Actual source code: taosolver.c

  1: #include <petsc/private/taoimpl.h>
  2: #include <petsc/private/snesimpl.h>

  4: PetscBool         TaoRegisterAllCalled = PETSC_FALSE;
  5: PetscFunctionList TaoList              = NULL;

  7: PetscClassId TAO_CLASSID;

  9: PetscLogEvent TAO_Solve;
 10: PetscLogEvent TAO_ObjectiveEval;
 11: PetscLogEvent TAO_GradientEval;
 12: PetscLogEvent TAO_ObjGradEval;
 13: PetscLogEvent TAO_HessianEval;
 14: PetscLogEvent TAO_JacobianEval;
 15: PetscLogEvent TAO_ConstraintsEval;

 17: const char *TaoSubSetTypes[] = {"subvec", "mask", "matrixfree", "TaoSubSetType", "TAO_SUBSET_", NULL};

 19: struct _n_TaoMonitorDrawCtx {
 20:   PetscViewer viewer;
 21:   PetscInt    howoften; /* when > 0 uses iteration % howoften, when negative only final solution plotted */
 22: };

 24: static PetscErrorCode KSPPreSolve_TAOEW_Private(KSP ksp, Vec b, Vec x, void *ctx)
 25: {
 26:   Tao  tao          = (Tao)ctx;
 27:   SNES snes_ewdummy = tao->snes_ewdummy;

 29:   PetscFunctionBegin;
 30:   if (!snes_ewdummy) PetscFunctionReturn(PETSC_SUCCESS);
 31:   /* populate snes_ewdummy struct values used in KSPPreSolve_SNESEW */
 32:   snes_ewdummy->vec_func = b;
 33:   snes_ewdummy->rtol     = tao->gttol;
 34:   snes_ewdummy->iter     = tao->niter;
 35:   PetscCall(VecNorm(b, NORM_2, &snes_ewdummy->norm));
 36:   PetscCall(KSPPreSolve_SNESEW(ksp, b, x, snes_ewdummy));
 37:   snes_ewdummy->vec_func = NULL;
 38:   PetscFunctionReturn(PETSC_SUCCESS);
 39: }

 41: static PetscErrorCode KSPPostSolve_TAOEW_Private(KSP ksp, Vec b, Vec x, void *ctx)
 42: {
 43:   Tao  tao          = (Tao)ctx;
 44:   SNES snes_ewdummy = tao->snes_ewdummy;

 46:   PetscFunctionBegin;
 47:   if (!snes_ewdummy) PetscFunctionReturn(PETSC_SUCCESS);
 48:   PetscCall(KSPPostSolve_SNESEW(ksp, b, x, snes_ewdummy));
 49:   PetscFunctionReturn(PETSC_SUCCESS);
 50: }

 52: static PetscErrorCode TaoSetUpEW_Private(Tao tao)
 53: {
 54:   SNESKSPEW  *kctx;
 55:   const char *ewprefix;

 57:   PetscFunctionBegin;
 58:   if (!tao->ksp) PetscFunctionReturn(PETSC_SUCCESS);
 59:   if (tao->ksp_ewconv) {
 60:     if (!tao->snes_ewdummy) PetscCall(SNESCreate(PetscObjectComm((PetscObject)tao), &tao->snes_ewdummy));
 61:     tao->snes_ewdummy->ksp_ewconv = PETSC_TRUE;
 62:     PetscCall(KSPSetPreSolve(tao->ksp, KSPPreSolve_TAOEW_Private, tao));
 63:     PetscCall(KSPSetPostSolve(tao->ksp, KSPPostSolve_TAOEW_Private, tao));

 65:     PetscCall(KSPGetOptionsPrefix(tao->ksp, &ewprefix));
 66:     kctx = (SNESKSPEW *)tao->snes_ewdummy->kspconvctx;
 67:     PetscCall(SNESEWSetFromOptions_Private(kctx, PETSC_FALSE, PetscObjectComm((PetscObject)tao), ewprefix));
 68:   } else PetscCall(SNESDestroy(&tao->snes_ewdummy));
 69:   PetscFunctionReturn(PETSC_SUCCESS);
 70: }

 72: /*@
 73:   TaoParametersInitialize - Sets all the parameters in `tao` to their default value (when `TaoCreate()` was called) if they
 74:   currently contain default values. Default values are the parameter values when the object's type is set.

 76:   Collective

 78:   Input Parameter:
 79: . tao - the `Tao` object

 81:   Level: developer

 83:   Developer Note:
 84:   This is called by all the `TaoCreate_XXX()` routines.

 86: .seealso: [](ch_snes), `Tao`, `TaoSolve()`, `TaoDestroy()`,
 87:           `PetscObjectParameterSetDefault()`
 88: @*/
 89: PetscErrorCode TaoParametersInitialize(Tao tao)
 90: {
 91:   PetscObjectParameterSetDefault(tao, max_it, 10000);
 92:   PetscObjectParameterSetDefault(tao, max_funcs, PETSC_UNLIMITED);
 93:   PetscObjectParameterSetDefault(tao, gatol, PetscDefined(USE_REAL_SINGLE) ? 1e-5 : 1e-8);
 94:   PetscObjectParameterSetDefault(tao, grtol, PetscDefined(USE_REAL_SINGLE) ? 1e-5 : 1e-8);
 95:   PetscObjectParameterSetDefault(tao, crtol, PetscDefined(USE_REAL_SINGLE) ? 1e-5 : 1e-8);
 96:   PetscObjectParameterSetDefault(tao, catol, PetscDefined(USE_REAL_SINGLE) ? 1e-5 : 1e-8);
 97:   PetscObjectParameterSetDefault(tao, gttol, 0.0);
 98:   PetscObjectParameterSetDefault(tao, steptol, 0.0);
 99:   PetscObjectParameterSetDefault(tao, fmin, PETSC_NINFINITY);
100:   PetscObjectParameterSetDefault(tao, trust0, PETSC_INFINITY);
101:   return PETSC_SUCCESS;
102: }

104: /*@
105:   TaoCreate - Creates a Tao solver

107:   Collective

109:   Input Parameter:
110: . comm - MPI communicator

112:   Output Parameter:
113: . newtao - the new `Tao` context

115:   Options Database Key:
116: . -tao_type - select which method Tao should use

118:   Level: beginner

120: .seealso: [](ch_tao), `Tao`, `TaoSolve()`, `TaoDestroy()`, `TaoSetFromOptions()`, `TaoSetType()`
121: @*/
122: PetscErrorCode TaoCreate(MPI_Comm comm, Tao *newtao)
123: {
124:   Tao tao;

126:   PetscFunctionBegin;
127:   PetscAssertPointer(newtao, 2);
128:   PetscCall(TaoInitializePackage());
129:   PetscCall(TaoLineSearchInitializePackage());

131:   PetscCall(PetscHeaderCreate(tao, TAO_CLASSID, "Tao", "Optimization solver", "Tao", comm, TaoDestroy, TaoView));
132:   tao->ops->convergencetest = TaoDefaultConvergenceTest;

134:   tao->hist_reset = PETSC_TRUE;
135:   PetscCall(TaoResetStatistics(tao));
136:   *newtao = tao;
137:   PetscFunctionReturn(PETSC_SUCCESS);
138: }

140: /*@
141:   TaoSolve - Solves an optimization problem min F(x) s.t. l <= x <= u

143:   Collective

145:   Input Parameter:
146: . tao - the `Tao` context

148:   Level: beginner

150:   Notes:
151:   The user must set up the `Tao` object  with calls to `TaoSetSolution()`, `TaoSetObjective()`, `TaoSetGradient()`, and (if using 2nd order method) `TaoSetHessian()`.

153:   You should call `TaoGetConvergedReason()` or run with `-tao_converged_reason` to determine if the optimization algorithm actually succeeded or
154:   why it failed.

156: .seealso: [](ch_tao), `Tao`, `TaoCreate()`, `TaoSetObjective()`, `TaoSetGradient()`, `TaoSetHessian()`, `TaoGetConvergedReason()`, `TaoSetUp()`
157:  @*/
158: PetscErrorCode TaoSolve(Tao tao)
159: {
160:   static PetscBool set = PETSC_FALSE;

162:   PetscFunctionBegin;
164:   PetscCall(PetscCitationsRegister("@TechReport{tao-user-ref,\n"
165:                                    "title   = {Toolkit for Advanced Optimization (TAO) Users Manual},\n"
166:                                    "author  = {Todd Munson and Jason Sarich and Stefan Wild and Steve Benson and Lois Curfman McInnes},\n"
167:                                    "Institution = {Argonne National Laboratory},\n"
168:                                    "Year   = 2014,\n"
169:                                    "Number = {ANL/MCS-TM-322 - Revision 3.5},\n"
170:                                    "url    = {https://www.mcs.anl.gov/research/projects/tao/}\n}\n",
171:                                    &set));
172:   tao->header_printed = PETSC_FALSE;
173:   PetscCall(TaoSetUp(tao));
174:   PetscCall(TaoResetStatistics(tao));
175:   if (tao->linesearch) PetscCall(TaoLineSearchReset(tao->linesearch));

177:   PetscCall(PetscLogEventBegin(TAO_Solve, tao, 0, 0, 0));
178:   PetscTryTypeMethod(tao, solve);
179:   PetscCall(PetscLogEventEnd(TAO_Solve, tao, 0, 0, 0));

181:   PetscCall(VecViewFromOptions(tao->solution, (PetscObject)tao, "-tao_view_solution"));

183:   tao->ntotalits += tao->niter;

185:   if (tao->printreason) {
186:     PetscViewer viewer = PETSC_VIEWER_STDOUT_(((PetscObject)tao)->comm);

188:     PetscCall(PetscViewerASCIIAddTab(viewer, ((PetscObject)tao)->tablevel));
189:     if (tao->reason > 0) {
190:       if (((PetscObject)tao)->prefix) {
191:         PetscCall(PetscViewerASCIIPrintf(viewer, "  TAO %s solve converged due to %s iterations %" PetscInt_FMT "\n", ((PetscObject)tao)->prefix, TaoConvergedReasons[tao->reason], tao->niter));
192:       } else {
193:         PetscCall(PetscViewerASCIIPrintf(viewer, "  TAO solve converged due to %s iterations %" PetscInt_FMT "\n", TaoConvergedReasons[tao->reason], tao->niter));
194:       }
195:     } else {
196:       if (((PetscObject)tao)->prefix) {
197:         PetscCall(PetscViewerASCIIPrintf(viewer, "  TAO %s solve did not converge due to %s iteration %" PetscInt_FMT "\n", ((PetscObject)tao)->prefix, TaoConvergedReasons[tao->reason], tao->niter));
198:       } else {
199:         PetscCall(PetscViewerASCIIPrintf(viewer, "  TAO solve did not converge due to %s iteration %" PetscInt_FMT "\n", TaoConvergedReasons[tao->reason], tao->niter));
200:       }
201:     }
202:     PetscCall(PetscViewerASCIISubtractTab(viewer, ((PetscObject)tao)->tablevel));
203:   }
204:   PetscCall(TaoViewFromOptions(tao, NULL, "-tao_view"));
205:   PetscFunctionReturn(PETSC_SUCCESS);
206: }

208: /*@
209:   TaoSetUp - Sets up the internal data structures for the later use
210:   of a Tao solver

212:   Collective

214:   Input Parameter:
215: . tao - the `Tao` context

217:   Level: advanced

219:   Note:
220:   The user will not need to explicitly call `TaoSetUp()`, as it will
221:   automatically be called in `TaoSolve()`.  However, if the user
222:   desires to call it explicitly, it should come after `TaoCreate()`
223:   and any TaoSetSomething() routines, but before `TaoSolve()`.

225: .seealso: [](ch_tao), `Tao`, `TaoCreate()`, `TaoSolve()`
226: @*/
227: PetscErrorCode TaoSetUp(Tao tao)
228: {
229:   PetscFunctionBegin;
231:   if (tao->setupcalled) PetscFunctionReturn(PETSC_SUCCESS);
232:   PetscCall(TaoSetUpEW_Private(tao));
233:   PetscCheck(tao->solution, PetscObjectComm((PetscObject)tao), PETSC_ERR_ARG_WRONGSTATE, "Must call TaoSetSolution");
234:   PetscTryTypeMethod(tao, setup);
235:   tao->setupcalled = PETSC_TRUE;
236:   PetscFunctionReturn(PETSC_SUCCESS);
237: }

239: /*@
240:   TaoDestroy - Destroys the `Tao` context that was created with `TaoCreate()`

242:   Collective

244:   Input Parameter:
245: . tao - the `Tao` context

247:   Level: beginner

249: .seealso: [](ch_tao), `Tao`, `TaoCreate()`, `TaoSolve()`
250: @*/
251: PetscErrorCode TaoDestroy(Tao *tao)
252: {
253:   PetscFunctionBegin;
254:   if (!*tao) PetscFunctionReturn(PETSC_SUCCESS);
256:   if (--((PetscObject)*tao)->refct > 0) {
257:     *tao = NULL;
258:     PetscFunctionReturn(PETSC_SUCCESS);
259:   }

261:   PetscTryTypeMethod(*tao, destroy);
262:   PetscCall(KSPDestroy(&(*tao)->ksp));
263:   PetscCall(SNESDestroy(&(*tao)->snes_ewdummy));
264:   PetscCall(TaoLineSearchDestroy(&(*tao)->linesearch));

266:   if ((*tao)->ops->convergencedestroy) {
267:     PetscCall((*(*tao)->ops->convergencedestroy)((*tao)->cnvP));
268:     if ((*tao)->jacobian_state_inv) PetscCall(MatDestroy(&(*tao)->jacobian_state_inv));
269:   }
270:   PetscCall(VecDestroy(&(*tao)->solution));
271:   PetscCall(VecDestroy(&(*tao)->gradient));
272:   PetscCall(VecDestroy(&(*tao)->ls_res));

274:   if ((*tao)->gradient_norm) {
275:     PetscCall(PetscObjectDereference((PetscObject)(*tao)->gradient_norm));
276:     PetscCall(VecDestroy(&(*tao)->gradient_norm_tmp));
277:   }

