Actual source code: snesgs.c

  1: #include <../src/snes/impls/gs/gsimpl.h>

  3: /*@
  4:   SNESNGSSetTolerances - Sets various parameters used in convergence tests for nonlinear Gauss-Seidel `SNESNCG`

  6:   Logically Collective

  8:   Input Parameters:
  9: + snes   - the `SNES` context
 10: . abstol - absolute convergence tolerance
 11: . rtol   - relative convergence tolerance
 12: . stol   - convergence tolerance in terms of the norm of the change in the solution between steps,  || delta x || < stol*|| x ||
 13: - maxit  - maximum number of iterations

 15:   Options Database Keys:
 16: + -snes_ngs_atol <abstol> - Sets abstol
 17: . -snes_ngs_rtol <rtol>   - Sets rtol
 18: . -snes_ngs_stol <stol>   - Sets stol
 19: - -snes_max_it <maxit>    - Sets maxit

 21:   Level: intermediate

 23: .seealso: `SNESNCG`, `SNESSetTrustRegionTolerance()`
 24: @*/
 25: PetscErrorCode SNESNGSSetTolerances(SNES snes, PetscReal abstol, PetscReal rtol, PetscReal stol, PetscInt maxit)
 26: {
 27:   SNES_NGS *gs = (SNES_NGS *)snes->data;

 29:   PetscFunctionBegin;

 32:   if (abstol != (PetscReal)PETSC_DEFAULT) {
 33:     PetscCheck(abstol >= 0.0, PetscObjectComm((PetscObject)snes), PETSC_ERR_ARG_OUTOFRANGE, "Absolute tolerance %g must be non-negative", (double)abstol);
 34:     gs->abstol = abstol;
 35:   }
 36:   if (rtol != (PetscReal)PETSC_DEFAULT) {
 37:     PetscCheck(rtol >= 0.0 && rtol < 1.0, PetscObjectComm((PetscObject)snes), PETSC_ERR_ARG_OUTOFRANGE, "Relative tolerance %g must be non-negative and less than 1.0", (double)rtol);
 38:     gs->rtol = rtol;
 39:   }
 40:   if (stol != (PetscReal)PETSC_DEFAULT) {
 41:     PetscCheck(stol >= 0.0, PetscObjectComm((PetscObject)snes), PETSC_ERR_ARG_OUTOFRANGE, "Step tolerance %g must be non-negative", (double)stol);
 42:     gs->stol = stol;
 43:   }
 44:   if (maxit != PETSC_DEFAULT) {
 45:     PetscCheck(maxit >= 0, PetscObjectComm((PetscObject)snes), PETSC_ERR_ARG_OUTOFRANGE, "Maximum number of iterations %" PetscInt_FMT " must be non-negative", maxit);
 46:     gs->max_its = maxit;
 47:   }
 48:   PetscFunctionReturn(PETSC_SUCCESS);
 49: }

 51: /*@
 52:   SNESNGSGetTolerances - Gets various parameters used in convergence tests for nonlinear Gauss-Seidel `SNESNCG`

 54:   Not Collective

 56:   Input Parameters:
 57: + snes  - the `SNES` context
 58: . atol  - absolute convergence tolerance
 59: . rtol  - relative convergence tolerance
 60: . stol  - convergence tolerance in terms of the norm
 61:            of the change in the solution between steps
 62: - maxit - maximum number of iterations

 64:   Level: intermediate

 66:   Note:
 67:   The user can specify NULL for any parameter that is not needed.

 69: .seealso: `SNESNCG`, `SNESSetTolerances()`
 70: @*/
 71: PetscErrorCode SNESNGSGetTolerances(SNES snes, PetscReal *atol, PetscReal *rtol, PetscReal *stol, PetscInt *maxit)
 72: {
 73:   SNES_NGS *gs = (SNES_NGS *)snes->data;

 75:   PetscFunctionBegin;
 77:   if (atol) *atol = gs->abstol;
 78:   if (rtol) *rtol = gs->rtol;
 79:   if (stol) *stol = gs->stol;
 80:   if (maxit) *maxit = gs->max_its;
 81:   PetscFunctionReturn(PETSC_SUCCESS);
 82: }

 84: /*@
 85:   SNESNGSSetSweeps - Sets the number of sweeps of nonlinear GS to use in `SNESNCG`

 87:   Input Parameters:
 88: + snes   - the `SNES` context
 89: - sweeps - the number of sweeps of nonlinear GS to perform.

