_RANKS], displi[PC_MPI_MAX_RANKS], *NZdispl = NULL, nz, size, i;
168: const PetscScalar *a = NULL, *sa;
169: PetscInt matproperties[8] = {0}, rstart, rend;
170: char *cprefix;
172: PetscFunctionBegin;
173: PetscCallMPI(MPI_Scatter(pc ? km->ksps : NULL, 1, MPI_AINT, &ksp, 1, MPI_AINT, 0, comm));
174: if (!ksp) PetscFunctionReturn(PETSC_SUCCESS);
175: PCMPIServerInSolve = PETSC_TRUE;
176: PetscCall(PetscLogEventBegin(EventServerDist, NULL, NULL, NULL, NULL));
177: PetscCall(PetscObjectGetComm((PetscObject)ksp, &comm));
178: if (pc) {
179: PetscBool isset, issymmetric, ishermitian, isspd, isstructurallysymmetric;
180: const char *prefix;
181: size_t clen;
183: PetscCallMPI(MPI_Comm_size(comm, &size));
184: PCMPIMatCounts[size - 1]++;
185: PetscCall(PCGetOperators(pc, &sA, &sA));
186: PetscCall(MatGetSize(sA, &matproperties[0], &matproperties[1]));
187: PetscCall(MatGetBlockSize(sA, &bs));
188: matproperties[2] = bs;
189: PetscCall(MatIsSymmetricKnown(sA, &isset, &issymmetric));
190: matproperties[3] = !isset ? 0 : (issymmetric ? 1 : 2);
191: PetscCall(MatIsHermitianKnown(sA, &isset, &ishermitian));
192: matproperties[4] = !isset ? 0 : (ishermitian ? 1 : 2);
193: PetscCall(MatIsSPDKnown(sA, &isset, &isspd));
194: matproperties[5] = !isset ? 0 : (isspd ? 1 : 2);
195: PetscCall(MatIsStructurallySymmetricKnown(sA, &isset, &isstructurallysymmetric));
196: matproperties[6] = !isset ? 0 : (isstructurallysymmetric ? 1 : 2);
197: /* Created Mat gets prefix of input Mat PLUS the mpi_linear_solver_server_ portion */
198: PetscCall(MatGetOptionsPrefix(sA, &prefix));
199: PetscCall(PetscStrallocpy(prefix, &cprefix));
200: PetscCall(PetscStrlen(cprefix, &clen));
201: matproperties[7] = (PetscInt)clen;
202: }
203: PetscCallMPI(MPI_Bcast(matproperties, PETSC_STATIC_ARRAY_LENGTH(matproperties), MPIU_INT, 0, comm));
205: /* determine ownership ranges of matrix columns */
206: PetscCall(PetscLayoutCreate(comm, &layout));
207: PetscCall(PetscLayoutSetBlockSize(layout, matproperties[2]));
208: PetscCall(PetscLayoutSetSize(layout, matproperties[1]));
209: PetscCall(PetscLayoutSetUp(layout));
210: PetscCall(PetscLayoutGetLocalSize(layout, &n));
211: PetscCall(PetscLayoutDestroy(&layout));
213: /* determine ownership ranges of matrix rows */
214: PetscCall(PetscLayoutCreate(comm, &layout));
215: PetscCall(PetscLayoutSetBlockSize(layout, matproperties[2]));
216: PetscCall(PetscLayoutSetSize(layout, matproperties[0]));
217: PetscCall(PetscLayoutSetUp(layout));
218: PetscCall(PetscLayoutGetLocalSize(layout, &m));
219: PetscCall(PetscLayoutGetRange(layout, &rstart, &rend));
221: PetscCall(PetscLogEventBegin(EventServerDistMPI, NULL, NULL, NULL, NULL));
222: /* copy over the matrix nonzero structure and values */
223: if (pc) {
224: PetscCall(MatGetRowIJ(sA, 0, PETSC_FALSE, PETSC_FALSE, NULL, &IA, &JA, NULL));
225: if (!PCMPIServerUseShmget) {
226: NZ = km->NZ;
227: NZdispl = km->NZdispl;
228: PetscCall(PetscLayoutGetRanges(layout, &range));
229: for (i = 0; i < size; i++) {
230: sendcounti[i] = (PetscMPIInt)(1 + range[i + 1] - range[i]);
231: NZ[i] = (PetscMPIInt)(IA[range[i + 1]] - IA[range[i]]);
232: }
233: displi[0] = 0;
234: NZdispl[0] = 0;
235: for (j = 1; j < size; j++) {
236: displi[j] = displi[j - 1] + sendcounti[j - 1] - 1;
237: NZdispl[j] = NZdispl[j - 1] + NZ[j - 1];
238: }
239: }
240: PetscCall(MatSeqAIJGetArrayRead(sA, &sa));
241: }
242: PetscCall(PetscLayoutDestroy(&layout));
244: PetscCall(MatCreate(comm, &A));
245: if (matproperties[7] > 0) {
246: if (!pc) PetscCall(PetscMalloc1(matproperties[7] + 1, &cprefix));
247: PetscCallMPI(MPI_Bcast(cprefix, (PetscMPIInt)(matproperties[7] + 1), MPI_CHAR, 0, comm));
248: PetscCall(MatSetOptionsPrefix(A, cprefix));
249: PetscCall(PetscFree(cprefix));
250: }
251: PetscCall(MatAppendOptionsPrefix(A, "mpi_linear_solver_server_"));
252: PetscCall(MatSetSizes(A, m, n, matproperties[0], matproperties[1]));
253: PetscCall(MatSetType(A, MATMPIAIJ));
255: if (!PCMPIServerUseShmget) {
256: PetscMPIInt in;
257: PetscCallMPI(MPI_Scatter(NZ, 1, MPI_INT, &nz, 1, MPI_INT, 0, comm));
258: PetscCall(PetscMalloc3(n + 1, &ia, nz, &ja, nz, &a));
259: PetscCall(PetscMPIIntCast(n, &in));
260: PetscCallMPI(MPI_Scatterv(IA, sendcounti, displi, MPIU_INT, (void *)ia, in + 1, MPIU_INT, 0, comm));
261: PetscCallMPI(MPI_Scatterv(JA, NZ, NZdispl, MPIU_INT, (void *)ja, nz, MPIU_INT, 0, comm));