279:   PetscCall(VecDestroy(&(*tao)->XL));
280:   PetscCall(VecDestroy(&(*tao)->XU));
281:   PetscCall(VecDestroy(&(*tao)->IL));
282:   PetscCall(VecDestroy(&(*tao)->IU));
283:   PetscCall(VecDestroy(&(*tao)->DE));
284:   PetscCall(VecDestroy(&(*tao)->DI));
285:   PetscCall(VecDestroy(&(*tao)->constraints));
286:   PetscCall(VecDestroy(&(*tao)->constraints_equality));
287:   PetscCall(VecDestroy(&(*tao)->constraints_inequality));
288:   PetscCall(VecDestroy(&(*tao)->stepdirection));
289:   PetscCall(MatDestroy(&(*tao)->hessian_pre));
290:   PetscCall(MatDestroy(&(*tao)->hessian));
291:   PetscCall(MatDestroy(&(*tao)->ls_jac));
292:   PetscCall(MatDestroy(&(*tao)->ls_jac_pre));
293:   PetscCall(MatDestroy(&(*tao)->jacobian_pre));
294:   PetscCall(MatDestroy(&(*tao)->jacobian));
295:   PetscCall(MatDestroy(&(*tao)->jacobian_state_pre));
296:   PetscCall(MatDestroy(&(*tao)->jacobian_state));
297:   PetscCall(MatDestroy(&(*tao)->jacobian_state_inv));
298:   PetscCall(MatDestroy(&(*tao)->jacobian_design));
299:   PetscCall(MatDestroy(&(*tao)->jacobian_equality));
300:   PetscCall(MatDestroy(&(*tao)->jacobian_equality_pre));
301:   PetscCall(MatDestroy(&(*tao)->jacobian_inequality));
302:   PetscCall(MatDestroy(&(*tao)->jacobian_inequality_pre));
303:   PetscCall(ISDestroy(&(*tao)->state_is));
304:   PetscCall(ISDestroy(&(*tao)->design_is));
305:   PetscCall(VecDestroy(&(*tao)->res_weights_v));
306:   PetscCall(TaoMonitorCancel(*tao));
307:   if ((*tao)->hist_malloc) PetscCall(PetscFree4((*tao)->hist_obj, (*tao)->hist_resid, (*tao)->hist_cnorm, (*tao)->hist_lits));
308:   if ((*tao)->res_weights_n) {
309:     PetscCall(PetscFree((*tao)->res_weights_rows));
310:     PetscCall(PetscFree((*tao)->res_weights_cols));
311:     PetscCall(PetscFree((*tao)->res_weights_w));
312:   }
313:   PetscCall(PetscHeaderDestroy(tao));
314:   PetscFunctionReturn(PETSC_SUCCESS);
315: }

317: /*@
318:   TaoKSPSetUseEW - Sets `SNES` to use Eisenstat-Walker method {cite}`ew96`for computing relative tolerance for linear solvers.

320:   Logically Collective

322:   Input Parameters:
323: + tao  - Tao context
324: - flag - `PETSC_TRUE` or `PETSC_FALSE`

326:   Level: advanced

328:   Note:
329:   See `SNESKSPSetUseEW()` for customization details.

331: .seealso: [](ch_tao), `Tao`, `SNESKSPSetUseEW()`
332: @*/
333: PetscErrorCode TaoKSPSetUseEW(Tao tao, PetscBool flag)
334: {
335:   PetscFunctionBegin;
338:   tao->ksp_ewconv = flag;
339:   PetscFunctionReturn(PETSC_SUCCESS);
340: }

342: /*@
343:   TaoSetFromOptions - Sets various Tao parameters from the options database

345:   Collective

347:   Input Parameter:
348: . tao - the `Tao` solver context

350:   Options Database Keys:
351: + -tao_type <type>             - The algorithm that Tao uses (lmvm, nls, etc.)
352: . -tao_gatol <gatol>           - absolute error tolerance for ||gradient||
353: . -tao_grtol <grtol>           - relative error tolerance for ||gradient||
354: . -tao_gttol <gttol>           - reduction of ||gradient|| relative to initial gradient
355: . -tao_max_it <max>            - sets maximum number of iterations
356: . -tao_max_funcs <max>         - sets maximum number of function evaluations
357: . -tao_fmin <fmin>             - stop if function value reaches fmin
358: . -tao_steptol <tol>           - stop if trust region radius less than <tol>
359: . -tao_trust0 <t>              - initial trust region radius
360: . -tao_view_solution           - view the solution at the end of the optimization process
361: . -tao_monitor                 - prints function value and residual norm at each iteration
362: . -tao_monitor_short           - same as `-tao_monitor`, but truncates very small values
363: . -tao_monitor_constraint_norm - prints objective value, gradient, and constraint norm at each iteration
364: . -tao_monitor_globalization   - prints information about the globalization at each iteration
365: . -tao_monitor_solution        - prints solution vector at each iteration
366: . -tao_monitor_ls_residual     - prints least-squares residual vector at each iteration
367: . -tao_monitor_step            - prints step vector at each iteration
368: . -tao_monitor_gradient        - prints gradient vector at each iteration
369: . -tao_monitor_solution_draw   - graphically view solution vector at each iteration
370: . -tao_monitor_step_draw       - graphically view step vector at each iteration
371: . -tao_monitor_gradient_draw   - graphically view gradient at each iteration
372: . -tao_monitor_cancel          - cancels all monitors (except those set with command line)
373: . -tao_fd_gradient             - use gradient computed with finite differences
374: . -tao_fd_hessian              - use hessian computed with finite differences
375: . -tao_mf_hessian              - use matrix-free Hessian computed with finite differences
376: . -tao_view                    - prints information about the Tao after solving
377: - -tao_converged_reason        - prints the reason Tao stopped iterating

379:   Level: beginner

381:   Note:
382:   To see all options, run your program with the `-help` option or consult the
383:   user's manual. Should be called after `TaoCreate()` but before `TaoSolve()`

385: .seealso: [](ch_tao), `Tao`, `TaoCreate()`, `TaoSolve()`
386: @*/
387: PetscErrorCode TaoSetFromOptions(Tao tao)
388: {
389:   TaoType     default_type = TAOLMVM;
390:   char        type[256], monfilename[PETSC_MAX_PATH_LEN];
391:   PetscViewer monviewer;
392:   PetscBool   flg, found;
393:   MPI_Comm    comm;
394:   PetscReal   catol, crtol, gatol, grtol, gttol;

396:   PetscFunctionBegin;
398:   PetscCall(PetscObjectGetComm((PetscObject)tao, &comm));

400:   if (((PetscObject)tao)->type_name) default_type = ((PetscObject)tao)->type_name;

402:   PetscObjectOptionsBegin((PetscObject)tao);
403:   /* Check for type from options */
404:   PetscCall(PetscOptionsFList("-tao_type", "Tao Solver type", "TaoSetType", TaoList, default_type, type, 256, &flg));
405:   if (flg) {
406:     PetscCall(TaoSetType(tao, type));
407:   } else if (!((PetscObject)tao)->type_name) {
408:     PetscCall(TaoSetType(tao, default_type));
409:   }

411:   /* Tao solvers do not set the prefix, set it here if not yet done
412:      We do it after SetType since solver may have been changed */
413:   if (tao->linesearch) {
414:     const char *prefix;
415:     PetscCall(TaoLineSearchGetOptionsPrefix(tao->linesearch, &prefix));
416:     if (!prefix) PetscCall(TaoLineSearchSetOptionsPrefix(tao->linesearch, ((PetscObject)tao)->prefix));
417:   }

419:   catol = tao->catol;
420:   crtol = tao->crtol;
421:   PetscCall(PetscOptionsReal("-tao_catol", "Stop if constraints violations within", "TaoSetConstraintTolerances", tao->catol, &catol, NULL));
422:   PetscCall(PetscOptionsReal("-tao_crtol", "Stop if relative constraint violations within", "TaoSetConstraintTolerances", tao->crtol, &crtol, NULL));
423:   PetscCall(TaoSetConstraintTolerances(tao, catol, crtol));

425:   gatol = tao->gatol;
426:   grtol = tao->grtol;
427:   gttol = tao->gttol;
428:   PetscCall(PetscOptionsReal("-tao_gatol", "Stop if norm of gradient less than", "TaoSetTolerances", tao->gatol, &gatol, NULL));
429:   PetscCall(PetscOptionsReal("-tao_grtol", "Stop if norm of gradient divided by the function value is less than", "TaoSetTolerances", tao->grtol, &grtol, NULL));
430:   PetscCall(PetscOptionsReal("-tao_gttol", "Stop if the norm of the gradient is less than the norm of the initial gradient times tol", "TaoSetTolerances", tao->gttol, &gttol, NULL));
431:   PetscCall(TaoSetTolerances(tao, gatol, grtol, gttol));

433:   PetscCall(PetscOptionsInt("-tao_max_it", "Stop if iteration number exceeds", "TaoSetMaximumIterations", tao->max_it, &tao->max_it, &flg));
434:   if (flg) PetscCall(TaoSetMaximumIterations(tao, tao->max_it));

436:   PetscCall(PetscOptionsInt("-tao_max_funcs", "Stop if number of function evaluations exceeds", "TaoSetMaximumFunctionEvaluations", tao->max_funcs, &tao->max_funcs, &flg));
437:   if (flg) PetscCall(TaoSetMaximumFunctionEvaluations(tao, tao->max_funcs));

439:   PetscCall(PetscOptionsReal("-tao_fmin", "Stop if function less than", "TaoSetFunctionLowerBound", tao->fmin, &tao->fmin, NULL));
440:   PetscCall(PetscOptionsBoundedReal("-tao_steptol", "Stop if step size or trust region radius less than", "", tao->steptol, &tao->steptol, NULL, 0));
441:   PetscCall(PetscOptionsReal("-tao_trust0", "Initial trust region radius", "TaoSetInitialTrustRegionRadius", tao->trust0, &tao->trust0, &flg));
442:   if (flg) PetscCall(TaoSetInitialTrustRegionRadius(tao, tao->trust0));

444:   PetscCall(PetscOptionsDeprecated("-tao_solution_monitor", "-tao_monitor_solution", "3.21", NULL));
445:   PetscCall(PetscOptionsDeprecated("-tao_gradient_monitor", "-tao_monitor_gradient", "3.21", NULL));
446:   PetscCall(PetscOptionsDeprecated("-tao_stepdirection_monitor", "-tao_monitor_step", "3.21", NULL));
447:   PetscCall(PetscOptionsDeprecated("-tao_residual_monitor", "-tao_monitor_residual", "3.21", NULL));
448:   PetscCall(PetscOptionsDeprecated("-tao_smonitor", "-tao_monitor_short", "3.21", NULL));
449:   PetscCall(PetscOptionsDeprecated("-tao_cmonitor", "-tao_monitor_constraint_norm", "3.21", NULL));
450:   PetscCall(PetscOptionsDeprecated("-tao_gmonitor", "-tao_monitor_globalization", "3.21", NULL));
451:   PetscCall(PetscOptionsDeprecated("-tao_draw_solution", "-tao_monitor_solution_draw", "3.21", NULL));
452:   PetscCall(PetscOptionsDeprecated("-tao_draw_gradient", "-tao_monitor_gradient_draw", "3.21", NULL));
453:   PetscCall(PetscOptionsDeprecated("-tao_draw_step", "-tao_monitor_step_draw", "3.21", NULL));

455:   PetscCall(PetscOptionsString("-tao_monitor_solution", "View solution vector after each iteration", "TaoMonitorSet", "stdout", monfilename, sizeof(monfilename), &flg));
456:   if (flg) {
457:     PetscCall(PetscViewerASCIIOpen(comm, monfilename, &monviewer));
458:     PetscCall(TaoMonitorSet(tao, TaoMonitorSolution, monviewer, (PetscCtxDestroyFn *)PetscViewerDestroy));
459:   }

461:   PetscCall(PetscOptionsBool("-tao_converged_reason", "Print reason for Tao converged", "TaoSolve", tao->printreason, &tao->printreason, NULL));
462:   PetscCall(PetscOptionsString("-tao_monitor_gradient", "View gradient vector for each iteration", "TaoMonitorSet", "stdout", monfilename, sizeof(monfilename), &flg));
463:   if (flg) {
464:     PetscCall(PetscViewerASCIIOpen(comm, monfilename, &monviewer));
465:     PetscCall(TaoMonitorSet(tao, TaoMonitorGradient, monviewer, (PetscCtxDestroyFn *)PetscViewerDestroy));
466:   }

468:   PetscCall(PetscOptionsString("-tao_monitor_step", "View step vector after each iteration", "TaoMonitorSet", "stdout", monfilename, sizeof(monfilename), &flg));
469:   if (flg) {
470:     PetscCall(PetscViewerASCIIOpen(comm, monfilename, &monviewer));
471:     PetscCall(TaoMonitorSet(tao, TaoMonitorStep, monviewer, (PetscCtxDestroyFn *)PetscViewerDestroy));
472:   }

474:   PetscCall(PetscOptionsString("-tao_monitor_residual", "View least-squares residual vector after each iteration", "TaoMonitorSet", "stdout", monfilename, sizeof(monfilename), &flg));
475:   if (flg) {
476:     PetscCall(PetscViewerASCIIOpen(comm, monfilename, &monviewer));
477:     PetscCall(TaoMonitorSet(tao, TaoMonitorResidual, monviewer, (PetscCtxDestroyFn *)PetscViewerDestroy));
478:   }

480:   PetscCall(PetscOptionsString("-tao_monitor", "Use the default convergence monitor", "TaoMonitorSet", "stdout", monfilename, sizeof(monfilename), &flg));
481:   if (flg) {
482:     PetscCall(PetscViewerASCIIOpen(comm, monfilename, &monviewer));
483:     PetscCall(TaoMonitorSet(tao, TaoMonitorDefault, monviewer, (PetscCtxDestroyFn *)PetscViewerDestroy));
484:   }

486:   PetscCall(PetscOptionsString("-tao_monitor_globalization", "Use the convergence monitor with extra globalization info", "TaoMonitorSet", "stdout", monfilename, sizeof(monfilename), &flg));
487:   if (flg) {
488:     PetscCall(PetscViewerASCIIOpen(comm, monfilename, &monviewer));
489:     PetscCall(TaoMonitorSet(tao, TaoMonitorGlobalization, monviewer, (PetscCtxDestroyFn *)PetscViewerDestroy));
490:   }