 91:   Options Database Key:
 92: . -snes_ngs_sweeps <n> - Number of sweeps of nonlinear GS to apply

 94:   Level: intermediate

 96: .seealso: `SNESNCG`, `SNESSetNGS()`, `SNESGetNGS()`, `SNESSetNPC()`, `SNESNGSGetSweeps()`
 97: @*/
 98: PetscErrorCode SNESNGSSetSweeps(SNES snes, PetscInt sweeps)
 99: {
100:   SNES_NGS *gs = (SNES_NGS *)snes->data;

102:   PetscFunctionBegin;
104:   gs->sweeps = sweeps;
105:   PetscFunctionReturn(PETSC_SUCCESS);
106: }

108: /*@
109:   SNESNGSGetSweeps - Gets the number of sweeps nonlinear GS will use in `SNESNCG`

111:   Input Parameter:
112: . snes - the `SNES` context

114:   Output Parameter:
115: . sweeps - the number of sweeps of nonlinear GS to perform.

117:   Level: intermediate

119: .seealso: `SNESNCG`, `SNESSetNGS()`, `SNESGetNGS()`, `SNESSetNPC()`, `SNESNGSSetSweeps()`
120: @*/
121: PetscErrorCode SNESNGSGetSweeps(SNES snes, PetscInt *sweeps)
122: {
123:   SNES_NGS *gs = (SNES_NGS *)snes->data;

125:   PetscFunctionBegin;
127:   *sweeps = gs->sweeps;
128:   PetscFunctionReturn(PETSC_SUCCESS);
129: }

131: static PetscErrorCode SNESReset_NGS(SNES snes)
132: {
133:   SNES_NGS *gs = (SNES_NGS *)snes->data;

135:   PetscFunctionBegin;
136:   PetscCall(ISColoringDestroy(&gs->coloring));
137:   PetscFunctionReturn(PETSC_SUCCESS);
138: }

140: static PetscErrorCode SNESDestroy_NGS(SNES snes)
141: {
142:   PetscFunctionBegin;
143:   PetscCall(SNESReset_NGS(snes));
144:   PetscCall(PetscFree(snes->data));
145:   PetscFunctionReturn(PETSC_SUCCESS);
146: }

148: static PetscErrorCode SNESSetUp_NGS(SNES snes)
149: {
150:   PetscErrorCode (*f)(SNES, Vec, Vec, void *);

152:   PetscFunctionBegin;
153:   PetscCall(SNESGetNGS(snes, &f, NULL));
154:   if (!f) PetscCall(SNESSetNGS(snes, SNESComputeNGSDefaultSecant, NULL));
155:   PetscFunctionReturn(PETSC_SUCCESS);
156: }

158: static PetscErrorCode SNESSetFromOptions_NGS(SNES snes, PetscOptionItems *PetscOptionsObject)
159: {
160:   SNES_NGS *gs = (SNES_NGS *)snes->data;
161:   PetscInt  sweeps, max_its = PETSC_DEFAULT;
162:   PetscReal rtol = PETSC_DEFAULT, atol = PETSC_DEFAULT, stol = PETSC_DEFAULT;
163:   PetscBool flg, flg1, flg2, flg3;

165:   PetscFunctionBegin;
166:   PetscOptionsHeadBegin(PetscOptionsObject, "SNES GS options");
167:   /* GS Options */
168:   PetscCall(PetscOptionsInt("-snes_ngs_sweeps", "Number of sweeps of GS to apply", "SNESComputeGS", gs->sweeps, &sweeps, &flg));
169:   if (flg) PetscCall(SNESNGSSetSweeps(snes, sweeps));
170:   PetscCall(PetscOptionsReal("-snes_ngs_atol", "Absolute residual tolerance for GS iteration", "SNESComputeGS", gs->abstol, &atol, &flg));
171:   PetscCall(PetscOptionsReal("-snes_ngs_rtol", "Relative residual tolerance for GS iteration", "SNESComputeGS", gs->rtol, &rtol, &flg1));
172:   PetscCall(PetscOptionsReal("-snes_ngs_stol", "Absolute update tolerance for GS iteration", "SNESComputeGS", gs->stol, &stol, &flg2));
173:   PetscCall(PetscOptionsInt("-snes_ngs_max_it", "Maximum number of sweeps of GS to apply", "SNESComputeGS", gs->max_its, &max_its, &flg3));
174:   if (flg || flg1 || flg2 || flg3) PetscCall(SNESNGSSetTolerances(snes, atol, rtol, stol, max_its));
175:   flg = PETSC_FALSE;
176:   PetscCall(PetscOptionsBool("-snes_ngs_secant", "Use finite difference secant approximation with coloring", "", flg, &flg, NULL));
177:   if (flg) {
178:     PetscCall(SNESSetNGS(snes, SNESComputeNGSDefaultSecant, NULL));
179:     PetscCall(PetscInfo(snes, "Setting default finite difference secant approximation with coloring\n"));
180:   }
181:   PetscCall(PetscOptionsReal("-snes_ngs_secant_h", "Differencing parameter for secant search", "", gs->h, &gs->h, NULL));
182:   PetscCall(PetscOptionsBool("-snes_ngs_secant_mat_coloring", "Use the graph coloring of the Jacobian for the secant GS", "", gs->secant_mat, &gs->secant_mat, &flg));