262: PetscCallMPI(MPI_Scatterv(sa, NZ, NZdispl, MPIU_SCALAR, (void *)a, nz, MPIU_SCALAR, 0, comm));
263: } else {
264: const void *addr[3] = {(const void **)IA, (const void **)JA, (const void **)sa};
265: PCMPIServerAddresses *addresses;
267: PetscCall(PetscNew(&addresses));
268: addresses->n = 3;
269: PetscCall(PetscShmgetMapAddresses(comm, addresses->n, addr, addresses->addr));
270: ia = rstart + (PetscInt *)addresses->addr[0];
271: ja = ia[0] + (PetscInt *)addresses->addr[1];
272: a = ia[0] + (PetscScalar *)addresses->addr[2];
273: PetscCall(PetscObjectContainerCompose((PetscObject)A, "PCMPIServerAddresses", (void *)addresses, (PetscErrorCode (*)(void *))PCMPIServerAddressesDestroy));
274: }
276: if (pc) {
277: PetscCall(MatSeqAIJRestoreArrayRead(sA, &sa));
278: PetscCall(MatRestoreRowIJ(sA, 0, PETSC_FALSE, PETSC_FALSE, NULL, &IA, &JA, NULL));
279: }
280: PetscCall(PetscLogEventEnd(EventServerDistMPI, NULL, NULL, NULL, NULL));
282: PetscCall(PetscLogStagePush(PCMPIStage));
283: PetscCall(MatMPIAIJSetPreallocationCSR(A, ia, ja, a));
284: PetscCall(MatSetBlockSize(A, matproperties[2]));
286: if (matproperties[3]) PetscCall(MatSetOption(A, MAT_SYMMETRIC, matproperties[3] == 1 ? PETSC_TRUE : PETSC_FALSE));
287: if (matproperties[4]) PetscCall(MatSetOption(A, MAT_HERMITIAN, matproperties[4] == 1 ? PETSC_TRUE : PETSC_FALSE));
288: if (matproperties[5]) PetscCall(MatSetOption(A, MAT_SPD, matproperties[5] == 1 ? PETSC_TRUE : PETSC_FALSE));
289: if (matproperties[6]) PetscCall(MatSetOption(A, MAT_STRUCTURALLY_SYMMETRIC, matproperties[6] == 1 ? PETSC_TRUE : PETSC_FALSE));
291: if (!PCMPIServerUseShmget) PetscCall(PetscFree3(ia, ja, a));
292: PetscCall(KSPSetOperators(ksp, A, A));
293: if (!ksp->vec_sol) PetscCall(MatCreateVecs(A, &ksp->vec_sol, &ksp->vec_rhs));
294: PetscCall(PetscLogStagePop());
295: if (pc && !PCMPIServerUseShmget) { /* needed for scatterv/gatherv of rhs and solution */
296: const PetscInt *range;
298: PetscCall(VecGetOwnershipRanges(ksp->vec_sol, &range));
299: for (i = 0; i < size; i++) {
300: km->sendcount[i] = (PetscMPIInt)(range[i + 1] - range[i]);
301: km->displ[i] = (PetscMPIInt)range[i];
302: }
303: }
304: PetscCall(MatDestroy(&A));
305: PetscCall(PetscLogEventEnd(EventServerDist, NULL, NULL, NULL, NULL));
306: PetscCall(KSPSetFromOptions(ksp));
307: PCMPIServerInSolve = PETSC_FALSE;
308: PetscFunctionReturn(PETSC_SUCCESS);
309: }
311: static PetscErrorCode PCMPIUpdateMatValues(PC pc)
312: {
313: PC_MPI *km = pc ? (PC_MPI *)pc->data : NULL;
314: KSP ksp;
315: Mat sA, A;
316: MPI_Comm comm = PC_MPI_COMM_WORLD;
317: const PetscInt *ia, *IA;
318: const PetscScalar *a;
319: PetscCount nz;
320: const PetscScalar *sa = NULL;
321: PetscMPIInt size;
322: PetscInt rstart, matproperties[4] = {0, 0, 0, 0};
324: PetscFunctionBegin;
325: if (pc) {
326: PetscCall(PCGetOperators(pc, &sA, &sA));
327: PetscCall(MatSeqAIJGetArrayRead(sA, &sa));
328: PetscCall(MatGetRowIJ(sA, 0, PETSC_FALSE, PETSC_FALSE, NULL, &IA, NULL, NULL));
329: }
330: PetscCallMPI(MPI_Scatter(pc ? km->ksps : NULL, 1, MPI_AINT, &ksp, 1, MPI_AINT, 0, comm));
331: if (!ksp) PetscFunctionReturn(PETSC_SUCCESS);
332: PCMPIServerInSolve = PETSC_TRUE;
333: PetscCall(PetscLogEventBegin(EventServerDist, NULL, NULL, NULL, NULL));
334: PetscCall(PetscObjectGetComm((PetscObject)ksp, &comm));
335: PetscCallMPI(MPI_Comm_size(comm, &size));
336: PCMPIMatCounts[size - 1]++;
337: PetscCall(KSPGetOperators(ksp, NULL, &A));
338: PetscCall(PetscLogEventBegin(EventServerDistMPI, NULL, NULL, NULL, NULL));
339: if (!PCMPIServerUseShmget) {
340: PetscMPIInt mpi_nz;
342: PetscCall(MatMPIAIJGetNumberNonzeros(A, &nz));
343: PetscCall(PetscMPIIntCast(nz, &mpi_nz));
344: PetscCall(PetscMalloc1(nz, &a));
345: PetscCallMPI(MPI_Scatterv(sa, pc ? km->NZ : NULL, pc ? km->NZdispl : NULL, MPIU_SCALAR, (void *)a, mpi_nz, MPIU_SCALAR, 0, comm));
346: } else {
347: PetscCall(MatGetOwnershipRange(A, &rstart, NULL));
348: PCMPIServerAddresses *addresses;
349: PetscCall(PetscObjectContainerQuery((PetscObject)A, "PCMPIServerAddresses", (void **)&addresses));
350: ia = rstart + (PetscInt *)addresses->addr[0];
351: a = ia[0] + (PetscScalar *)addresses->addr[2];
352: }
353: PetscCall(PetscLogEventEnd(EventServerDistMPI, NULL, NULL, NULL, NULL));
354: if (pc) {
355: PetscBool isset, issymmetric, ishermitian, isspd, isstructurallysymmetric;