492:   PetscCall(PetscOptionsString("-tao_monitor_short", "Use the short convergence monitor", "TaoMonitorSet", "stdout", monfilename, sizeof(monfilename), &flg));
493:   if (flg) {
494:     PetscCall(PetscViewerASCIIOpen(comm, monfilename, &monviewer));
495:     PetscCall(TaoMonitorSet(tao, TaoMonitorDefaultShort, monviewer, (PetscCtxDestroyFn *)PetscViewerDestroy));
496:   }

498:   PetscCall(PetscOptionsString("-tao_monitor_constraint_norm", "Use the default convergence monitor with constraint norm", "TaoMonitorSet", "stdout", monfilename, sizeof(monfilename), &flg));
499:   if (flg) {
500:     PetscCall(PetscViewerASCIIOpen(comm, monfilename, &monviewer));
501:     PetscCall(TaoMonitorSet(tao, TaoMonitorConstraintNorm, monviewer, (PetscCtxDestroyFn *)PetscViewerDestroy));
502:   }

504:   flg = PETSC_FALSE;
505:   PetscCall(PetscOptionsDeprecated("-tao_cancelmonitors", "-tao_monitor_cancel", "3.21", NULL));
506:   PetscCall(PetscOptionsBool("-tao_monitor_cancel", "cancel all monitors and call any registered destroy routines", "TaoMonitorCancel", flg, &flg, NULL));
507:   if (flg) PetscCall(TaoMonitorCancel(tao));

509:   flg = PETSC_FALSE;
510:   PetscCall(PetscOptionsBool("-tao_monitor_solution_draw", "Plot solution vector at each iteration", "TaoMonitorSet", flg, &flg, NULL));
511:   if (flg) {
512:     TaoMonitorDrawCtx drawctx;
513:     PetscInt          howoften = 1;
514:     PetscCall(TaoMonitorDrawCtxCreate(PetscObjectComm((PetscObject)tao), NULL, NULL, PETSC_DECIDE, PETSC_DECIDE, 300, 300, howoften, &drawctx));
515:     PetscCall(TaoMonitorSet(tao, TaoMonitorSolutionDraw, drawctx, (PetscCtxDestroyFn *)TaoMonitorDrawCtxDestroy));
516:   }

518:   flg = PETSC_FALSE;
519:   PetscCall(PetscOptionsBool("-tao_monitor_step_draw", "Plots step at each iteration", "TaoMonitorSet", flg, &flg, NULL));
520:   if (flg) PetscCall(TaoMonitorSet(tao, TaoMonitorStepDraw, NULL, NULL));

522:   flg = PETSC_FALSE;
523:   PetscCall(PetscOptionsBool("-tao_monitor_gradient_draw", "plots gradient at each iteration", "TaoMonitorSet", flg, &flg, NULL));
524:   if (flg) {
525:     TaoMonitorDrawCtx drawctx;
526:     PetscInt          howoften = 1;
527:     PetscCall(TaoMonitorDrawCtxCreate(PetscObjectComm((PetscObject)tao), NULL, NULL, PETSC_DECIDE, PETSC_DECIDE, 300, 300, howoften, &drawctx));
528:     PetscCall(TaoMonitorSet(tao, TaoMonitorGradientDraw, drawctx, (PetscCtxDestroyFn *)TaoMonitorDrawCtxDestroy));
529:   }
530:   flg = PETSC_FALSE;
531:   PetscCall(PetscOptionsBool("-tao_fd_gradient", "compute gradient using finite differences", "TaoDefaultComputeGradient", flg, &flg, NULL));
532:   if (flg) PetscCall(TaoSetGradient(tao, NULL, TaoDefaultComputeGradient, NULL));
533:   flg = PETSC_FALSE;
534:   PetscCall(PetscOptionsBool("-tao_fd_hessian", "compute Hessian using finite differences", "TaoDefaultComputeHessian", flg, &flg, NULL));
535:   if (flg) {
536:     Mat H;

538:     PetscCall(MatCreate(PetscObjectComm((PetscObject)tao), &H));
539:     PetscCall(MatSetType(H, MATAIJ));
540:     PetscCall(TaoSetHessian(tao, H, H, TaoDefaultComputeHessian, NULL));
541:     PetscCall(MatDestroy(&H));
542:   }
543:   flg = PETSC_FALSE;
544:   PetscCall(PetscOptionsBool("-tao_mf_hessian", "compute matrix-free Hessian using finite differences", "TaoDefaultComputeHessianMFFD", flg, &flg, NULL));
545:   if (flg) {
546:     Mat H;

548:     PetscCall(MatCreate(PetscObjectComm((PetscObject)tao), &H));
549:     PetscCall(TaoSetHessian(tao, H, H, TaoDefaultComputeHessianMFFD, NULL));
550:     PetscCall(MatDestroy(&H));
551:   }
552:   PetscCall(PetscOptionsBool("-tao_recycle_history", "enable recycling/re-using information from the previous TaoSolve() call for some algorithms", "TaoSetRecycleHistory", flg, &flg, &found));
553:   if (found) PetscCall(TaoSetRecycleHistory(tao, flg));
554:   PetscCall(PetscOptionsEnum("-tao_subset_type", "subset type", "", TaoSubSetTypes, (PetscEnum)tao->subset_type, (PetscEnum *)&tao->subset_type, NULL));

556:   if (tao->ksp) {
557:     PetscCall(PetscOptionsBool("-tao_ksp_ew", "Use Eisentat-Walker linear system convergence test", "TaoKSPSetUseEW", tao->ksp_ewconv, &tao->ksp_ewconv, NULL));
558:     PetscCall(TaoKSPSetUseEW(tao, tao->ksp_ewconv));
559:   }

561:   PetscTryTypeMethod(tao, setfromoptions, PetscOptionsObject);

563:   /* process any options handlers added with PetscObjectAddOptionsHandler() */
564:   PetscCall(PetscObjectProcessOptionsHandlers((PetscObject)tao, PetscOptionsObject));
565:   PetscOptionsEnd();

567:   if (tao->linesearch) PetscCall(TaoLineSearchSetFromOptions(tao->linesearch));
568:   PetscFunctionReturn(PETSC_SUCCESS);
569: }

571: /*@
572:   TaoViewFromOptions - View a `Tao` object based on values in the options database

574:   Collective

576:   Input Parameters:
577: + A    - the  `Tao` context
578: . obj  - Optional object that provides the prefix for the options database
579: - name - command line option

581:   Level: intermediate

583: .seealso: [](ch_tao), `Tao`, `TaoView`, `PetscObjectViewFromOptions()`, `TaoCreate()`
584: @*/
585: PetscErrorCode TaoViewFromOptions(Tao A, PetscObject obj, const char name[])
586: {
587:   PetscFunctionBegin;
589:   PetscCall(PetscObjectViewFromOptions((PetscObject)A, obj, name));
590:   PetscFunctionReturn(PETSC_SUCCESS);
591: }

593: /*@
594:   TaoView - Prints information about the `Tao` object

596:   Collective

598:   Input Parameters:
599: + tao    - the `Tao` context
600: - viewer - visualization context

602:   Options Database Key:
603: . -tao_view - Calls `TaoView()` at the end of `TaoSolve()`

605:   Level: beginner

607:   Notes:
608:   The available visualization contexts include
609: +     `PETSC_VIEWER_STDOUT_SELF` - standard output (default)
610: -     `PETSC_VIEWER_STDOUT_WORLD` - synchronized standard
611:   output where only the first processor opens
612:   the file.  All other processors send their
613:   data to the first processor to print.

615: .seealso: [](ch_tao), `Tao`, `PetscViewerASCIIOpen()`
616: @*/
617: PetscErrorCode TaoView(Tao tao, PetscViewer viewer)
618: {
619:   PetscBool isascii, isstring;
620:   TaoType   type;

622:   PetscFunctionBegin;
624:   if (!viewer) PetscCall(PetscViewerASCIIGetStdout(((PetscObject)tao)->comm, &viewer));
626:   PetscCheckSameComm(tao, 1, viewer, 2);

628:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &isascii));
629:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERSTRING, &isstring));
630:   if (isascii) {
631:     PetscCall(PetscObjectPrintClassNamePrefixType((PetscObject)tao, viewer));

633:     PetscCall(PetscViewerASCIIPushTab(viewer));
634:     PetscTryTypeMethod(tao, view, viewer);
635:     if (tao->linesearch) PetscCall(TaoLineSearchView(tao->linesearch, viewer));
636:     if (tao->ksp) {
637:       PetscCall(KSPView(tao->ksp, viewer));
638:       PetscCall(PetscViewerASCIIPrintf(viewer, "total KSP iterations: %" PetscInt_FMT "\n", tao->ksp_tot_its));
639:     }

641:     if (tao->XL || tao->XU) PetscCall(PetscViewerASCIIPrintf(viewer, "Active Set subset type: %s\n", TaoSubSetTypes[tao->subset_type]));

643:     PetscCall(PetscViewerASCIIPrintf(viewer, "convergence tolerances: gatol=%g,", (double)tao->gatol));
644:     PetscCall(PetscViewerASCIIPrintf(viewer, " grtol=%g,", (double)tao->grtol));
645:     PetscCall(PetscViewerASCIIPrintf(viewer, " steptol=%g,", (double)tao->steptol));
646:     PetscCall(PetscViewerASCIIPrintf(viewer, " gttol=%g\n", (double)tao->gttol));
647:     PetscCall(PetscViewerASCIIPrintf(viewer, "Residual in Function/Gradient:=%g\n", (double)tao->residual));

649:     if (tao->constrained) {
650:       PetscCall(PetscViewerASCIIPrintf(viewer, "convergence tolerances:"));
651:       PetscCall(PetscViewerASCIIPrintf(viewer, " catol=%g,", (double)tao->catol));
652:       PetscCall(PetscViewerASCIIPrintf(viewer, " crtol=%g\n", (double)tao->crtol));
653:       PetscCall(PetscViewerASCIIPrintf(viewer, "Residual in Constraints:=%g\n", (double)tao->cnorm));
654:     }

656:     if (tao->trust < tao->steptol) {
657:       PetscCall(PetscViewerASCIIPrintf(viewer, "convergence tolerances: steptol=%g\n", (double)tao->steptol));
658:       PetscCall(PetscViewerASCIIPrintf(viewer, "Final trust region radius:=%g\n", (double)tao->trust));
659:     }

661:     if (tao->fmin > -1.e25) PetscCall(PetscViewerASCIIPrintf(viewer, "convergence tolerances: function minimum=%g\n", (double)tao->fmin));
662:     PetscCall(PetscViewerASCIIPrintf(viewer, "Objective value=%g\n", (double)tao->fc));

664:     PetscCall(PetscViewerASCIIPrintf(viewer, "total number of iterations=%" PetscInt_FMT ",          ", tao->niter));
665:     PetscCall(PetscViewerASCIIPrintf(viewer, "              (max: %" PetscInt_FMT ")\n", tao->max_it));

667:     if (tao->nfuncs > 0) {
668:       PetscCall(PetscViewerASCIIPrintf(viewer, "total number of function evaluations=%" PetscInt_FMT ",", tao->nfuncs));
669:       if (tao->max_funcs == PETSC_UNLIMITED) PetscCall(PetscViewerASCIIPrintf(viewer, "                (max: unlimited)\n"));
670:       else PetscCall(PetscViewerASCIIPrintf(viewer, "                (max: %" PetscInt_FMT ")\n", tao->max_funcs));
671:     }
672:     if (tao->ngrads > 0) {
673:       PetscCall(PetscViewerASCIIPrintf(viewer, "total number of gradient evaluations=%" PetscInt_FMT ",", tao->ngrads));
674:       if (tao->max_funcs == PETSC_UNLIMITED) PetscCall(PetscViewerASCIIPrintf(viewer, "                (max: unlimited)\n"));
675:       else PetscCall(PetscViewerASCIIPrintf(viewer, "                (max: %" PetscInt_FMT ")\n", tao->max_funcs));
676:     }
677:     if (tao->nfuncgrads > 0) {
678:       PetscCall(PetscViewerASCIIPrintf(viewer, "total number of function/gradient evaluations=%" PetscInt_FMT ",", tao->nfuncgrads));
679:       if (tao->max_funcs == PETSC_UNLIMITED) PetscCall(PetscViewerASCIIPrintf(viewer, "    (max: unlimited)\n"));
680:       else PetscCall(PetscViewerASCIIPrintf(viewer, "    (max: %" PetscInt_FMT ")\n", tao->max_funcs));
681:     }
682:     if (tao->nhess > 0) PetscCall(PetscViewerASCIIPrintf(viewer, "total number of Hessian evaluations=%" PetscInt_FMT "\n", tao->nhess));
683:     if (tao->nconstraints > 0) PetscCall(PetscViewerASCIIPrintf(viewer, "total number of constraint function evaluations=%" PetscInt_FMT "\n", tao->nconstraints));
684:     if (tao->njac > 0) PetscCall(PetscViewerASCIIPrintf(viewer, "total number of Jacobian evaluations=%" PetscInt_FMT "\n", tao->njac));

686:     if (tao->reason > 0) {
687:       PetscCall(PetscViewerASCIIPrintf(viewer, "Solution converged: "));
688:       switch (tao->reason) {
689:       case TAO_CONVERGED_GATOL:
690:         PetscCall(PetscViewerASCIIPrintf(viewer, " ||g(X)|| <= gatol\n"));
691:         break;
692:       case TAO_CONVERGED_GRTOL:
693:         PetscCall(PetscViewerASCIIPrintf(viewer, " ||g(X)||/|f(X)| <= grtol\n"));
694:         break;
695:       case TAO_CONVERGED_GTTOL:
696:         PetscCall(PetscViewerASCIIPrintf(viewer, " ||g(X)||/||g(X0)|| <= gttol\n"));
697:         break;
698:       case TAO_CONVERGED_STEPTOL:
699:         PetscCall(PetscViewerASCIIPrintf(viewer, " Steptol -- step size small\n"));
700:         break;
701:       case TAO_CONVERGED_MINF:
702:         PetscCall(PetscViewerASCIIPrintf(viewer, " Minf --  f < fmin\n"));
703:         break;
704:       case TAO_CONVERGED_USER:
705:         PetscCall(PetscViewerASCIIPrintf(viewer, " User Terminated\n"));
706:         break;
707:       default:
708:         PetscCall(PetscViewerASCIIPrintf(viewer, " %d\n", tao->reason));
709:         break;
710:       }
711:     } else if (tao->reason == TAO_CONTINUE_ITERATING) {
712:       PetscCall(PetscViewerASCIIPrintf(viewer, "Solver never run\n"));
713:     } else {
714:       PetscCall(PetscViewerASCIIPrintf(viewer, "Solver failed: "));
715:       switch (tao->reason) {
716:       case TAO_DIVERGED_MAXITS:
717:         PetscCall(PetscViewerASCIIPrintf(viewer, " Maximum Iterations\n"));
718:         break;
719:       case TAO_DIVERGED_NAN:
720:         PetscCall(PetscViewerASCIIPrintf(viewer, " NAN or Inf encountered\n"));
721:         break;
722:       case TAO_DIVERGED_MAXFCN:
723:         PetscCall(PetscViewerASCIIPrintf(viewer, " Maximum Function Evaluations\n"));
724:         break;
725:       case TAO_DIVERGED_LS_FAILURE:
726:         PetscCall(PetscViewerASCIIPrintf(viewer, " Line Search Failure\n"));
727:         break;
728:       case TAO_DIVERGED_TR_REDUCTION:
729:         PetscCall(PetscViewerASCIIPrintf(viewer, " Trust Region too small\n"));
730:         break;
731:       case TAO_DIVERGED_USER:
732:         PetscCall(PetscViewerASCIIPrintf(viewer, " User Terminated\n"));
733:         break;
734:       default:
735:         PetscCall(PetscViewerASCIIPrintf(viewer, " %d\n", tao->reason));
736:         break;
737:       }
738:     }
739:     PetscCall(PetscViewerASCIIPopTab(viewer));
740:   } else if (isstring) {
741:     PetscCall(TaoGetType(tao, &type));
742:     PetscCall(PetscViewerStringSPrintf(viewer, " %-3.3s", type));
743:   }
744:   PetscFunctionReturn(PETSC_SUCCESS);
745: }

747: /*@
748:   TaoSetRecycleHistory - Sets the boolean flag to enable/disable re-using
749:   iterate information from the previous `TaoSolve()`. This feature is disabled by
750:   default.