184:   PetscOptionsHeadEnd();
185:   PetscFunctionReturn(PETSC_SUCCESS);
186: }

188: static PetscErrorCode SNESView_NGS(SNES snes, PetscViewer viewer)
189: {
190:   PetscErrorCode (*f)(SNES, Vec, Vec, void *);
191:   SNES_NGS *gs = (SNES_NGS *)snes->data;
192:   PetscBool iascii;

194:   PetscFunctionBegin;
195:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
196:   if (iascii) {
197:     PetscCall(DMSNESGetNGS(snes->dm, &f, NULL));
198:     if (f == SNESComputeNGSDefaultSecant) PetscCall(PetscViewerASCIIPrintf(viewer, "  Use finite difference secant approximation with coloring with h = %g \n", (double)gs->h));
199:   }
200:   PetscFunctionReturn(PETSC_SUCCESS);
201: }

203: static PetscErrorCode SNESSolve_NGS(SNES snes)
204: {
205:   Vec              F;
206:   Vec              X;
207:   Vec              B;
208:   PetscInt         i;
209:   PetscReal        fnorm;
210:   SNESNormSchedule normschedule;

212:   PetscFunctionBegin;

214:   PetscCheck(!snes->xl && !snes->xu && !snes->ops->computevariablebounds, PetscObjectComm((PetscObject)snes), PETSC_ERR_ARG_WRONGSTATE, "SNES solver %s does not support bounds", ((PetscObject)snes)->type_name);

216:   PetscCall(PetscCitationsRegister(SNESCitation, &SNEScite));
217:   X = snes->vec_sol;
218:   F = snes->vec_func;
219:   B = snes->vec_rhs;

221:   PetscCall(PetscObjectSAWsTakeAccess((PetscObject)snes));
222:   snes->iter = 0;
223:   snes->norm = 0.;
224:   PetscCall(PetscObjectSAWsGrantAccess((PetscObject)snes));
225:   snes->reason = SNES_CONVERGED_ITERATING;

227:   PetscCall(SNESGetNormSchedule(snes, &normschedule));
228:   if (normschedule == SNES_NORM_ALWAYS || normschedule == SNES_NORM_INITIAL_ONLY || normschedule == SNES_NORM_INITIAL_FINAL_ONLY) {
229:     /* compute the initial function and preconditioned update delX */
230:     if (!snes->vec_func_init_set) {
231:       PetscCall(SNESComputeFunction(snes, X, F));
232:     } else snes->vec_func_init_set = PETSC_FALSE;

234:     PetscCall(VecNorm(F, NORM_2, &fnorm)); /* fnorm <- ||F||  */
235:     SNESCheckFunctionNorm(snes, fnorm);
236:     PetscCall(PetscObjectSAWsTakeAccess((PetscObject)snes));
237:     snes->iter = 0;
238:     snes->norm = fnorm;
239:     PetscCall(PetscObjectSAWsGrantAccess((PetscObject)snes));
240:     PetscCall(SNESLogConvergenceHistory(snes, snes->norm, 0));

242:     /* test convergence */
243:     PetscCall(SNESConverged(snes, 0, 0.0, 0.0, fnorm));
244:     PetscCall(SNESMonitor(snes, 0, snes->norm));
245:     if (snes->reason) PetscFunctionReturn(PETSC_SUCCESS);
246:   } else {
247:     PetscCall(PetscObjectSAWsGrantAccess((PetscObject)snes));
248:     PetscCall(SNESLogConvergenceHistory(snes, snes->norm, 0));
249:   }

251:   /* Call general purpose update function */
252:   PetscTryTypeMethod(snes, update, snes->iter);