357: PetscCall(MatSeqAIJRestoreArrayRead(sA, &sa));
358: PetscCall(MatRestoreRowIJ(sA, 0, PETSC_FALSE, PETSC_FALSE, NULL, &IA, NULL, NULL));
360: PetscCall(MatIsSymmetricKnown(sA, &isset, &issymmetric));
361: matproperties[0] = !isset ? 0 : (issymmetric ? 1 : 2);
362: PetscCall(MatIsHermitianKnown(sA, &isset, &ishermitian));
363: matproperties[1] = !isset ? 0 : (ishermitian ? 1 : 2);
364: PetscCall(MatIsSPDKnown(sA, &isset, &isspd));
365: matproperties[2] = !isset ? 0 : (isspd ? 1 : 2);
366: PetscCall(MatIsStructurallySymmetricKnown(sA, &isset, &isstructurallysymmetric));
367: matproperties[3] = !isset ? 0 : (isstructurallysymmetric ? 1 : 2);
368: }
369: PetscCall(MatUpdateMPIAIJWithArray(A, a));
370: if (!PCMPIServerUseShmget) PetscCall(PetscFree(a));
371: PetscCallMPI(MPI_Bcast(matproperties, 4, MPIU_INT, 0, comm));
372: /* if any of these properties was previously set and is now not set this will result in incorrect properties in A since there is no way to unset a property */
373: if (matproperties[0]) PetscCall(MatSetOption(A, MAT_SYMMETRIC, matproperties[0] == 1 ? PETSC_TRUE : PETSC_FALSE));
374: if (matproperties[1]) PetscCall(MatSetOption(A, MAT_HERMITIAN, matproperties[1] == 1 ? PETSC_TRUE : PETSC_FALSE));
375: if (matproperties[2]) PetscCall(MatSetOption(A, MAT_SPD, matproperties[2] == 1 ? PETSC_TRUE : PETSC_FALSE));
376: if (matproperties[3]) PetscCall(MatSetOption(A, MAT_STRUCTURALLY_SYMMETRIC, matproperties[3] == 1 ? PETSC_TRUE : PETSC_FALSE));
377: PetscCall(PetscLogEventEnd(EventServerDist, NULL, NULL, NULL, NULL));
378: PCMPIServerInSolve = PETSC_FALSE;
379: PetscFunctionReturn(PETSC_SUCCESS);
380: }
382: static PetscErrorCode PCMPISolve(PC pc, Vec B, Vec X)
383: {
384: PC_MPI *km = pc ? (PC_MPI *)pc->data : NULL;
385: KSP ksp;
386: MPI_Comm comm = PC_MPI_COMM_WORLD;
387: const PetscScalar *sb = NULL, *x;
388: PetscScalar *b, *sx = NULL;
389: PetscInt its, n;
390: PetscMPIInt size;
391: void *addr[2];
393: PetscFunctionBegin;
394: PetscCallMPI(MPI_Scatter(pc ? km->ksps : &ksp, 1, MPI_AINT, &ksp, 1, MPI_AINT, 0, comm));
395: if (!ksp) PetscFunctionReturn(PETSC_SUCCESS);
396: PCMPIServerInSolve = PETSC_TRUE;
397: PetscCall(PetscLogEventBegin(EventServerDist, NULL, NULL, NULL, NULL));
398: PetscCall(PetscObjectGetComm((PetscObject)ksp, &comm));
400: /* scatterv rhs */
401: PetscCallMPI(MPI_Comm_size(comm, &size));
402: if (pc) {
403: PetscInt N;
405: PCMPISolveCounts[size - 1]++;
406: PetscCall(MatGetSize(pc->pmat, &N, NULL));
407: PCMPISizes[size - 1] += N;
408: }
409: PetscCall(VecGetLocalSize(ksp->vec_rhs, &n));
410: PetscCall(PetscLogEventBegin(EventServerDistMPI, NULL, NULL, NULL, NULL));
411: if (!PCMPIServerUseShmget) {
412: PetscMPIInt in;
414: PetscCall(VecGetArray(ksp->vec_rhs, &b));
415: if (pc) PetscCall(VecGetArrayRead(B, &sb));
416: PetscCall(PetscMPIIntCast(n, &in));
417: PetscCallMPI(MPI_Scatterv(sb, pc ? km->sendcount : NULL, pc ? km->displ : NULL, MPIU_SCALAR, b, in, MPIU_SCALAR, 0, comm));
418: if (pc) PetscCall(VecRestoreArrayRead(B, &sb));
419: PetscCall(VecRestoreArray(ksp->vec_rhs, &b));
420: // TODO: scatter initial guess if needed
421: } else {
422: PetscInt rstart;
424: if (pc) PetscCall(VecGetArrayRead(B, &sb));
425: if (pc) PetscCall(VecGetArray(X, &sx));
426: const void *inaddr[2] = {(const void **)sb, (const void **)sx};
427: if (pc) PetscCall(VecRestoreArray(X, &sx));
428: if (pc) PetscCall(VecRestoreArrayRead(B, &sb));
430: PetscCall(PetscShmgetMapAddresses(comm, 2, inaddr, addr));
431: PetscCall(VecGetOwnershipRange(ksp->vec_rhs, &rstart, NULL));
432: PetscCall(VecPlaceArray(ksp->vec_rhs, rstart + (PetscScalar *)addr[0]));
433: PetscCall(VecPlaceArray(ksp->vec_sol, rstart + (PetscScalar *)addr[1]));
434: }
435: PetscCall(PetscLogEventEnd(EventServerDistMPI, NULL, NULL, NULL, NULL));
437: PetscCall(PetscLogEventEnd(EventServerDist, NULL, NULL, NULL, NULL));
438: PetscCall(PetscLogStagePush(PCMPIStage));
439: PetscCall(KSPSolve(ksp, NULL, NULL));
440: PetscCall(PetscLogStagePop());
441: PetscCall(PetscLogEventBegin(EventServerDist, NULL, NULL, NULL, NULL));
442: PetscCall(KSPGetIterationNumber(ksp, &its));
443: PCMPIIterations[size - 1] += its;
444: // TODO: send iterations up to outer KSP
446: if (PCMPIServerUseShmget) PetscCall(PetscShmgetUnmapAddresses(2, addr));