752:   Logically Collective

754:   Input Parameters:
755: + tao     - the `Tao` context
756: - recycle - boolean flag

758:   Options Database Key:
759: . -tao_recycle_history <true,false> - reuse the history

761:   Level: intermediate

763:   Notes:
764:   For conjugate gradient methods (`TAOBNCG`), this re-uses the latest search direction
765:   from the previous `TaoSolve()` call when computing the first search direction in a
766:   new solution. By default, CG methods set the first search direction to the
767:   negative gradient.

769:   For quasi-Newton family of methods (`TAOBQNLS`, `TAOBQNKLS`, `TAOBQNKTR`, `TAOBQNKTL`), this re-uses
770:   the accumulated quasi-Newton Hessian approximation from the previous `TaoSolve()`
771:   call. By default, QN family of methods reset the initial Hessian approximation to
772:   the identity matrix.

774:   For any other algorithm, this setting has no effect.

776: .seealso: [](ch_tao), `Tao`, `TaoGetRecycleHistory()`, `TAOBNCG`, `TAOBQNLS`, `TAOBQNKLS`, `TAOBQNKTR`, `TAOBQNKTL`
777: @*/
778: PetscErrorCode TaoSetRecycleHistory(Tao tao, PetscBool recycle)
779: {
780:   PetscFunctionBegin;
783:   tao->recycle = recycle;
784:   PetscFunctionReturn(PETSC_SUCCESS);
785: }

787: /*@
788:   TaoGetRecycleHistory - Retrieve the boolean flag for re-using iterate information
789:   from the previous `TaoSolve()`. This feature is disabled by default.

791:   Logically Collective

793:   Input Parameter:
794: . tao - the `Tao` context

796:   Output Parameter:
797: . recycle - boolean flag

799:   Level: intermediate

801: .seealso: [](ch_tao), `Tao`, `TaoSetRecycleHistory()`, `TAOBNCG`, `TAOBQNLS`, `TAOBQNKLS`, `TAOBQNKTR`, `TAOBQNKTL`
802: @*/
803: PetscErrorCode TaoGetRecycleHistory(Tao tao, PetscBool *recycle)
804: {
805:   PetscFunctionBegin;
807:   PetscAssertPointer(recycle, 2);
808:   *recycle = tao->recycle;
809:   PetscFunctionReturn(PETSC_SUCCESS);
810: }

812: /*@
813:   TaoSetTolerances - Sets parameters used in `TaoSolve()` convergence tests

815:   Logically Collective

817:   Input Parameters:
818: + tao   - the `Tao` context
819: . gatol - stop if norm of gradient is less than this
820: . grtol - stop if relative norm of gradient is less than this
821: - gttol - stop if norm of gradient is reduced by this factor

823:   Options Database Keys:
824: + -tao_gatol <gatol> - Sets gatol
825: . -tao_grtol <grtol> - Sets grtol
826: - -tao_gttol <gttol> - Sets gttol

828:   Stopping Criteria\:
829: .vb
830:   ||g(X)||                            <= gatol
831:   ||g(X)|| / |f(X)|                   <= grtol
832:   ||g(X)|| / ||g(X0)||                <= gttol
833: .ve

835:   Level: beginner

837:   Notes:
838:   Use `PETSC_CURRENT` to leave one or more tolerances unchanged.

840:   Use `PETSC_DETERMINE` to set one or more tolerances to their values when the `tao`object's type was set

842:   Fortran Note:
843:   Use `PETSC_CURRENT_REAL` or `PETSC_DETERMINE_REAL`

845: .seealso: [](ch_tao), `Tao`, `TaoConvergedReason`, `TaoGetTolerances()`
846: @*/
847: PetscErrorCode TaoSetTolerances(Tao tao, PetscReal gatol, PetscReal grtol, PetscReal gttol)
848: {
849:   PetscFunctionBegin;

855:   if (gatol == (PetscReal)PETSC_DETERMINE) {
856:     tao->gatol = tao->default_gatol;
857:   } else if (gatol != (PetscReal)PETSC_CURRENT) {
858:     PetscCheck(gatol >= 0, PetscObjectComm((PetscObject)tao), PETSC_ERR_ARG_OUTOFRANGE, "Negative gatol not allowed");
859:     tao->gatol = gatol;
860:   }

862:   if (grtol == (PetscReal)PETSC_DETERMINE) {
863:     tao->grtol = tao->default_grtol;
864:   } else if (grtol != (PetscReal)PETSC_CURRENT) {
865:     PetscCheck(grtol >= 0, PetscObjectComm((PetscObject)tao), PETSC_ERR_ARG_OUTOFRANGE, "Negative grtol not allowed");
866:     tao->grtol = grtol;
867:   }

869:   if (gttol == (PetscReal)PETSC_DETERMINE) {
870:     tao->gttol = tao->default_gttol;
871:   } else if (gttol != (PetscReal)PETSC_CURRENT) {
872:     PetscCheck(gttol >= 0, PetscObjectComm((PetscObject)tao), PETSC_ERR_ARG_OUTOFRANGE, "Negative gttol not allowed");
873:     tao->gttol = gttol;
874:   }
875:   PetscFunctionReturn(PETSC_SUCCESS);
876: }

878: /*@
879:   TaoSetConstraintTolerances - Sets constraint tolerance parameters used in `TaoSolve()` convergence tests

881:   Logically Collective

883:   Input Parameters:
884: + tao   - the `Tao` context
885: . catol - absolute constraint tolerance, constraint norm must be less than `catol` for used for `gatol` convergence criteria
886: - crtol - relative constraint tolerance, constraint norm must be less than `crtol` for used for `gatol`, `gttol` convergence criteria

888:   Options Database Keys:
889: + -tao_catol <catol> - Sets catol
890: - -tao_crtol <crtol> - Sets crtol

892:   Level: intermediate

894:   Notes:
895:   Use `PETSC_CURRENT` to leave one or tolerance unchanged.

897:   Use `PETSC_DETERMINE` to set one or more tolerances to their values when the `tao` object's type was set

899:   Fortran Note:
900:   Use `PETSC_CURRENT_REAL` or `PETSC_DETERMINE_REAL`

902: .seealso: [](ch_tao), `Tao`, `TaoConvergedReason`, `TaoGetTolerances()`, `TaoGetConstraintTolerances()`, `TaoSetTolerances()`
903: @*/
904: PetscErrorCode TaoSetConstraintTolerances(Tao tao, PetscReal catol, PetscReal crtol)
905: {
906:   PetscFunctionBegin;

911:   if (catol == (PetscReal)PETSC_DETERMINE) {
912:     tao->catol = tao->default_catol;
913:   } else if (catol != (PetscReal)PETSC_CURRENT) {
914:     PetscCheck(catol >= 0, PetscObjectComm((PetscObject)tao), PETSC_ERR_ARG_OUTOFRANGE, "Negative catol not allowed");
915:     tao->catol = catol;
916:   }

918:   if (crtol == (PetscReal)PETSC_DETERMINE) {
919:     tao->crtol = tao->default_crtol;
920:   } else if (crtol != (PetscReal)PETSC_CURRENT) {
921:     PetscCheck(crtol >= 0, PetscObjectComm((PetscObject)tao), PETSC_ERR_ARG_OUTOFRANGE, "Negative crtol not allowed");
922:     tao->crtol = crtol;
923:   }
924:   PetscFunctionReturn(PETSC_SUCCESS);
925: }

927: /*@
928:   TaoGetConstraintTolerances - Gets constraint tolerance parameters used in `TaoSolve()` convergence tests

930:   Not Collective

932:   Input Parameter:
933: . tao - the `Tao` context

935:   Output Parameters:
936: + catol - absolute constraint tolerance, constraint norm must be less than `catol` for used for `gatol` convergence criteria
937: - crtol - relative constraint tolerance, constraint norm must be less than `crtol` for used for `gatol`, `gttol` convergence criteria

939:   Level: intermediate

941: .seealso: [](ch_tao), `Tao`, `TaoConvergedReasons`,`TaoGetTolerances()`, `TaoSetTolerances()`, `TaoSetConstraintTolerances()`
942: @*/
943: PetscErrorCode TaoGetConstraintTolerances(Tao tao, PetscReal *catol, PetscReal *crtol)
944: {
945:   PetscFunctionBegin;
947:   if (catol) *catol = tao->catol;
948:   if (crtol) *crtol = tao->crtol;
949:   PetscFunctionReturn(PETSC_SUCCESS);
950: }

952: /*@
953:   TaoSetFunctionLowerBound - Sets a bound on the solution objective value.
954:   When an approximate solution with an objective value below this number
955:   has been found, the solver will terminate.

957:   Logically Collective

959:   Input Parameters:
960: + tao  - the Tao solver context
961: - fmin - the tolerance

963:   Options Database Key:
964: . -tao_fmin <fmin> - sets the minimum function value

966:   Level: intermediate

968: .seealso: [](ch_tao), `Tao`, `TaoConvergedReason`, `TaoSetTolerances()`
969: @*/
970: PetscErrorCode TaoSetFunctionLowerBound(Tao tao, PetscReal fmin)
971: {
972:   PetscFunctionBegin;
975:   tao->fmin = fmin;
976:   PetscFunctionReturn(PETSC_SUCCESS);
977: }

979: /*@
980:   TaoGetFunctionLowerBound - Gets the bound on the solution objective value.
981:   When an approximate solution with an objective value below this number
982:   has been found, the solver will terminate.

984:   Not Collective

986:   Input Parameter:
987: . tao - the `Tao` solver context

989:   Output Parameter:
990: . fmin - the minimum function value

992:   Level: intermediate

994: .seealso: [](ch_tao), `Tao`, `TaoConvergedReason`, `TaoSetFunctionLowerBound()`
995: @*/
996: PetscErrorCode TaoGetFunctionLowerBound(Tao tao, PetscReal *fmin)
997: {
998:   PetscFunctionBegin;
1000:   PetscAssertPointer(fmin, 2);
1001:   *fmin = tao->fmin;
1002:   PetscFunctionReturn(PETSC_SUCCESS);
1003: }

1005: /*@
1006:   TaoSetMaximumFunctionEvaluations - Sets a maximum number of function evaluations allowed for a `TaoSolve()`.

1008:   Logically Collective

1010:   Input Parameters:
1011: + tao  - the `Tao` solver context
1012: - nfcn - the maximum number of function evaluations (>=0), use `PETSC_UNLIMITED` to have no bound

1014:   Options Database Key:
1015: . -tao_max_funcs <nfcn> - sets the maximum number of function evaluations

1017:   Level: intermediate

1019:   Note:
1020:   Use `PETSC_DETERMINE` to use the default maximum number of function evaluations that was set when the object type was set.

1022:   Developer Note:
1023:   Deprecated support for an unlimited number of function evaluations by passing a negative value.

