Actual source code: baijsolvtrannat2.c
1: #include <../src/mat/impls/baij/seq/baij.h>
3: PetscErrorCode MatSolveTranspose_SeqBAIJ_2_NaturalOrdering_inplace(Mat A, Vec bb, Vec xx)
4: {
5: Mat_SeqBAIJ *a = (Mat_SeqBAIJ *)A->data;
6: PetscInt i, nz, idx, idt, oidx;
7: const PetscInt *diag = a->diag, *vi, n = a->mbs, *ai = a->i, *aj = a->j;
8: const MatScalar *aa = a->a, *v;
9: PetscScalar s1, s2, x1, x2, *x;
11: PetscFunctionBegin;
12: PetscCall(VecCopy(bb, xx));
13: PetscCall(VecGetArray(xx, &x));
15: /* forward solve the U^T */
16: idx = 0;
17: for (i = 0; i < n; i++) {
18: v = aa + 4 * diag[i];
19: /* multiply by the inverse of the block diagonal */
20: x1 = x[idx];
21: x2 = x[1 + idx];
22: s1 = v[0] * x1 + v[1] * x2;
23: s2 = v[2] * x1 + v[3] * x2;
24: v += 4;
26: vi = aj + diag[i] + 1;
27: nz = ai[i + 1] - diag[i] - 1;
28: while (nz--) {
29: oidx = 2 * (*vi++);
30: x[oidx] -= v[0] * s1 + v[1] * s2;
31: x[oidx + 1] -= v[2] * s1 + v[3] * s2;
32: v += 4;
33: }
34: x[idx] = s1;
35: x[1 + idx] = s2;
36: idx += 2;
37: }
38: /* backward solve the L^T */
39: for (i = n - 1; i >= 0; i--) {
40: v = aa + 4 * diag[i] - 4;
41: vi = aj + diag[i] - 1;
42: nz = diag[i] - ai[i];
43: idt = 2 * i;
44: s1 = x[idt];
45: s2 = x[1 + idt];
46: while (nz--) {
47: idx = 2 * (*vi--);
48: x[idx] -= v[0] * s1 + v[1] * s2;
49: x[idx + 1] -= v[2] * s1 + v[3] * s2;
50: v -= 4;
51: }
52: }
53: PetscCall(VecRestoreArray(xx, &x));
54: PetscCall(PetscLogFlops(2.0 * 4.0 * (a->nz) - 2.0 * A->cmap->n));
55: PetscFunctionReturn(PETSC_SUCCESS);
56: }
58: PetscErrorCode MatSolveTranspose_SeqBAIJ_2_NaturalOrdering(Mat A, Vec bb, Vec xx)
59: {
60: Mat_SeqBAIJ *a = (Mat_SeqBAIJ *)A->data;
61: const PetscInt n = a->mbs, *vi, *ai = a->i, *aj = a->j, *diag = a->diag;
62: PetscInt nz, idx, idt, j, i, oidx;
63: const PetscInt bs = A->rmap->bs, bs2 = a->bs2;
64: const MatScalar *aa = a->a, *v;
65: PetscScalar s1, s2, x1, x2, *x;
67: PetscFunctionBegin;
68: PetscCall(VecCopy(bb, xx));
69: PetscCall(VecGetArray(xx, &x));
71: /* forward solve the U^T */
72: idx = 0;
73: for (i = 0; i < n; i++) {
74: v = aa + bs2 * diag[i];
75: /* multiply by the inverse of the block diagonal */
76: x1 = x[idx];
77: x2 = x[1 + idx];
78: s1 = v[0] * x1 + v[1] * x2;
79: s2 = v[2] * x1 + v[3] * x2;
80: v -= bs2;
82: vi = aj + diag[i] - 1;
83: nz = diag[i] - diag[i + 1] - 1;
84: for (j = 0; j > -nz; j--) {
85: oidx = bs * vi[j];
86: x[oidx] -= v[0] * s1 + v[1] * s2;
87: x[oidx + 1] -= v[2] * s1 + v[3] * s2;
88: v -= bs2;
89: }
90: x[idx] = s1;
91: x[1 + idx] = s2;
92: idx += bs;
93: }
94: /* backward solve the L^T */
95: for (i = n - 1; i >= 0; i--) {
96: v = aa + bs2 * ai[i];
97: vi = aj + ai[i];
98: nz = ai[i + 1] - ai[i];
99: idt = bs * i;
100: s1 = x[idt];
101: s2 = x[1 + idt];
102: for (j = 0; j < nz; j++) {
103: idx = bs * vi[j];
104: x[idx] -= v[0] * s1 + v[1] * s2;
105: x[idx + 1] -= v[2] * s1 + v[3] * s2;
106: v += bs2;
107: }
108: }
109: PetscCall(VecRestoreArray(xx, &x));
110: PetscCall(PetscLogFlops(2.0 * bs2 * (a->nz) - bs * A->cmap->n));
111: PetscFunctionReturn(PETSC_SUCCESS);
112: }