448: /* gather solution */
449: PetscCall(PetscLogEventBegin(EventServerDistMPI, NULL, NULL, NULL, NULL));
450: if (!PCMPIServerUseShmget) {
451: PetscMPIInt in;
453: PetscCall(VecGetArrayRead(ksp->vec_sol, &x));
454: if (pc) PetscCall(VecGetArray(X, &sx));
455: PetscCall(PetscMPIIntCast(n, &in));
456: PetscCallMPI(MPI_Gatherv(x, in, MPIU_SCALAR, sx, pc ? km->sendcount : NULL, pc ? km->displ : NULL, MPIU_SCALAR, 0, comm));
457: if (pc) PetscCall(VecRestoreArray(X, &sx));
458: PetscCall(VecRestoreArrayRead(ksp->vec_sol, &x));
459: } else {
460: PetscCall(VecResetArray(ksp->vec_rhs));
461: PetscCall(VecResetArray(ksp->vec_sol));
462: }
463: PetscCall(PetscLogEventEnd(EventServerDistMPI, NULL, NULL, NULL, NULL));
464: PetscCall(PetscLogEventEnd(EventServerDist, NULL, NULL, NULL, NULL));
465: PCMPIServerInSolve = PETSC_FALSE;
466: PetscFunctionReturn(PETSC_SUCCESS);
467: }
469: static PetscErrorCode PCMPIDestroy(PC pc)
470: {
471: PC_MPI *km = pc ? (PC_MPI *)pc->data : NULL;
472: KSP ksp;
473: MPI_Comm comm = PC_MPI_COMM_WORLD;
475: PetscFunctionBegin;
476: PetscCallMPI(MPI_Scatter(pc ? km->ksps : NULL, 1, MPI_AINT, &ksp, 1, MPI_AINT, 0, comm));
477: if (!ksp) PetscFunctionReturn(PETSC_SUCCESS);
478: PetscCall(PetscLogStagePush(PCMPIStage));
479: PCMPIServerInSolve = PETSC_TRUE;
480: PetscCall(KSPDestroy(&ksp));
481: PetscCall(PetscLogStagePop());
482: PCMPIServerInSolve = PETSC_FALSE;
483: PetscFunctionReturn(PETSC_SUCCESS);
484: }
486: static PetscErrorCode PCMPIServerBroadcastRequest(PCMPICommand request)
487: {
488: #if defined(PETSC_HAVE_PTHREAD_MUTEX)
489: PetscMPIInt dummy1 = 1, dummy2;
490: #endif
492: PetscFunctionBegin;
493: #if defined(PETSC_HAVE_PTHREAD_MUTEX)
494: if (PCMPIServerUseShmget) {
495: for (PetscMPIInt i = 1; i < PetscGlobalSize; i++) pthread_mutex_unlock(&PCMPIServerLocks[i]);
496: }
497: #endif
498: PetscCallMPI(MPI_Bcast(&request, 1, MPIU_ENUM, 0, MPI_COMM_WORLD));
499: /* next line ensures the sender has already taken the lock */
500: #if defined(PETSC_HAVE_PTHREAD_MUTEX)
501: if (PCMPIServerUseShmget) {
502: PetscCallMPI(MPI_Reduce(&dummy1, &dummy2, 1, MPI_INT, MPI_SUM, 0, PC_MPI_COMM_WORLD));
503: for (PetscMPIInt i = 1; i < PetscGlobalSize; i++) pthread_mutex_lock(&PCMPIServerLocks[i]);
504: }
505: #endif
506: PetscFunctionReturn(PETSC_SUCCESS);
507: }
509: /*@C
510: PCMPIServerBegin - starts a server that runs on the `rank != 0` MPI processes waiting to process requests for
511: parallel `KSP` solves and management of parallel `KSP` objects.
513: Logically Collective on all MPI processes except rank 0
515: Options Database Keys:
516: + -mpi_linear_solver_server - causes the PETSc program to start in MPI linear solver server mode where only the first MPI rank runs user code
517: . -mpi_linear_solver_server_view - displays information about all the linear systems solved by the MPI linear solver server at the conclusion of the program
518: - -mpi_linear_solver_server_use_shared_memory - use shared memory when communicating matrices and vectors to server processes (default where supported)
520: Level: developer
522: Note:
523: This is normally started automatically in `PetscInitialize()` when the option is provided
525: See `PCMPI` for information on using the solver with a `KSP` object
527: Developer Notes:
528: When called on MPI rank 0 this sets `PETSC_COMM_WORLD` to `PETSC_COMM_SELF` to allow a main program
529: written with `PETSC_COMM_WORLD` to run correctly on the single rank while all the ranks
530: (that would normally be sharing `PETSC_COMM_WORLD`) to run the solver server.
532: Can this be integrated into the `PetscDevice` abstraction that is currently being developed?
534: Conceivably `PCREDISTRIBUTE` could be organized in a similar manner to simplify its usage
536: This could be implemented directly at the `KSP` level instead of using the `PCMPI` wrapper object
538: The code could be extended to allow an MPI + OpenMP application to use the linear solver server concept across all shared-memory
539: nodes with a single MPI process per node for the user application but multiple MPI processes per node for the linear solver.
541: The concept could also be extended for users's callbacks for `SNES`, `TS`, and `Tao` where the `SNESSolve()` for example, runs on
542: all MPI processes but the user callback only runs on one MPI process per node.