1025: .seealso: [](ch_tao), `Tao`, `TaoSetTolerances()`, `TaoSetMaximumIterations()`
1026: @*/
1027: PetscErrorCode TaoSetMaximumFunctionEvaluations(Tao tao, PetscInt nfcn)
1028: {
1029:   PetscFunctionBegin;
1032:   if (nfcn == PETSC_DETERMINE) {
1033:     tao->max_funcs = tao->default_max_funcs;
1034:   } else if (nfcn == PETSC_UNLIMITED || nfcn < 0) {
1035:     tao->max_funcs = PETSC_UNLIMITED;
1036:   } else {
1037:     PetscCheck(nfcn >= 0, PetscObjectComm((PetscObject)tao), PETSC_ERR_ARG_OUTOFRANGE, "Maximum number of function evaluations  must be positive");
1038:     tao->max_funcs = nfcn;
1039:   }
1040:   PetscFunctionReturn(PETSC_SUCCESS);
1041: }

1043: /*@
1044:   TaoGetMaximumFunctionEvaluations - Gets a maximum number of function evaluations allowed for a `TaoSolve()`

1046:   Logically Collective

1048:   Input Parameter:
1049: . tao - the `Tao` solver context

1051:   Output Parameter:
1052: . nfcn - the maximum number of function evaluations

1054:   Level: intermediate

1056: .seealso: [](ch_tao), `Tao`, `TaoSetMaximumFunctionEvaluations()`, `TaoGetMaximumIterations()`
1057: @*/
1058: PetscErrorCode TaoGetMaximumFunctionEvaluations(Tao tao, PetscInt *nfcn)
1059: {
1060:   PetscFunctionBegin;
1062:   PetscAssertPointer(nfcn, 2);
1063:   *nfcn = tao->max_funcs;
1064:   PetscFunctionReturn(PETSC_SUCCESS);
1065: }

1067: /*@
1068:   TaoGetCurrentFunctionEvaluations - Get current number of function evaluations used by a `Tao` object

1070:   Not Collective

1072:   Input Parameter:
1073: . tao - the `Tao` solver context

1075:   Output Parameter:
1076: . nfuncs - the current number of function evaluations (maximum between gradient and function evaluations)

1078:   Level: intermediate

1080: .seealso: [](ch_tao), `Tao`, `TaoSetMaximumFunctionEvaluations()`, `TaoGetMaximumFunctionEvaluations()`, `TaoGetMaximumIterations()`
1081: @*/
1082: PetscErrorCode TaoGetCurrentFunctionEvaluations(Tao tao, PetscInt *nfuncs)
1083: {
1084:   PetscFunctionBegin;
1086:   PetscAssertPointer(nfuncs, 2);
1087:   *nfuncs = PetscMax(tao->nfuncs, tao->nfuncgrads);
1088:   PetscFunctionReturn(PETSC_SUCCESS);
1089: }

1091: /*@
1092:   TaoSetMaximumIterations - Sets a maximum number of iterates to be used in `TaoSolve()`

1094:   Logically Collective

1096:   Input Parameters:
1097: + tao    - the `Tao` solver context
1098: - maxits - the maximum number of iterates (>=0), use `PETSC_UNLIMITED` to have no bound

1100:   Options Database Key:
1101: . -tao_max_it <its> - sets the maximum number of iterations

1103:   Level: intermediate

1105:   Note:
1106:   Use `PETSC_DETERMINE` to use the default maximum number of iterations that was set when the object's type was set.

1108:   Developer Note:
1109:   DeprAlso accepts the deprecated negative values to indicate no limit

1111: .seealso: [](ch_tao), `Tao`, `TaoSetTolerances()`, `TaoSetMaximumFunctionEvaluations()`
1112: @*/
1113: PetscErrorCode TaoSetMaximumIterations(Tao tao, PetscInt maxits)
1114: {
1115:   PetscFunctionBegin;
1118:   if (maxits == PETSC_DETERMINE) {
1119:     tao->max_it = tao->default_max_it;
1120:   } else if (maxits == PETSC_UNLIMITED) {
1121:     tao->max_it = PETSC_INT_MAX;
1122:   } else {
1123:     PetscCheck(maxits > 0, PetscObjectComm((PetscObject)tao), PETSC_ERR_ARG_OUTOFRANGE, "Maximum number of iterations must be positive");
1124:     tao->max_it = maxits;
1125:   }
1126:   PetscFunctionReturn(PETSC_SUCCESS);
1127: }

1129: /*@
1130:   TaoGetMaximumIterations - Gets a maximum number of iterates that will be used

1132:   Not Collective

1134:   Input Parameter:
1135: . tao - the `Tao` solver context

1137:   Output Parameter:
1138: . maxits - the maximum number of iterates

1140:   Level: intermediate

1142: .seealso: [](ch_tao), `Tao`, `TaoSetMaximumIterations()`, `TaoGetMaximumFunctionEvaluations()`
1143: @*/
1144: PetscErrorCode TaoGetMaximumIterations(Tao tao, PetscInt *maxits)
1145: {
1146:   PetscFunctionBegin;
1148:   PetscAssertPointer(maxits, 2);
1149:   *maxits = tao->max_it;
1150:   PetscFunctionReturn(PETSC_SUCCESS);
1151: }

1153: /*@
1154:   TaoSetInitialTrustRegionRadius - Sets the initial trust region radius.

1156:   Logically Collective

1158:   Input Parameters:
1159: + tao    - a `Tao` optimization solver
1160: - radius - the trust region radius

1162:   Options Database Key:
1163: . -tao_trust0 <t0> - sets initial trust region radius

1165:   Level: intermediate

1167:   Note:
1168:   Use `PETSC_DETERMINE` to use the default radius that was set when the object's type was set.

1170: .seealso: [](ch_tao), `Tao`, `TaoGetTrustRegionRadius()`, `TaoSetTrustRegionTolerance()`, `TAONTR`
1171: @*/
1172: PetscErrorCode TaoSetInitialTrustRegionRadius(Tao tao, PetscReal radius)
1173: {
1174:   PetscFunctionBegin;
1177:   if (radius == PETSC_DETERMINE) {
1178:     tao->trust0 = tao->default_trust0;
1179:   } else {
1180:     PetscCheck(radius > 0, PetscObjectComm((PetscObject)tao), PETSC_ERR_ARG_OUTOFRANGE, "Radius must be positive");
1181:     tao->trust0 = radius;
1182:   }
1183:   PetscFunctionReturn(PETSC_SUCCESS);
1184: }

1186: /*@
1187:   TaoGetInitialTrustRegionRadius - Gets the initial trust region radius.

1189:   Not Collective

1191:   Input Parameter:
1192: . tao - a `Tao` optimization solver

1194:   Output Parameter:
1195: . radius - the trust region radius

1197:   Level: intermediate

1199: .seealso: [](ch_tao), `Tao`, `TaoSetInitialTrustRegionRadius()`, `TaoGetCurrentTrustRegionRadius()`, `TAONTR`
1200: @*/
1201: PetscErrorCode TaoGetInitialTrustRegionRadius(Tao tao, PetscReal *radius)
1202: {
1203:   PetscFunctionBegin;
1205:   PetscAssertPointer(radius, 2);
1206:   *radius = tao->trust0;
1207:   PetscFunctionReturn(PETSC_SUCCESS);
1208: }

1210: /*@
1211:   TaoGetCurrentTrustRegionRadius - Gets the current trust region radius.

1213:   Not Collective

1215:   Input Parameter:
1216: . tao - a `Tao` optimization solver

1218:   Output Parameter:
1219: . radius - the trust region radius

1221:   Level: intermediate

1223: .seealso: [](ch_tao), `Tao`, `TaoSetInitialTrustRegionRadius()`, `TaoGetInitialTrustRegionRadius()`, `TAONTR`
1224: @*/
1225: PetscErrorCode TaoGetCurrentTrustRegionRadius(Tao tao, PetscReal *radius)
1226: {
1227:   PetscFunctionBegin;
1229:   PetscAssertPointer(radius, 2);
1230:   *radius = tao->trust;
1231:   PetscFunctionReturn(PETSC_SUCCESS);
1232: }

1234: /*@
1235:   TaoGetTolerances - gets the current values of some tolerances used for the convergence testing of `TaoSolve()`

1237:   Not Collective

1239:   Input Parameter:
1240: . tao - the `Tao` context

1242:   Output Parameters:
1243: + gatol - stop if norm of gradient is less than this
1244: . grtol - stop if relative norm of gradient is less than this
1245: - gttol - stop if norm of gradient is reduced by a this factor

1247:   Level: intermediate

1249:   Note:
1250:   `NULL` can be used as an argument if not all tolerances values are needed

1252: .seealso: [](ch_tao), `Tao`, `TaoSetTolerances()`
1253: @*/
1254: PetscErrorCode TaoGetTolerances(Tao tao, PetscReal *gatol, PetscReal *grtol, PetscReal *gttol)
1255: {
1256:   PetscFunctionBegin;
1258:   if (gatol) *gatol = tao->gatol;
1259:   if (grtol) *grtol = tao->grtol;
1260:   if (gttol) *gttol = tao->gttol;
1261:   PetscFunctionReturn(PETSC_SUCCESS);
1262: }

1264: /*@
1265:   TaoGetKSP - Gets the linear solver used by the optimization solver.

1267:   Not Collective

1269:   Input Parameter:
1270: . tao - the `Tao` solver

1272:   Output Parameter:
1273: . ksp - the `KSP` linear solver used in the optimization solver

1275:   Level: intermediate

1277: .seealso: [](ch_tao), `Tao`, `KSP`
1278: @*/
1279: PetscErrorCode TaoGetKSP(Tao tao, KSP *ksp)
1280: {
1281:   PetscFunctionBegin;
1283:   PetscAssertPointer(ksp, 2);
1284:   *ksp = tao->ksp;
1285:   PetscFunctionReturn(PETSC_SUCCESS);
1286: }

1288: /*@
1289:   TaoGetLinearSolveIterations - Gets the total number of linear iterations
1290:   used by the `Tao` solver

1292:   Not Collective

1294:   Input Parameter:
1295: . tao - the `Tao` context

1297:   Output Parameter:
1298: . lits - number of linear iterations

1300:   Level: intermediate

1302:   Note:
1303:   This counter is reset to zero for each successive call to `TaoSolve()`

1305: .seealso: [](ch_tao), `Tao`, `TaoGetKSP()`
1306: @*/
1307: PetscErrorCode TaoGetLinearSolveIterations(Tao tao, PetscInt *lits)
1308: {
1309:   PetscFunctionBegin;
1311:   PetscAssertPointer(lits, 2);
1312:   *lits = tao->ksp_tot_its;
1313:   PetscFunctionReturn(PETSC_SUCCESS);
1314: }

1316: /*@
1317:   TaoGetLineSearch - Gets the line search used by the optimization solver.

1319:   Not Collective

1321:   Input Parameter:
1322: . tao - the `Tao` solver

1324:   Output Parameter:
1325: . ls - the line search used in the optimization solver

1327:   Level: intermediate

1329: .seealso: [](ch_tao), `Tao`, `TaoLineSearch`, `TaoLineSearchType`
1330: @*/
1331: PetscErrorCode TaoGetLineSearch(Tao tao, TaoLineSearch *ls)
1332: {
1333:   PetscFunctionBegin;
1335:   PetscAssertPointer(ls, 2);
1336:   *ls = tao->linesearch;
1337:   PetscFunctionReturn(PETSC_SUCCESS);
1338: }

1340: /*@
1341:   TaoAddLineSearchCounts - Adds the number of function evaluations spent
1342:   in the line search to the running total.

1344:   Input Parameters:
1345: . tao - the `Tao` solver

1347:   Level: developer

1349: .seealso: [](ch_tao), `Tao`, `TaoGetLineSearch()`, `TaoLineSearchApply()`
1350: @*/
1351: PetscErrorCode TaoAddLineSearchCounts(Tao tao)
1352: {
1353:   PetscBool flg;
1354:   PetscInt  nfeval, ngeval, nfgeval;

1356:   PetscFunctionBegin;
1358:   if (tao->linesearch) {
1359:     PetscCall(TaoLineSearchIsUsingTaoRoutines(tao->linesearch, &flg));
1360:     if (!flg) {
1361:       PetscCall(TaoLineSearchGetNumberFunctionEvaluations(tao->linesearch, &nfeval, &ngeval, &nfgeval));
1362:       tao->nfuncs += nfeval;
1363:       tao->ngrads += ngeval;
1364:       tao->nfuncgrads += nfgeval;
1365:     }
1366:   }
1367:   PetscFunctionReturn(PETSC_SUCCESS);
1368: }

1370: /*@
1371:   TaoGetSolution - Returns the vector with the current solution from the `Tao` object

1373:   Not Collective

1375:   Input Parameter:
1376: . tao - the `Tao` context

1378:   Output Parameter:
1379: . X - the current solution

1381:   Level: intermediate

1383:   Note:
1384:   The returned vector will be the same object that was passed into `TaoSetSolution()`

1386: .seealso: [](ch_tao), `Tao`, `TaoSetSolution()`, `TaoSolve()`
1387: @*/
1388: PetscErrorCode TaoGetSolution(Tao tao, Vec *X)
1389: {
1390:   PetscFunctionBegin;
1392:   PetscAssertPointer(X, 2);
1393:   *X = tao->solution;
1394:   PetscFunctionReturn(PETSC_SUCCESS);
1395: }

1397: /*@
1398:   TaoResetStatistics - Initialize the statistics collected by the `Tao` object.
1399:   These statistics include the iteration number, residual norms, and convergence status.
1400:   This routine gets called before solving each optimization problem.

1402:   Collective

1404:   Input Parameter:
1405: . tao - the `Tao` context

1407:   Level: developer

1409: .seealso: [](ch_tao), `Tao`, `TaoCreate()`, `TaoSolve()`
1410: @*/
1411: PetscErrorCode TaoResetStatistics(Tao tao)
1412: {
1413:   PetscFunctionBegin;
1415:   tao->niter        = 0;
1416:   tao->nfuncs       = 0;
1417:   tao->nfuncgrads   = 0;
1418:   tao->ngrads       = 0;
1419:   tao->nhess        = 0;
1420:   tao->njac         = 0;
1421:   tao->nconstraints = 0;
1422:   tao->ksp_its      = 0;
1423:   tao->ksp_tot_its  = 0;
1424:   tao->reason       = TAO_CONTINUE_ITERATING;
1425:   tao->residual     = 0.0;
1426:   tao->cnorm        = 0.0;
1427:   tao->step         = 0.0;
1428:   tao->lsflag       = PETSC_FALSE;
1429:   if (tao->hist_reset) tao->hist_len = 0;
1430:   PetscFunctionReturn(PETSC_SUCCESS);
1431: }

1433: /*@C
1434:   TaoSetUpdate - Sets the general-purpose update function called
1435:   at the beginning of every iteration of the optimization algorithm. Called after the new solution and the gradient
1436:   is determined, but before the Hessian is computed (if applicable).

1438:   Logically Collective

1440:   Input Parameters:
1441: + tao  - The `Tao` solver
1442: . func - The function
1443: - ctx  - The update function context

1445:   Calling sequence of `func`:
1446: + tao - The optimizer context
1447: . it  - The current iteration index
1448: - ctx - The update context

1450:   Level: advanced

1452:   Notes:
1453:   Users can modify the gradient direction or any other vector associated to the specific solver used.
1454:   The objective function value is always recomputed after a call to the update hook.

1456: .seealso: [](ch_tao), `Tao`, `TaoSolve()`
1457: @*/
1458: PetscErrorCode TaoSetUpdate(Tao tao, PetscErrorCode (*func)(Tao tao, PetscInt it, void *ctx), void *ctx)
1459: {
1460:   PetscFunctionBegin;
1462:   tao->ops->update = func;
1463:   tao->user_update = ctx;
1464:   PetscFunctionReturn(PETSC_SUCCESS);
1465: }

1467: /*@C
1468:   TaoSetConvergenceTest - Sets the function that is to be used to test
1469:   for convergence of the iterative minimization solution.  The new convergence
1470:   testing routine will replace Tao's default convergence test.