254:   for (i = 0; i < snes->max_its; i++) {
255:     PetscCall(SNESComputeNGS(snes, B, X));
256:     /* only compute norms if requested or about to exit due to maximum iterations */
257:     if (normschedule == SNES_NORM_ALWAYS || ((i == snes->max_its - 1) && (normschedule == SNES_NORM_INITIAL_FINAL_ONLY || normschedule == SNES_NORM_FINAL_ONLY))) {
258:       PetscCall(SNESComputeFunction(snes, X, F));
259:       PetscCall(VecNorm(F, NORM_2, &fnorm)); /* fnorm <- ||F||  */
260:       SNESCheckFunctionNorm(snes, fnorm);
261:     }
262:     /* Monitor convergence */
263:     PetscCall(PetscObjectSAWsTakeAccess((PetscObject)snes));
264:     snes->iter = i + 1;
265:     snes->norm = fnorm;
266:     PetscCall(PetscObjectSAWsGrantAccess((PetscObject)snes));
267:     PetscCall(SNESLogConvergenceHistory(snes, snes->norm, snes->iter));
268:     /* Test for convergence */
269:     PetscCall(SNESConverged(snes, snes->iter, 0.0, 0.0, fnorm));
270:     PetscCall(SNESMonitor(snes, snes->iter, snes->norm));
271:     if (snes->reason) PetscFunctionReturn(PETSC_SUCCESS);
272:     /* Call general purpose update function */
273:     PetscTryTypeMethod(snes, update, snes->iter);
274:   }
275:   PetscFunctionReturn(PETSC_SUCCESS);
276: }

278: /*MC
279:   SNESNGS - Either calls the user-provided solution routine provided with `SNESSetNGS()` or does a finite difference secant approximation
280:             using coloring.

282:    Level: advanced

284:   Options Database Keys:
285: +   -snes_ngs_sweeps <n> - Number of sweeps of nonlinear GS to apply
286: .    -snes_ngs_atol <atol> - Absolute residual tolerance for nonlinear GS iteration
287: .    -snes_ngs_rtol <rtol> - Relative residual tolerance for nonlinear GS iteration
288: .    -snes_ngs_stol <stol> - Absolute update tolerance for nonlinear GS iteration
289: .    -snes_ngs_max_it <maxit> - Maximum number of sweeps of nonlinea GS to apply
290: .    -snes_ngs_secant - Use pointwise secant local Jacobian approximation with coloring instead of user provided Gauss-Seidel routine, this is
291:                         used by default if no user provided Gauss-Seidel routine is available. Requires either that a `DM` that can compute a coloring
292:                         is available or a Jacobian sparse matrix is provided (from which to get the coloring).
293: .    -snes_ngs_secant_h <h> - Differencing parameter for secant approximation
294: .    -snes_ngs_secant_mat_coloring - Use the graph coloring of the Jacobian for the secant GS even if a DM is available.
295: -    -snes_norm_schedule <none, always, initialonly, finalonly, initialfinalonly> - how often the residual norms are computed

297:   Notes:
298:   the Gauss-Seidel smoother is inherited through composition.  If a solver has been created with `SNESGetNPC()`, it will have
299:   its parent's Gauss-Seidel routine associated with it.

301:   By default this routine computes the solution norm at each iteration, this can be time consuming, you can turn this off with `SNESSetNormSchedule()`
302:   or -snes_norm_schedule none

304:    References:
305: .  * - Peter R. Brune, Matthew G. Knepley, Barry F. Smith, and Xuemin Tu, "Composing Scalable Nonlinear Algebraic Solvers",
306:    SIAM Review, 57(4), 2015

308: .seealso: `SNESNCG`, `SNESCreate()`, `SNES`, `SNESSetType()`, `SNESSetNGS()`, `SNESType`, `SNESNGSSetSweeps()`, `SNESNGSSetTolerances()`,
309:           `SNESSetNormSchedule()`
310: M*/

312: PETSC_EXTERN PetscErrorCode SNESCreate_NGS(SNES snes)
313: {
314:   SNES_NGS *gs;

316:   PetscFunctionBegin;
317:   snes->ops->destroy        = SNESDestroy_NGS;
318:   snes->ops->setup          = SNESSetUp_NGS;
319:   snes->ops->setfromoptions = SNESSetFromOptions_NGS;
320:   snes->ops->view           = SNESView_NGS;
321:   snes->ops->solve          = SNESSolve_NGS;
322:   snes->ops->reset          = SNESReset_NGS;

324:   snes->usesksp = PETSC_FALSE;
325:   snes->usesnpc = PETSC_FALSE;

327:   snes->alwayscomputesfinalresidual = PETSC_FALSE;

329:   if (!snes->tolerancesset) {
330:     snes->max_its   = 10000;
331:     snes->max_funcs = 10000;
332:   }

334:   PetscCall(PetscNew(&gs));

336:   gs->sweeps  = 1;
337:   gs->rtol    = 1e-5;
338:   gs->abstol  = PETSC_MACHINE_EPSILON;
339:   gs->stol    = 1000 * PETSC_MACHINE_EPSILON;
340:   gs->max_its = 50;
341:   gs->h       = PETSC_SQRT_MACHINE_EPSILON;

343:   snes->data = (void *)gs;
344:   PetscFunctionReturn(PETSC_SUCCESS);
345: }