544: PETSc could also be extended with an MPI-less API that provides access to PETSc's solvers without any reference to MPI, essentially remove
545: the `MPI_Comm` argument from PETSc calls.
547: .seealso: [](sec_pcmpi), `PCMPIServerEnd()`, `PCMPI`, `KSPCheckPCMPI()`
548: @*/
549: PetscErrorCode PCMPIServerBegin(void)
550: {
551: PetscMPIInt rank;
553: PetscFunctionBegin;
554: PetscCall(PetscInfo(NULL, "Starting MPI Linear Solver Server\n"));
555: if (PetscDefined(USE_SINGLE_LIBRARY)) {
556: PetscCall(VecInitializePackage());
557: PetscCall(MatInitializePackage());
558: PetscCall(DMInitializePackage());
559: PetscCall(PCInitializePackage());
560: PetscCall(KSPInitializePackage());
561: PetscCall(SNESInitializePackage());
562: PetscCall(TSInitializePackage());
563: PetscCall(TaoInitializePackage());
564: }
565: PetscCall(PetscLogStageRegister("PCMPI", &PCMPIStage));
566: PetscCall(PetscLogEventRegister("ServerDist", PC_CLASSID, &EventServerDist));
567: PetscCall(PetscLogEventRegister("ServerDistMPI", PC_CLASSID, &EventServerDistMPI));
569: if (!PetscDefined(HAVE_SHMGET)) PCMPIServerUseShmget = PETSC_FALSE;
570: PetscCall(PetscOptionsGetBool(NULL, NULL, "-mpi_linear_solver_server_use_shared_memory", &PCMPIServerUseShmget, NULL));
572: PetscCallMPI(MPI_Comm_rank(PC_MPI_COMM_WORLD, &rank));
573: if (PCMPIServerUseShmget) {
574: #if defined(PETSC_HAVE_PTHREAD_MUTEX)
575: PetscMPIInt size;
577: PetscCallMPI(MPI_Comm_size(PETSC_COMM_WORLD, &size));
578: if (size > 1) {
579: pthread_mutex_t *locks;
581: if (rank == 0) {
582: PCMPIServerActive = PETSC_TRUE;
583: PetscCall(PetscShmgetAllocateArray(size, sizeof(pthread_mutex_t), (void **)&locks));
584: }
585: PetscCall(PetscShmgetMapAddresses(PETSC_COMM_WORLD, 1, (const void **)&locks, (void **)&PCMPIServerLocks));
586: if (rank == 0) {
587: pthread_mutexattr_t attr;
589: pthread_mutexattr_init(&attr);
590: pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
592: for (int i = 1; i < size; i++) {
593: pthread_mutex_init(&PCMPIServerLocks[i], &attr);
594: pthread_mutex_lock(&PCMPIServerLocks[i]);
595: }
596: }
597: PetscCallMPI(MPI_Barrier(PETSC_COMM_WORLD));
598: }
599: #endif
600: }
601: if (rank == 0) {
602: PETSC_COMM_WORLD = PETSC_COMM_SELF;
603: PCMPIServerActive = PETSC_TRUE;
604: PetscFunctionReturn(PETSC_SUCCESS);
605: }
607: while (PETSC_TRUE) {
608: PCMPICommand request = PCMPI_CREATE;
609: #if defined(PETSC_HAVE_PTHREAD_MUTEX)
610: PetscMPIInt dummy1 = 1, dummy2;
611: #endif
613: // TODO: can we broadcast the number of active ranks here so only the correct subset of processes waits on the later scatters?
614: #if defined(PETSC_HAVE_PTHREAD_MUTEX)
615: if (PCMPIServerUseShmget) pthread_mutex_lock(&PCMPIServerLocks[PetscGlobalRank]);
616: #endif
617: PetscCallMPI(MPI_Bcast(&request, 1, MPIU_ENUM, 0, PC_MPI_COMM_WORLD));
618: #if defined(PETSC_HAVE_PTHREAD_MUTEX)
619: if (PCMPIServerUseShmget) {
620: /* next line ensures PetscGlobalRank has locked before rank 0 can take the lock back */
621: PetscCallMPI(MPI_Reduce(&dummy1, &dummy2, 1, MPI_INT, MPI_SUM, 0, PC_MPI_COMM_WORLD));
622: pthread_mutex_unlock(&PCMPIServerLocks[PetscGlobalRank]);
623: }
624: #endif
625: switch (request) {
626: case PCMPI_CREATE:
627: PetscCall(PCMPICreate(NULL));
628: break;
629: case PCMPI_SET_MAT:
630: PetscCall(PCMPISetMat(NULL));
631: break;
632: case PCMPI_UPDATE_MAT_VALUES:
633: PetscCall(PCMPIUpdateMatValues(NULL));
634: break;
635: case PCMPI_VIEW:
636: // PetscCall(PCMPIView(NULL));
637: break;
638: case PCMPI_SOLVE:
639: PetscCall(PCMPISolve(NULL, NULL, NULL));
640: break;
641: case PCMPI_DESTROY:
642: PetscCall(PCMPIDestroy(NULL));
643: break;
644: case PCMPI_EXIT:
645: if (PCMPIServerUseShmget) PetscCall(PetscShmgetUnmapAddresses(1, (void **)&PCMPIServerLocks));
646: PetscCall(PetscFinalize());
647: exit(0); /* not sure if this is a good idea, but cannot return because it will run users main program */
648: break;
649: default:
650: break;
651: }
652: }
653: PetscFunctionReturn(PETSC_SUCCESS);
654: }
656: /*@C
657: PCMPIServerEnd - ends a server that runs on the rank != 0 MPI processes waiting to process requests for
658: parallel KSP solves and management of parallel `KSP` objects.