1472:   Logically Collective

1474:   Input Parameters:
1475: + tao  - the `Tao` object
1476: . conv - the routine to test for convergence
1477: - ctx  - [optional] context for private data for the convergence routine
1478:         (may be `NULL`)

1480:   Calling sequence of `conv`:
1481: + tao - the `Tao` object
1482: - ctx - [optional] convergence context

1484:   Level: advanced

1486:   Note:
1487:   The new convergence testing routine should call `TaoSetConvergedReason()`.

1489: .seealso: [](ch_tao), `Tao`, `TaoSolve()`, `TaoSetConvergedReason()`, `TaoGetSolutionStatus()`, `TaoGetTolerances()`, `TaoMonitorSet()`
1490: @*/
1491: PetscErrorCode TaoSetConvergenceTest(Tao tao, PetscErrorCode (*conv)(Tao, void *), void *ctx)
1492: {
1493:   PetscFunctionBegin;
1495:   tao->ops->convergencetest = conv;
1496:   tao->cnvP                 = ctx;
1497:   PetscFunctionReturn(PETSC_SUCCESS);
1498: }

1500: /*@C
1501:   TaoMonitorSet - Sets an additional function that is to be used at every
1502:   iteration of the solver to display the iteration's
1503:   progress.

1505:   Logically Collective

1507:   Input Parameters:
1508: + tao  - the `Tao` solver context
1509: . func - monitoring routine
1510: . ctx  - [optional] user-defined context for private data for the monitor routine (may be `NULL`)
1511: - dest - [optional] function to destroy the context when the `Tao` is destroyed, see `PetscCtxDestroyFn` for the calling sequence

1513:   Calling sequence of `func`:
1514: + tao - the `Tao` solver context
1515: - ctx - [optional] monitoring context

1517:   Level: intermediate

1519:   Notes:
1520:   See `TaoSetFromOptions()` for a monitoring options.

1522:   Several different monitoring routines may be set by calling
1523:   `TaoMonitorSet()` multiple times; all will be called in the
1524:   order in which they were set.

1526:   Fortran Notes:
1527:   Only one monitor function may be set

1529: .seealso: [](ch_tao), `Tao`, `TaoSolve()`, `TaoMonitorDefault()`, `TaoMonitorCancel()`, `TaoSetDestroyRoutine()`, `TaoView()`, `PetscCtxDestroyFn`
1530: @*/
1531: PetscErrorCode TaoMonitorSet(Tao tao, PetscErrorCode (*func)(Tao, void *), void *ctx, PetscCtxDestroyFn *dest)
1532: {
1533:   PetscInt  i;
1534:   PetscBool identical;

1536:   PetscFunctionBegin;
1538:   PetscCheck(tao->numbermonitors < MAXTAOMONITORS, PetscObjectComm((PetscObject)tao), PETSC_ERR_SUP, "Cannot attach another monitor -- max=%d", MAXTAOMONITORS);

1540:   for (i = 0; i < tao->numbermonitors; i++) {
1541:     PetscCall(PetscMonitorCompare((PetscErrorCode (*)(void))func, ctx, dest, (PetscErrorCode (*)(void))tao->monitor[i], tao->monitorcontext[i], tao->monitordestroy[i], &identical));
1542:     if (identical) PetscFunctionReturn(PETSC_SUCCESS);
1543:   }
1544:   tao->monitor[tao->numbermonitors]        = func;
1545:   tao->monitorcontext[tao->numbermonitors] = ctx;
1546:   tao->monitordestroy[tao->numbermonitors] = dest;
1547:   ++tao->numbermonitors;
1548:   PetscFunctionReturn(PETSC_SUCCESS);
1549: }

1551: /*@
1552:   TaoMonitorCancel - Clears all the monitor functions for a `Tao` object.

1554:   Logically Collective

1556:   Input Parameter:
1557: . tao - the `Tao` solver context

1559:   Options Database Key:
1560: . -tao_monitor_cancel - cancels all monitors that have been hardwired
1561:     into a code by calls to `TaoMonitorSet()`, but does not cancel those
1562:     set via the options database

1564:   Level: advanced

1566:   Note:
1567:   There is no way to clear one specific monitor from a `Tao` object.

1569: .seealso: [](ch_tao), `Tao`, `TaoMonitorDefault()`, `TaoMonitorSet()`
1570: @*/
1571: PetscErrorCode TaoMonitorCancel(Tao tao)
1572: {
1573:   PetscInt i;

1575:   PetscFunctionBegin;
1577:   for (i = 0; i < tao->numbermonitors; i++) {
1578:     if (tao->monitordestroy[i]) PetscCall((*tao->monitordestroy[i])(&tao->monitorcontext[i]));
1579:   }
1580:   tao->numbermonitors = 0;
1581:   PetscFunctionReturn(PETSC_SUCCESS);
1582: }

1584: /*@
1585:   TaoMonitorDefault - Default routine for monitoring progress of `TaoSolve()`

1587:   Collective

1589:   Input Parameters:
1590: + tao - the `Tao` context
1591: - ctx - `PetscViewer` context or `NULL`

1593:   Options Database Key:
1594: . -tao_monitor - turn on default monitoring

1596:   Level: advanced

1598:   Note:
1599:   This monitor prints the function value and gradient
1600:   norm at each iteration.

1602: .seealso: [](ch_tao), `Tao`, `TaoMonitorDefaultShort()`, `TaoMonitorSet()`
1603: @*/
1604: PetscErrorCode TaoMonitorDefault(Tao tao, void *ctx)
1605: {
1606:   PetscInt    its, tabs;
1607:   PetscReal   fct, gnorm;
1608:   PetscViewer viewer = (PetscViewer)ctx;

1610:   PetscFunctionBegin;
1613:   its   = tao->niter;
1614:   fct   = tao->fc;
1615:   gnorm = tao->residual;
1616:   PetscCall(PetscViewerASCIIGetTab(viewer, &tabs));
1617:   PetscCall(PetscViewerASCIISetTab(viewer, ((PetscObject)tao)->tablevel));
1618:   if (its == 0 && ((PetscObject)tao)->prefix && !tao->header_printed) {
1619:     PetscCall(PetscViewerASCIIPrintf(viewer, "  Iteration information for %s solve.\n", ((PetscObject)tao)->prefix));
1620:     tao->header_printed = PETSC_TRUE;
1621:   }
1622:   PetscCall(PetscViewerASCIIPrintf(viewer, "%3" PetscInt_FMT " TAO,", its));
1623:   PetscCall(PetscViewerASCIIPrintf(viewer, "  Function value: %g,", (double)fct));
1624:   if (gnorm >= PETSC_INFINITY) {
1625:     PetscCall(PetscViewerASCIIPrintf(viewer, "  Residual: Inf \n"));
1626:   } else {
1627:     PetscCall(PetscViewerASCIIPrintf(viewer, "  Residual: %g \n", (double)gnorm));
1628:   }
1629:   PetscCall(PetscViewerASCIISetTab(viewer, tabs));
1630:   PetscFunctionReturn(PETSC_SUCCESS);
1631: }

1633: /*@
1634:   TaoMonitorGlobalization - Default routine for monitoring progress of `TaoSolve()` with extra detail on the globalization method.

1636:   Collective

1638:   Input Parameters:
1639: + tao - the `Tao` context
1640: - ctx - `PetscViewer` context or `NULL`

1642:   Options Database Key:
1643: . -tao_monitor_globalization - turn on monitoring with globalization information

1645:   Level: advanced

1647:   Note:
1648:   This monitor prints the function value and gradient norm at each
1649:   iteration, as well as the step size and trust radius. Note that the
1650:   step size and trust radius may be the same for some algorithms.

1652: .seealso: [](ch_tao), `Tao`, `TaoMonitorDefaultShort()`, `TaoMonitorSet()`
1653: @*/
1654: PetscErrorCode TaoMonitorGlobalization(Tao tao, void *ctx)
1655: {
1656:   PetscInt    its, tabs;
1657:   PetscReal   fct, gnorm, stp, tr;
1658:   PetscViewer viewer = (PetscViewer)ctx;

1660:   PetscFunctionBegin;
1663:   its   = tao->niter;
1664:   fct   = tao->fc;
1665:   gnorm = tao->residual;
1666:   stp   = tao->step;
1667:   tr    = tao->trust;
1668:   PetscCall(PetscViewerASCIIGetTab(viewer, &tabs));
1669:   PetscCall(PetscViewerASCIISetTab(viewer, ((PetscObject)tao)->tablevel));
1670:   if (its == 0 && ((PetscObject)tao)->prefix && !tao->header_printed) {
1671:     PetscCall(PetscViewerASCIIPrintf(viewer, "  Iteration information for %s solve.\n", ((PetscObject)tao)->prefix));
1672:     tao->header_printed = PETSC_TRUE;
1673:   }
1674:   PetscCall(PetscViewerASCIIPrintf(viewer, "%3" PetscInt_FMT " TAO,", its));
1675:   PetscCall(PetscViewerASCIIPrintf(viewer, "  Function value: %g,", (double)fct));
1676:   if (gnorm >= PETSC_INFINITY) {
1677:     PetscCall(PetscViewerASCIIPrintf(viewer, "  Residual: Inf,"));
1678:   } else {
1679:     PetscCall(PetscViewerASCIIPrintf(viewer, "  Residual: %g,", (double)gnorm));
1680:   }
1681:   PetscCall(PetscViewerASCIIPrintf(viewer, "  Step: %g,  Trust: %g\n", (double)stp, (double)tr));
1682:   PetscCall(PetscViewerASCIISetTab(viewer, tabs));
1683:   PetscFunctionReturn(PETSC_SUCCESS);
1684: }

1686: /*@
1687:   TaoMonitorDefaultShort - Routine for monitoring progress of `TaoSolve()` that displays fewer digits than `TaoMonitorDefault()`

1689:   Collective

1691:   Input Parameters:
1692: + tao - the `Tao` context
1693: - ctx - `PetscViewer` context of type `PETSCVIEWERASCII`

1695:   Options Database Key:
1696: . -tao_monitor_short - turn on default short monitoring

1698:   Level: advanced

1700:   Note:
1701:   Same as `TaoMonitorDefault()` except
1702:   it prints fewer digits of the residual as the residual gets smaller.
1703:   This is because the later digits are meaningless and are often
1704:   different on different machines; by using this routine different
1705:   machines will usually generate the same output.

1707: .seealso: [](ch_tao), `Tao`, `TaoMonitorDefault()`, `TaoMonitorSet()`
1708: @*/
1709: PetscErrorCode TaoMonitorDefaultShort(Tao tao, void *ctx)
1710: {
1711:   PetscInt    its, tabs;
1712:   PetscReal   fct, gnorm;
1713:   PetscViewer viewer = (PetscViewer)ctx;

1715:   PetscFunctionBegin;
1718:   its   = tao->niter;
1719:   fct   = tao->fc;
1720:   gnorm = tao->residual;
1721:   PetscCall(PetscViewerASCIIGetTab(viewer, &tabs));
1722:   PetscCall(PetscViewerASCIISetTab(viewer, ((PetscObject)tao)->tablevel));
1723:   PetscCall(PetscViewerASCIIPrintf(viewer, "iter = %3" PetscInt_FMT ",", its));
1724:   PetscCall(PetscViewerASCIIPrintf(viewer, " Function value %g,", (double)fct));
1725:   if (gnorm >= PETSC_INFINITY) {
1726:     PetscCall(PetscViewerASCIIPrintf(viewer, " Residual: Inf \n"));
1727:   } else if (gnorm > 1.e-6) {
1728:     PetscCall(PetscViewerASCIIPrintf(viewer, " Residual: %g \n", (double)gnorm));
1729:   } else if (gnorm > 1.e-11) {
1730:     PetscCall(PetscViewerASCIIPrintf(viewer, " Residual: < 1.0e-6 \n"));
1731:   } else {
1732:     PetscCall(PetscViewerASCIIPrintf(viewer, " Residual: < 1.0e-11 \n"));
1733:   }
1734:   PetscCall(PetscViewerASCIISetTab(viewer, tabs));
1735:   PetscFunctionReturn(PETSC_SUCCESS);
1736: }

1738: /*@
1739:   TaoMonitorConstraintNorm - same as `TaoMonitorDefault()` except
1740:   it prints the norm of the constraint function.

1742:   Collective

1744:   Input Parameters:
1745: + tao - the `Tao` context
1746: - ctx - `PetscViewer` context or `NULL`

1748:   Options Database Key:
1749: . -tao_monitor_constraint_norm - monitor the constraints

1751:   Level: advanced

1753: .seealso: [](ch_tao), `Tao`, `TaoMonitorDefault()`, `TaoMonitorSet()`
1754: @*/
1755: PetscErrorCode TaoMonitorConstraintNorm(Tao tao, void *ctx)
1756: {
1757:   PetscInt    its, tabs;
1758:   PetscReal   fct, gnorm;
1759:   PetscViewer viewer = (PetscViewer)ctx;

1761:   PetscFunctionBegin;
1764:   its   = tao->niter;
1765:   fct   = tao->fc;
1766:   gnorm = tao->residual;
1767:   PetscCall(PetscViewerASCIIGetTab(viewer, &tabs));
1768:   PetscCall(PetscViewerASCIISetTab(viewer, ((PetscObject)tao)->tablevel));
1769:   PetscCall(PetscViewerASCIIPrintf(viewer, "iter = %" PetscInt_FMT ",", its));
1770:   PetscCall(PetscViewerASCIIPrintf(viewer, " Function value: %g,", (double)fct));
1771:   PetscCall(PetscViewerASCIIPrintf(viewer, "  Residual: %g ", (double)gnorm));
1772:   PetscCall(PetscViewerASCIIPrintf(viewer, "  Constraint: %g \n", (double)tao->cnorm));
1773:   PetscCall(PetscViewerASCIISetTab(viewer, tabs));
1774:   PetscFunctionReturn(PETSC_SUCCESS);
1775: }

1777: /*@C
1778:   TaoMonitorSolution - Views the solution at each iteration of `TaoSolve()`

1780:   Collective

1782:   Input Parameters:
1783: + tao - the `Tao` context
1784: - ctx - `PetscViewer` context or `NULL`

1786:   Options Database Key:
1787: . -tao_monitor_solution - view the solution

1789:   Level: advanced

1791: .seealso: [](ch_tao), `Tao`, `TaoMonitorDefaultShort()`, `TaoMonitorSet()`
1792: @*/
1793: PetscErrorCode TaoMonitorSolution(Tao tao, void *ctx)
1794: {
1795:   PetscViewer viewer = (PetscViewer)ctx;

1797:   PetscFunctionBegin;
1800:   PetscCall(VecView(tao->solution, viewer));
1801:   PetscFunctionReturn(PETSC_SUCCESS);
1802: }

1804: /*@C
1805:   TaoMonitorGradient - Views the gradient at each iteration of `TaoSolve()`

1807:   Collective

1809:   Input Parameters:
1810: + tao - the `Tao` context
1811: - ctx - `PetscViewer` context or `NULL`

1813:   Options Database Key:
1814: . -tao_monitor_gradient - view the gradient at each iteration

1816:   Level: advanced

1818: .seealso: [](ch_tao), `Tao`, `TaoMonitorDefaultShort()`, `TaoMonitorSet()`
1819: @*/
1820: PetscErrorCode TaoMonitorGradient(Tao tao, void *ctx)
1821: {
1822:   PetscViewer viewer = (PetscViewer)ctx;

1824:   PetscFunctionBegin;
1827:   PetscCall(VecView(tao->gradient, viewer));
1828:   PetscFunctionReturn(PETSC_SUCCESS);
1829: }

1831: /*@C
1832:   TaoMonitorStep - Views the step-direction at each iteration of `TaoSolve()`

1834:   Collective

1836:   Input Parameters:
1837: + tao - the `Tao` context
1838: - ctx - `PetscViewer` context or `NULL`

1840:   Options Database Key:
1841: . -tao_monitor_step - view the step vector at each iteration

1843:   Level: advanced

1845: .seealso: [](ch_tao), `Tao`, `TaoMonitorDefaultShort()`, `TaoMonitorSet()`
1846: @*/
1847: PetscErrorCode TaoMonitorStep(Tao tao, void *ctx)
1848: {
1849:   PetscViewer viewer = (PetscViewer)ctx;

1851:   PetscFunctionBegin;
1854:   PetscCall(VecView(tao->stepdirection, viewer));
1855:   PetscFunctionReturn(PETSC_SUCCESS);
1856: }

1858: /*@C
1859:   TaoMonitorSolutionDraw - Plots the solution at each iteration of `TaoSolve()`

1861:   Collective

1863:   Input Parameters:
1864: + tao - the `Tao` context
1865: - ctx - `TaoMonitorDraw` context

1867:   Options Database Key:
1868: . -tao_monitor_solution_draw - draw the solution at each iteration

1870:   Level: advanced

1872:   Note:
1873:   The context created by `TaoMonitorDrawCtxCreate()`, along with `TaoMonitorSolutionDraw()`, and `TaoMonitorDrawCtxDestroy()`
1874:   are passed to `TaoMonitorSet()` to monitor the solution graphically.

1876: .seealso: [](ch_tao), `Tao`, `TaoMonitorSolution()`, `TaoMonitorSet()`, `TaoMonitorGradientDraw()`, `TaoMonitorDrawCtxCreate()`,
1877:           `TaoMonitorDrawCtxDestroy()`
1878: @*/
1879: PetscErrorCode TaoMonitorSolutionDraw(Tao tao, void *ctx)
1880: {
1881:   TaoMonitorDrawCtx ictx = (TaoMonitorDrawCtx)ctx;

1883:   PetscFunctionBegin;
1885:   if (!(((ictx->howoften > 0) && (!(tao->niter % ictx->howoften))) || ((ictx->howoften == -1) && tao->reason))) PetscFunctionReturn(PETSC_SUCCESS);
1886:   PetscCall(VecView(tao->solution, ictx->viewer));
1887:   PetscFunctionReturn(PETSC_SUCCESS);
1888: }

1890: /*@C
1891:   TaoMonitorGradientDraw - Plots the gradient at each iteration of `TaoSolve()`

1893:   Collective

1895:   Input Parameters:
1896: + tao - the `Tao` context
1897: - ctx - `PetscViewer` context

1899:   Options Database Key:
1900: . -tao_monitor_gradient_draw - draw the gradient at each iteration

1902:   Level: advanced

1904: .seealso: [](ch_tao), `Tao`, `TaoMonitorGradient()`, `TaoMonitorSet()`, `TaoMonitorSolutionDraw()`
1905: @*/
1906: PetscErrorCode TaoMonitorGradientDraw(Tao tao, void *ctx)
1907: {
1908:   TaoMonitorDrawCtx ictx = (TaoMonitorDrawCtx)ctx;

1910:   PetscFunctionBegin;
1912:   if (!(((ictx->howoften > 0) && (!(tao->niter % ictx->howoften))) || ((ictx->howoften == -1) && tao->reason))) PetscFunctionReturn(PETSC_SUCCESS);
1913:   PetscCall(VecView(tao->gradient, ictx->viewer));
1914:   PetscFunctionReturn(PETSC_SUCCESS);
1915: }

1917: /*@C
1918:   TaoMonitorStepDraw - Plots the step direction at each iteration of `TaoSolve()`

1920:   Collective

1922:   Input Parameters:
1923: + tao - the `Tao` context
1924: - ctx - the `PetscViewer` context

1926:   Options Database Key:
1927: . -tao_monitor_step_draw - draw the step direction at each iteration

1929:   Level: advanced

1931: .seealso: [](ch_tao), `Tao`, `TaoMonitorSet()`, `TaoMonitorSolutionDraw`
1932: @*/
1933: PetscErrorCode TaoMonitorStepDraw(Tao tao, void *ctx)
1934: {
1935:   PetscViewer viewer = (PetscViewer)ctx;

1937:   PetscFunctionBegin;
1940:   PetscCall(VecView(tao->stepdirection, viewer));
1941:   PetscFunctionReturn(PETSC_SUCCESS);
1942: }

1944: /*@C
1945:   TaoMonitorResidual - Views the least-squares residual at each iteration of `TaoSolve()`

1947:   Collective

1949:   Input Parameters:
1950: + tao - the `Tao` context
1951: - ctx - the `PetscViewer` context or `NULL`

1953:   Options Database Key:
1954: . -tao_monitor_ls_residual - view the residual at each iteration

1956:   Level: advanced

1958: .seealso: [](ch_tao), `Tao`, `TaoMonitorDefaultShort()`, `TaoMonitorSet()`
1959: @*/
1960: PetscErrorCode TaoMonitorResidual(Tao tao, void *ctx)
1961: {
1962:   PetscViewer viewer = (PetscViewer)ctx;

1964:   PetscFunctionBegin;
1967:   PetscCall(VecView(tao->ls_res, viewer));
1968:   PetscFunctionReturn(PETSC_SUCCESS);
1969: }

1971: /*@
1972:   TaoDefaultConvergenceTest - Determines whether the solver should continue iterating
1973:   or terminate.

1975:   Collective

1977:   Input Parameters:
1978: + tao   - the `Tao` context
1979: - dummy - unused dummy context

1981:   Level: developer

1983:   Notes:
1984:   This routine checks the residual in the optimality conditions, the
1985:   relative residual in the optimity conditions, the number of function
1986:   evaluations, and the function value to test convergence.  Some
1987:   solvers may use different convergence routines.

1989: .seealso: [](ch_tao), `Tao`, `TaoSetTolerances()`, `TaoGetConvergedReason()`, `TaoSetConvergedReason()`
1990: @*/
1991: PetscErrorCode TaoDefaultConvergenceTest(Tao tao, void *dummy)
1992: {
1993:   PetscInt           niter = tao->niter, nfuncs = PetscMax(tao->nfuncs, tao->nfuncgrads);
1994:   PetscInt           max_funcs = tao->max_funcs;
1995:   PetscReal          gnorm = tao->residual, gnorm0 = tao->gnorm0;
1996:   PetscReal          f = tao->fc, steptol = tao->steptol, trradius = tao->step;
1997:   PetscReal          gatol = tao->gatol, grtol = tao->grtol, gttol = tao->gttol;
1998:   PetscReal          catol = tao->catol, crtol = tao->crtol;
1999:   PetscReal          fmin = tao->fmin, cnorm = tao->cnorm;
2000:   TaoConvergedReason reason = tao->reason;

2002:   PetscFunctionBegin;
2004:   if (reason != TAO_CONTINUE_ITERATING) PetscFunctionReturn(PETSC_SUCCESS);

2006:   if (PetscIsInfOrNanReal(f)) {
2007:     PetscCall(PetscInfo(tao, "Failed to converged, function value is Inf or NaN\n"));
2008:     reason = TAO_DIVERGED_NAN;
2009:   } else if (f <= fmin && cnorm <= catol) {
2010:     PetscCall(PetscInfo(tao, "Converged due to function value %g < minimum function value %g\n", (double)f, (double)fmin));
2011:     reason = TAO_CONVERGED_MINF;
2012:   } else if (gnorm <= gatol && cnorm <= catol) {
2013:     PetscCall(PetscInfo(tao, "Converged due to residual norm ||g(X)||=%g < %g\n", (double)gnorm, (double)gatol));
2014:     reason = TAO_CONVERGED_GATOL;
2015:   } else if (f != 0 && PetscAbsReal(gnorm / f) <= grtol && cnorm <= crtol) {
2016:     PetscCall(PetscInfo(tao, "Converged due to residual ||g(X)||/|f(X)| =%g < %g\n", (double)(gnorm / f), (double)grtol));
2017:     reason = TAO_CONVERGED_GRTOL;
2018:   } else if (gnorm0 != 0 && ((gttol == 0 && gnorm == 0) || gnorm / gnorm0 < gttol) && cnorm <= crtol) {
2019:     PetscCall(PetscInfo(tao, "Converged due to relative residual norm ||g(X)||/||g(X0)|| = %g < %g\n", (double)(gnorm / gnorm0), (double)gttol));
2020:     reason = TAO_CONVERGED_GTTOL;
2021:   } else if (max_funcs != PETSC_UNLIMITED && nfuncs > max_funcs) {
2022:     PetscCall(PetscInfo(tao, "Exceeded maximum number of function evaluations: %" PetscInt_FMT " > %" PetscInt_FMT "\n", nfuncs, max_funcs));
2023:     reason = TAO_DIVERGED_MAXFCN;
2024:   } else if (tao->lsflag != 0) {
2025:     PetscCall(PetscInfo(tao, "Tao Line Search failure.\n"));
2026:     reason = TAO_DIVERGED_LS_FAILURE;
2027:   } else if (trradius < steptol && niter > 0) {
2028:     PetscCall(PetscInfo(tao, "Trust region/step size too small: %g < %g\n", (double)trradius, (double)steptol));
2029:     reason = TAO_CONVERGED_STEPTOL;
2030:   } else if (niter >= tao->max_it) {
2031:     PetscCall(PetscInfo(tao, "Exceeded maximum number of iterations: %" PetscInt_FMT " > %" PetscInt_FMT "\n", niter, tao->max_it));
2032:     reason = TAO_DIVERGED_MAXITS;
2033:   } else {
2034:     reason = TAO_CONTINUE_ITERATING;
2035:   }
2036:   tao->reason = reason;
2037:   PetscFunctionReturn(PETSC_SUCCESS);
2038: }

2040: /*@
2041:   TaoSetOptionsPrefix - Sets the prefix used for searching for all
2042:   Tao options in the database.

2044:   Logically Collective

2046:   Input Parameters:
2047: + tao - the `Tao` context
2048: - p   - the prefix string to prepend to all Tao option requests

2050:   Level: advanced

2052:   Notes:
2053:   A hyphen (-) must NOT be given at the beginning of the prefix name.
2054:   The first character of all runtime options is AUTOMATICALLY the hyphen.

2056:   For example, to distinguish between the runtime options for two
2057:   different Tao solvers, one could call
2058: .vb
2059:       TaoSetOptionsPrefix(tao1,"sys1_")
2060:       TaoSetOptionsPrefix(tao2,"sys2_")
2061: .ve

2063:   This would enable use of different options for each system, such as
2064: .vb
2065:       -sys1_tao_method blmvm -sys1_tao_grtol 1.e-3
2066:       -sys2_tao_method lmvm  -sys2_tao_grtol 1.e-4
2067: .ve

2069: .seealso: [](ch_tao), `Tao`, `TaoSetFromOptions()`, `TaoAppendOptionsPrefix()`, `TaoGetOptionsPrefix()`
2070: @*/
2071: PetscErrorCode TaoSetOptionsPrefix(Tao tao, const char p[])
2072: {
2073:   PetscFunctionBegin;
2075:   PetscCall(PetscObjectSetOptionsPrefix((PetscObject)tao, p));
2076:   if (tao->linesearch) PetscCall(TaoLineSearchSetOptionsPrefix(tao->linesearch, p));
2077:   if (tao->ksp) PetscCall(KSPSetOptionsPrefix(tao->ksp, p));
2078:   PetscFunctionReturn(PETSC_SUCCESS);
2079: }

2081: /*@
2082:   TaoAppendOptionsPrefix - Appends to the prefix used for searching for all Tao options in the database.

2084:   Logically Collective

2086:   Input Parameters:
2087: + tao - the `Tao` solver context
2088: - p   - the prefix string to prepend to all `Tao` option requests

2090:   Level: advanced

2092:   Note:
2093:   A hyphen (-) must NOT be given at the beginning of the prefix name.
2094:   The first character of all runtime options is automatically the hyphen.