660: Logically Collective on all MPI ranks except 0
662: Level: developer
664: Note:
665: This is normally called automatically in `PetscFinalize()`
667: .seealso: [](sec_pcmpi), `PCMPIServerBegin()`, `PCMPI`, `KSPCheckPCMPI()`
668: @*/
669: PetscErrorCode PCMPIServerEnd(void)
670: {
671: PetscFunctionBegin;
672: if (PetscGlobalRank == 0) {
673: PetscViewer viewer = NULL;
674: PetscViewerFormat format;
676: PetscCall(PetscShmgetAddressesFinalize());
677: PetscCall(PCMPIServerBroadcastRequest(PCMPI_EXIT));
678: if (PCMPIServerUseShmget) PetscCall(PetscShmgetUnmapAddresses(1, (void **)&PCMPIServerLocks));
679: PETSC_COMM_WORLD = MPI_COMM_WORLD; /* could use PC_MPI_COMM_WORLD */
680: PetscOptionsBegin(PETSC_COMM_SELF, NULL, "MPI linear solver server options", NULL);
681: PetscCall(PetscOptionsViewer("-mpi_linear_solver_server_view", "View information about system solved with the server", "PCMPI", &viewer, &format, NULL));
682: PetscOptionsEnd();
683: if (viewer) {
684: PetscBool isascii;
686: PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &isascii));
687: if (isascii) {
688: PetscMPIInt size;
689: PetscMPIInt i;
691: PetscCallMPI(MPI_Comm_size(PETSC_COMM_WORLD, &size));
692: PetscCall(PetscViewerASCIIPrintf(viewer, "MPI linear solver server statistics:\n"));
693: PetscCall(PetscViewerASCIIPrintf(viewer, " Ranks KSPSolve()s Mats KSPs Avg. Size Avg. Its\n"));
694: if (PCMPIKSPCountsSeq) {
695: PetscCall(PetscViewerASCIIPrintf(viewer, " Sequential %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT "\n", PCMPISolveCountsSeq, PCMPIKSPCountsSeq, PCMPISizesSeq / PCMPISolveCountsSeq, PCMPIIterationsSeq / PCMPISolveCountsSeq));
696: }
697: for (i = 0; i < size; i++) {
698: if (PCMPIKSPCounts[i]) {
699: PetscCall(PetscViewerASCIIPrintf(viewer, " %d %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT "\n", i + 1, PCMPISolveCounts[i], PCMPIMatCounts[i], PCMPIKSPCounts[i], PCMPISizes[i] / PCMPISolveCounts[i], PCMPIIterations[i] / PCMPISolveCounts[i]));
700: }
701: }
702: PetscCall(PetscViewerASCIIPrintf(viewer, "MPI linear solver server %susing shared memory\n", PCMPIServerUseShmget ? "" : "not "));
703: }
704: PetscCall(PetscViewerDestroy(&viewer));
705: }
706: }
707: PetscCall(PCMPICommsDestroy());
708: PCMPIServerActive = PETSC_FALSE;
709: PetscFunctionReturn(PETSC_SUCCESS);
710: }
712: /*
713: This version is used in the trivial case when the MPI parallel solver server is running on just the original MPI rank 0
714: because, for example, the problem is small. This version is more efficient because it does not require copying any data
715: */
716: static PetscErrorCode PCSetUp_Seq(PC pc)
717: {
718: PC_MPI *km = (PC_MPI *)pc->data;
719: Mat sA;
720: const char *prefix;
721: char *found = NULL, *cprefix;
723: PetscFunctionBegin;
724: PCMPIServerInSolve = PETSC_TRUE;
725: PetscCall(PCGetOperators(pc, NULL, &sA));
726: PetscCall(PCGetOptionsPrefix(pc, &prefix));
727: PetscCall(KSPCreate(PETSC_COMM_SELF, &km->ksps[0]));
728: PetscCall(KSPSetNestLevel(km->ksps[0], 1));
729: PetscCall(PetscObjectSetTabLevel((PetscObject)km->ksps[0], 1));
731: /* Created KSP gets prefix of PC minus the mpi_linear_solver_server_ portion */
732: PetscCall(PCGetOptionsPrefix(pc, &prefix));
733: PetscCheck(prefix, PETSC_COMM_SELF, PETSC_ERR_PLIB, "PCMPI missing required prefix");
734: PetscCall(PetscStrallocpy(prefix, &cprefix));
735: PetscCall(PetscStrstr(cprefix, "mpi_linear_solver_server_", &found));
736: PetscCheck(found, PETSC_COMM_SELF, PETSC_ERR_PLIB, "PCMPI missing mpi_linear_solver_server_ portion of prefix");
737: *found = 0;
738: PetscCall(KSPSetOptionsPrefix(km->ksps[0], cprefix));
739: PetscCall(PetscFree(cprefix));
741: PetscCall(KSPSetOperators(km->ksps[0], sA, sA));
742: PetscCall(KSPSetFromOptions(km->ksps[0]));
743: PetscCall(KSPSetUp(km->ksps[0]));
744: PetscCall(PetscInfo((PetscObject)pc, "MPI parallel linear solver system is being solved directly on rank 0 due to its small size\n"));
745: PCMPIKSPCountsSeq++;
746: PCMPIServerInSolve = PETSC_FALSE;
747: PetscFunctionReturn(PETSC_SUCCESS);
748: }
750: static PetscErrorCode PCApply_Seq(PC pc, Vec b, Vec x)
751: {
752: PC_MPI *km = (PC_MPI *)pc->data;
753: PetscInt its, n;
754: Mat A;
756: PetscFunctionBegin;
757: PCMPIServerInSolve = PETSC_TRUE;
758: PetscCall(KSPSolve(km->ksps[0], b, x));
759: PetscCall(KSPGetIterationNumber(km->ksps[0], &its));
760: PCMPISolveCountsSeq++;
761: PCMPIIterationsSeq += its;
762: PetscCall(KSPGetOperators(km->ksps[0], NULL, &A));
763: PetscCall(MatGetSize(A, &n, NULL));
764: PCMPISizesSeq += n;
765: PCMPIServerInSolve = PETSC_FALSE;
766: /*
767: do not keep reference to previous rhs and solution since destroying them in the next KSPSolve()
768: my use PetscFree() instead of PCMPIArrayDeallocate()
769: */
770: PetscCall(VecDestroy(&km->ksps[0]->vec_rhs));
771: PetscCall(VecDestroy(&km->ksps[0]->vec_sol));
772: PetscFunctionReturn(PETSC_SUCCESS);
773: }
775: static PetscErrorCode PCView_Seq(PC pc, PetscViewer viewer)
776: {
777: PC_MPI *km = (PC_MPI *)pc->data;
779: PetscFunctionBegin;
780: PetscCall(PetscViewerASCIIPrintf(viewer, "Running MPI linear solver server directly on rank 0 due to its small size\n"));
781: PetscCall(PetscViewerASCIIPrintf(viewer, "Desired minimum number of nonzeros per rank for MPI parallel solve %d\n", (int)km->mincntperrank));
782: PetscCall(PetscViewerASCIIPrintf(viewer, "*** Use -mpi_linear_solver_server_view to statistics on all the solves ***\n"));
783: PetscFunctionReturn(PETSC_SUCCESS);
784: }
786: static PetscErrorCode PCDestroy_Seq(PC pc)
787: {
788: PC_MPI *km = (PC_MPI *)pc->data;
789: Mat A, B;
790: Vec x, b;
792: PetscFunctionBegin;
793: PCMPIServerInSolve = PETSC_TRUE;
794: /* since matrices and vectors are shared with outer KSP we need to ensure they are not destroyed with PetscFree() */
795: PetscCall(KSPGetOperators(km->ksps[0], &A, &B));
796: PetscCall(PetscObjectReference((PetscObject)A));
797: PetscCall(PetscObjectReference((PetscObject)B));
798: PetscCall(KSPGetSolution(km->ksps[0], &x));
799: PetscCall(PetscObjectReference((PetscObject)x));
800: PetscCall(KSPGetRhs(km->ksps[0], &b));
801: PetscCall(PetscObjectReference((PetscObject)b));
802: PetscCall(KSPDestroy(&km->ksps[0]));
803: PetscCall(PetscFree(pc->data));
804: PCMPIServerInSolve = PETSC_FALSE;
805: PetscCall(MatDestroy(&A));
806: PetscCall(MatDestroy(&B));
807: PetscCall(VecDestroy(&x));
808: PetscCall(VecDestroy(&b));
809: PetscFunctionReturn(PETSC_SUCCESS);
810: }
812: /*
813: PCSetUp_MPI - Trigger the creation of the MPI parallel PC and copy parts of the matrix and
814: right-hand side to the parallel PC
815: */
816: static PetscErrorCode PCSetUp_MPI(PC pc)
817: {
818: PC_MPI *km = (PC_MPI *)pc->data;
819: PetscMPIInt rank, size;
820: PetscBool newmatrix = PETSC_FALSE;
822: PetscFunctionBegin;
823: PetscCallMPI(MPI_Comm_rank(MPI_COMM_WORLD, &rank));
824: PetscCheck(rank == 0, PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "PCMPI can only be used from 0th rank of MPI_COMM_WORLD. Perhaps a missing -mpi_linear_solver_server?");
825: PetscCallMPI(MPI_Comm_size(MPI_COMM_WORLD, &size));
827: if (!pc->setupcalled) {
828: if (!km->alwaysuseserver) {
829: PetscInt n;
830: Mat sA;
831: /* short circuit for small systems */
832: PetscCall(PCGetOperators(pc, &sA, &sA));
833: PetscCall(MatGetSize(sA, &n, NULL));
834: if (n < 2 * km->mincntperrank - 1 || size == 1) {
835: pc->ops->setup = NULL;
836: pc->ops->apply = PCApply_Seq;
837: pc->ops->destroy = PCDestroy_Seq;
838: pc->ops->view = PCView_Seq;
839: PetscCall(PCSetUp_Seq(pc));
840: PetscFunctionReturn(PETSC_SUCCESS);
841: }
842: }
844: PetscCall(PCMPIServerBroadcastRequest(PCMPI_CREATE));
845: PetscCall(PCMPICreate(pc));
846: newmatrix = PETSC_TRUE;
847: }
848: if (pc->flag == DIFFERENT_NONZERO_PATTERN) newmatrix = PETSC_TRUE;
850: if (newmatrix) {
851: PetscCall(PetscInfo((PetscObject)pc, "New matrix or matrix has changed nonzero structure\n"));
852: PetscCall(PCMPIServerBroadcastRequest(PCMPI_SET_MAT));
853: PetscCall(PCMPISetMat(pc));
854: } else {
855: PetscCall(PetscInfo((PetscObject)pc, "Matrix has only changed nonzero values\n"));
856: PetscCall(PCMPIServerBroadcastRequest(PCMPI_UPDATE_MAT_VALUES));
857: PetscCall(PCMPIUpdateMatValues(pc));
858: }
859: PetscFunctionReturn(PETSC_SUCCESS);
860: }
862: static PetscErrorCode PCApply_MPI(PC pc, Vec b, Vec x)
863: {
864: PetscFunctionBegin;
865: PetscCall(PCMPIServerBroadcastRequest(PCMPI_SOLVE));
866: PetscCall(PCMPISolve(pc, b, x));
867: PetscFunctionReturn(PETSC_SUCCESS);
868: }
870: static PetscErrorCode PCDestroy_MPI(PC pc)
871: {
872: PetscFunctionBegin;
873: PetscCall(PCMPIServerBroadcastRequest(PCMPI_DESTROY));
874: PetscCall(PCMPIDestroy(pc));
875: PetscCall(PetscFree(pc->data));
876: PetscFunctionReturn(PETSC_SUCCESS);
877: }
879: /*
880: PCView_MPI - Cannot call view on the MPI parallel KSP because other ranks do not have access to the viewer, use options database
881: */
882: static PetscErrorCode PCView_MPI(PC pc, PetscViewer viewer)
883: {
884: PC_MPI *km = (PC_MPI *)pc->data;
885: MPI_Comm comm;
886: PetscMPIInt size;
888: PetscFunctionBegin;
889: PetscCall(PetscObjectGetComm((PetscObject)km->ksps[0], &comm));
890: PetscCallMPI(MPI_Comm_size(comm, &size));
891: PetscCall(PetscViewerASCIIPrintf(viewer, "Size of MPI communicator used for MPI parallel KSP solve %d\n", size));
892: PetscCall(PetscViewerASCIIPrintf(viewer, "Desired minimum number of matrix rows on each MPI process for MPI parallel solve %d\n", (int)km->mincntperrank));
893: PetscCall(PetscViewerASCIIPrintf(viewer, "*** Use -mpi_linear_solver_server_view to view statistics on all the solves ***\n"));
894: PetscFunctionReturn(PETSC_SUCCESS);
895: }
897: static PetscErrorCode PCSetFromOptions_MPI(PC pc, PetscOptionItems *PetscOptionsObject)
898: {
899: PC_MPI *km = (PC_MPI *)pc->data;
901: PetscFunctionBegin;
902: PetscOptionsHeadBegin(PetscOptionsObject, "MPI linear solver server options");
903: PetscCall(PetscOptionsInt("-minimum_count_per_rank", "Desired minimum number of nonzeros per rank", "None", km->mincntperrank, &km->mincntperrank, NULL));
904: PetscCall(PetscOptionsBool("-always_use_server", "Use the server even if only one rank is used for the solve (for debugging)", "None", km->alwaysuseserver, &km->alwaysuseserver, NULL));
905: PetscOptionsHeadEnd();
906: PetscFunctionReturn(PETSC_SUCCESS);
907: }
909: /*MC
910: PCMPI - Calls an MPI parallel `KSP` to solve a linear system from user code running on one process
912: Options Database Keys for the Server:
913: + -mpi_linear_solver_server - causes the PETSc program to start in MPI linear solver server mode where only the first MPI rank runs user code
914: . -mpi_linear_solver_server_view - displays information about all the linear systems solved by the MPI linear solver server
915: - -mpi_linear_solver_server_use_shared_memory <true, false> - use shared memory to distribute matrix and right hand side, defaults to true
917: Options Database Keys for a specific `KSP` object
918: + -[any_ksp_prefix]_mpi_linear_solver_server_minimum_count_per_rank - sets the minimum size of the linear system per MPI rank that the solver will strive for
919: - -[any_ksp_prefix]_mpi_linear_solver_server_always_use_server - use the server solver code even if the particular system is only solved on the process (for debugging and testing purposes)
921: Level: developer
923: Notes:
924: This cannot be used with vectors or matrices that are created using arrays provided by the user, such as `VecCreateWithArray()` or
925: `MatCreateSeqAIJWithArrays()`
927: The options database prefix for the actual solver is any prefix provided before use to the original `KSP` with `KSPSetOptionsPrefix()`, mostly commonly no prefix is used.
929: It can be particularly useful for user OpenMP code or potentially user GPU code.
931: When the program is running with a single MPI process then it directly uses the provided matrix and right-hand side
932: and does not need to distribute the matrix and vector to the various MPI processes; thus it incurs no extra overhead over just using the `KSP` directly.
934: The solver options for actual solving `KSP` and `PC` must be controlled via the options database, calls to set options directly on the user level `KSP` and `PC` have no effect
935: because they are not the actual solver objects.
937: When `-log_view` is used with this solver the events within the parallel solve are logging in their own stage. Some of the logging in the other
938: stages will be confusing since the event times are only recorded on the 0th MPI rank, thus the percent of time in the events will be misleading.
940: Developer Note:
941: This `PCType` is never directly selected by the user, it is set when the option `-mpi_linear_solver_server` is used and the `PC` is at the outer most nesting of
942: a `KSP`. The outer most `KSP` object is automatically set to `KSPPREONLY` and thus is not directly visible to the user.
944: .seealso: [](sec_pcmpi), `KSPCreate()`, `KSPSetType()`, `KSPType`, `KSP`, `PC`, `PCMPIServerBegin()`, `PCMPIServerEnd()`, `KSPCheckPCMPI()`
945: M*/
946: PETSC_EXTERN PetscErrorCode PCCreate_MPI(PC pc)
947: {
948: PC_MPI *km;
949: char *found = NULL;
951: PetscFunctionBegin;
952: PetscCall(PetscStrstr(((PetscObject)pc)->prefix, "mpi_linear_solver_server_", &found));
953: PetscCheck(found, PETSC_COMM_SELF, PETSC_ERR_PLIB, "PCMPI object prefix does not have mpi_linear_solver_server_");
955: /* material from PCSetType() */
956: PetscTryTypeMethod(pc, destroy);
957: pc->ops->destroy = NULL;
958: pc->data = NULL;
960: PetscCall(PetscFunctionListDestroy(&((PetscObject)pc)->qlist));
961: PetscCall(PetscMemzero(pc->ops, sizeof(struct _PCOps)));
962: pc->modifysubmatrices = NULL;
963: pc->modifysubmatricesP = NULL;
964: pc->setupcalled = 0;
966: PetscCall(PetscNew(&km));
967: pc->data = (void *)km;
969: km->mincntperrank = 10000;
971: pc->ops->setup = PCSetUp_MPI;
972: pc->ops->apply = PCApply_MPI;
973: pc->ops->destroy = PCDestroy_MPI;
974: pc->ops->view = PCView_MPI;
975: pc->ops->setfromoptions = PCSetFromOptions_MPI;
976: PetscCall(PetscObjectChangeTypeName((PetscObject)pc, PCMPI));
977: PetscFunctionReturn(PETSC_SUCCESS);
978: }
980: /*@
981: PCMPIGetKSP - Gets the `KSP` created by the `PCMPI`
983: Not Collective
985: Input Parameter:
986: . pc - the preconditioner context
988: Output Parameter:
989: . innerksp - the inner `KSP`
991: Level: advanced
993: .seealso: [](ch_ksp), `KSP`, `PCMPI`, `PCREDISTRIBUTE`
994: @*/
995: PetscErrorCode PCMPIGetKSP(PC pc, KSP *innerksp)
996: {
997: PC_MPI *red = (PC_MPI *)pc->data;
999: PetscFunctionBegin;
1001: PetscAssertPointer(innerksp, 2);
1002: *innerksp = red->ksps[0];
1003: PetscFunctionReturn(PETSC_SUCCESS);
1004: }