2096: .seealso: [](ch_tao), `Tao`, `TaoSetFromOptions()`, `TaoSetOptionsPrefix()`, `TaoGetOptionsPrefix()`
2097: @*/
2098: PetscErrorCode TaoAppendOptionsPrefix(Tao tao, const char p[])
2099: {
2100:   PetscFunctionBegin;
2102:   PetscCall(PetscObjectAppendOptionsPrefix((PetscObject)tao, p));
2103:   if (tao->linesearch) PetscCall(PetscObjectAppendOptionsPrefix((PetscObject)tao->linesearch, p));
2104:   if (tao->ksp) PetscCall(KSPAppendOptionsPrefix(tao->ksp, p));
2105:   PetscFunctionReturn(PETSC_SUCCESS);
2106: }

2108: /*@
2109:   TaoGetOptionsPrefix - Gets the prefix used for searching for all
2110:   Tao options in the database

2112:   Not Collective

2114:   Input Parameter:
2115: . tao - the `Tao` context

2117:   Output Parameter:
2118: . p - pointer to the prefix string used is returned

2120:   Level: advanced

2122: .seealso: [](ch_tao), `Tao`, `TaoSetFromOptions()`, `TaoSetOptionsPrefix()`, `TaoAppendOptionsPrefix()`
2123: @*/
2124: PetscErrorCode TaoGetOptionsPrefix(Tao tao, const char *p[])
2125: {
2126:   PetscFunctionBegin;
2128:   PetscCall(PetscObjectGetOptionsPrefix((PetscObject)tao, p));
2129:   PetscFunctionReturn(PETSC_SUCCESS);
2130: }

2132: /*@
2133:   TaoSetType - Sets the `TaoType` for the minimization solver.

2135:   Collective

2137:   Input Parameters:
2138: + tao  - the `Tao` solver context
2139: - type - a known method

2141:   Options Database Key:
2142: . -tao_type <type> - Sets the method; use -help for a list
2143:    of available methods (for instance, "-tao_type lmvm" or "-tao_type tron")

2145:   Level: intermediate

2147: .seealso: [](ch_tao), `Tao`, `TaoCreate()`, `TaoGetType()`, `TaoType`
2148: @*/
2149: PetscErrorCode TaoSetType(Tao tao, TaoType type)
2150: {
2151:   PetscErrorCode (*create_xxx)(Tao);
2152:   PetscBool issame;

2154:   PetscFunctionBegin;

2157:   PetscCall(PetscObjectTypeCompare((PetscObject)tao, type, &issame));
2158:   if (issame) PetscFunctionReturn(PETSC_SUCCESS);

2160:   PetscCall(PetscFunctionListFind(TaoList, type, &create_xxx));
2161:   PetscCheck(create_xxx, PetscObjectComm((PetscObject)tao), PETSC_ERR_ARG_UNKNOWN_TYPE, "Unable to find requested Tao type %s", type);

2163:   /* Destroy the existing solver information */
2164:   PetscTryTypeMethod(tao, destroy);
2165:   PetscCall(KSPDestroy(&tao->ksp));
2166:   PetscCall(TaoLineSearchDestroy(&tao->linesearch));

2168:   /* Reinitialize type-specific function pointers in TaoOps structure */
2169:   tao->ops->setup          = NULL;
2170:   tao->ops->computedual    = NULL;
2171:   tao->ops->solve          = NULL;
2172:   tao->ops->view           = NULL;
2173:   tao->ops->setfromoptions = NULL;
2174:   tao->ops->destroy        = NULL;

2176:   tao->setupcalled = PETSC_FALSE;

2178:   PetscCall((*create_xxx)(tao));
2179:   PetscCall(PetscObjectChangeTypeName((PetscObject)tao, type));
2180:   PetscFunctionReturn(PETSC_SUCCESS);
2181: }

2183: /*@C
2184:   TaoRegister - Adds a method to the Tao package for minimization.

2186:   Not Collective, No Fortran Support

2188:   Input Parameters:
2189: + sname - name of a new user-defined solver
2190: - func  - routine to Create method context

2192:   Example Usage:
2193: .vb
2194:    TaoRegister("my_solver", MySolverCreate);
2195: .ve

2197:   Then, your solver can be chosen with the procedural interface via
2198: $     TaoSetType(tao, "my_solver")
2199:   or at runtime via the option
2200: $     -tao_type my_solver

2202:   Level: advanced

2204:   Note:
2205:   `TaoRegister()` may be called multiple times to add several user-defined solvers.

2207: .seealso: [](ch_tao), `Tao`, `TaoSetType()`, `TaoRegisterAll()`, `TaoRegisterDestroy()`
2208: @*/
2209: PetscErrorCode TaoRegister(const char sname[], PetscErrorCode (*func)(Tao))
2210: {
2211:   PetscFunctionBegin;
2212:   PetscCall(TaoInitializePackage());
2213:   PetscCall(PetscFunctionListAdd(&TaoList, sname, func));
2214:   PetscFunctionReturn(PETSC_SUCCESS);
2215: }

2217: /*@C
2218:   TaoRegisterDestroy - Frees the list of minimization solvers that were
2219:   registered by `TaoRegister()`.

2221:   Not Collective

2223:   Level: advanced

2225: .seealso: [](ch_tao), `Tao`, `TaoRegisterAll()`, `TaoRegister()`
2226: @*/
2227: PetscErrorCode TaoRegisterDestroy(void)
2228: {
2229:   PetscFunctionBegin;
2230:   PetscCall(PetscFunctionListDestroy(&TaoList));
2231:   TaoRegisterAllCalled = PETSC_FALSE;
2232:   PetscFunctionReturn(PETSC_SUCCESS);
2233: }

2235: /*@
2236:   TaoGetIterationNumber - Gets the number of `TaoSolve()` iterations completed
2237:   at this time.

2239:   Not Collective

2241:   Input Parameter:
2242: . tao - the `Tao` context

2244:   Output Parameter:
2245: . iter - iteration number

2247:   Notes:
2248:   For example, during the computation of iteration 2 this would return 1.

2250:   Level: intermediate

2252: .seealso: [](ch_tao), `Tao`, `TaoGetLinearSolveIterations()`, `TaoGetResidualNorm()`, `TaoGetObjective()`
2253: @*/
2254: PetscErrorCode TaoGetIterationNumber(Tao tao, PetscInt *iter)
2255: {
2256:   PetscFunctionBegin;
2258:   PetscAssertPointer(iter, 2);
2259:   *iter = tao->niter;
2260:   PetscFunctionReturn(PETSC_SUCCESS);
2261: }

2263: /*@
2264:   TaoGetResidualNorm - Gets the current value of the norm of the residual (gradient)
2265:   at this time.

2267:   Not Collective

2269:   Input Parameter:
2270: . tao - the `Tao` context

2272:   Output Parameter:
2273: . value - the current value

2275:   Level: intermediate

2277:   Developer Notes:
2278:   This is the 2-norm of the residual, we cannot use `TaoGetGradientNorm()` because that has
2279:   a different meaning. For some reason `Tao` sometimes calls the gradient the residual.

2281: .seealso: [](ch_tao), `Tao`, `TaoGetLinearSolveIterations()`, `TaoGetIterationNumber()`, `TaoGetObjective()`
2282: @*/
2283: PetscErrorCode TaoGetResidualNorm(Tao tao, PetscReal *value)
2284: {
2285:   PetscFunctionBegin;
2287:   PetscAssertPointer(value, 2);
2288:   *value = tao->residual;
2289:   PetscFunctionReturn(PETSC_SUCCESS);
2290: }

2292: /*@
2293:   TaoSetIterationNumber - Sets the current iteration number.

2295:   Logically Collective

2297:   Input Parameters:
2298: + tao  - the `Tao` context
2299: - iter - iteration number

2301:   Level: developer

2303: .seealso: [](ch_tao), `Tao`, `TaoGetLinearSolveIterations()`
2304: @*/
2305: PetscErrorCode TaoSetIterationNumber(Tao tao, PetscInt iter)
2306: {
2307:   PetscFunctionBegin;
2310:   PetscCall(PetscObjectSAWsTakeAccess((PetscObject)tao));
2311:   tao->niter = iter;
2312:   PetscCall(PetscObjectSAWsGrantAccess((PetscObject)tao));
2313:   PetscFunctionReturn(PETSC_SUCCESS);
2314: }

2316: /*@
2317:   TaoGetTotalIterationNumber - Gets the total number of `TaoSolve()` iterations
2318:   completed. This number keeps accumulating if multiple solves
2319:   are called with the `Tao` object.

2321:   Not Collective

2323:   Input Parameter:
2324: . tao - the `Tao` context

2326:   Output Parameter:
2327: . iter - number of iterations

2329:   Level: intermediate

2331:   Note:
2332:   The total iteration count is updated after each solve, if there is a current
2333:   `TaoSolve()` in progress then those iterations are not included in the count

2335: .seealso: [](ch_tao), `Tao`, `TaoGetLinearSolveIterations()`
2336: @*/
2337: PetscErrorCode TaoGetTotalIterationNumber(Tao tao, PetscInt *iter)
2338: {
2339:   PetscFunctionBegin;
2341:   PetscAssertPointer(iter, 2);
2342:   *iter = tao->ntotalits;
2343:   PetscFunctionReturn(PETSC_SUCCESS);
2344: }

2346: /*@
2347:   TaoSetTotalIterationNumber - Sets the current total iteration number.

2349:   Logically Collective

2351:   Input Parameters:
2352: + tao  - the `Tao` context
2353: - iter - the iteration number

2355:   Level: developer

2357: .seealso: [](ch_tao), `Tao`, `TaoGetLinearSolveIterations()`
2358: @*/
2359: PetscErrorCode TaoSetTotalIterationNumber(Tao tao, PetscInt iter)
2360: {
2361:   PetscFunctionBegin;
2364:   PetscCall(PetscObjectSAWsTakeAccess((PetscObject)tao));
2365:   tao->ntotalits = iter;
2366:   PetscCall(PetscObjectSAWsGrantAccess((PetscObject)tao));
2367:   PetscFunctionReturn(PETSC_SUCCESS);
2368: }

2370: /*@
2371:   TaoSetConvergedReason - Sets the termination flag on a `Tao` object

2373:   Logically Collective

2375:   Input Parameters:
2376: + tao    - the `Tao` context
2377: - reason - the `TaoConvergedReason`

2379:   Level: intermediate

2381: .seealso: [](ch_tao), `Tao`, `TaoConvergedReason`
2382: @*/
2383: PetscErrorCode TaoSetConvergedReason(Tao tao, TaoConvergedReason reason)
2384: {
2385:   PetscFunctionBegin;
2388:   tao->reason = reason;
2389:   PetscFunctionReturn(PETSC_SUCCESS);
2390: }

2392: /*@
2393:   TaoGetConvergedReason - Gets the reason the `TaoSolve()` was stopped.

2395:   Not Collective

2397:   Input Parameter:
2398: . tao - the `Tao` solver context

2400:   Output Parameter:
2401: . reason - value of `TaoConvergedReason`

2403:   Level: intermediate

2405: .seealso: [](ch_tao), `Tao`, `TaoConvergedReason`, `TaoSetConvergenceTest()`, `TaoSetTolerances()`
2406: @*/
2407: PetscErrorCode TaoGetConvergedReason(Tao tao, TaoConvergedReason *reason)
2408: {
2409:   PetscFunctionBegin;
2411:   PetscAssertPointer(reason, 2);
2412:   *reason = tao->reason;
2413:   PetscFunctionReturn(PETSC_SUCCESS);
2414: }

2416: /*@
2417:   TaoGetSolutionStatus - Get the current iterate, objective value,
2418:   residual, infeasibility, and termination from a `Tao` object

2420:   Not Collective

2422:   Input Parameter:
2423: . tao - the `Tao` context

2425:   Output Parameters:
2426: + its    - the current iterate number (>=0)
2427: . f      - the current function value
2428: . gnorm  - the square of the gradient norm, duality gap, or other measure indicating distance from optimality.
2429: . cnorm  - the infeasibility of the current solution with regard to the constraints.
2430: . xdiff  - the step length or trust region radius of the most recent iterate.
2431: - reason - The termination reason, which can equal `TAO_CONTINUE_ITERATING`

2433:   Level: intermediate

2435:   Notes:
2436:   Tao returns the values set by the solvers in the routine `TaoMonitor()`.

2438:   If any of the output arguments are set to `NULL`, no corresponding value will be returned.

2440: .seealso: [](ch_tao), `TaoMonitor()`, `TaoGetConvergedReason()`
2441: @*/
2442: PetscErrorCode TaoGetSolutionStatus(Tao tao, PetscInt *its, PetscReal *f, PetscReal *gnorm, PetscReal *cnorm, PetscReal *xdiff, TaoConvergedReason *reason)
2443: {
2444:   PetscFunctionBegin;
2446:   if (its) *its = tao->niter;
2447:   if (f) *f = tao->fc;
2448:   if (gnorm) *gnorm = tao->residual;
2449:   if (cnorm) *cnorm = tao->cnorm;
2450:   if (reason) *reason = tao->reason;
2451:   if (xdiff) *xdiff = tao->step;
2452:   PetscFunctionReturn(PETSC_SUCCESS);
2453: }

2455: /*@
2456:   TaoGetType - Gets the current `TaoType` being used in the `Tao` object

2458:   Not Collective

2460:   Input Parameter:
2461: . tao - the `Tao` solver context

2463:   Output Parameter:
2464: . type - the `TaoType`

2466:   Level: intermediate

2468: .seealso: [](ch_tao), `Tao`, `TaoType`, `TaoSetType()`
2469: @*/
2470: PetscErrorCode TaoGetType(Tao tao, TaoType *type)
2471: {
2472:   PetscFunctionBegin;
2474:   PetscAssertPointer(type, 2);
2475:   *type = ((PetscObject)tao)->type_name;
2476:   PetscFunctionReturn(PETSC_SUCCESS);
2477: }

2479: /*@C
2480:   TaoMonitor - Monitor the solver and the current solution.  This
2481:   routine will record the iteration number and residual statistics,
2482:   and call any monitors specified by the user.

2484:   Input Parameters:
2485: + tao        - the `Tao` context
2486: . its        - the current iterate number (>=0)
2487: . f          - the current objective function value
2488: . res        - the gradient norm, square root of the duality gap, or other measure indicating distance from optimality.  This measure will be recorded and
2489:           used for some termination tests.
2490: . cnorm      - the infeasibility of the current solution with regard to the constraints.
2491: - steplength - multiple of the step direction added to the previous iterate.

2493:   Options Database Key:
2494: . -tao_monitor - Use the default monitor, which prints statistics to standard output

2496:   Level: developer

2498: .seealso: [](ch_tao), `Tao`, `TaoGetConvergedReason()`, `TaoMonitorDefault()`, `TaoMonitorSet()`
2499: @*/
2500: PetscErrorCode TaoMonitor(Tao tao, PetscInt its, PetscReal f, PetscReal res, PetscReal cnorm, PetscReal steplength)
2501: {
2502:   PetscInt i;

2504:   PetscFunctionBegin;
2506:   tao->fc       = f;
2507:   tao->residual = res;
2508:   tao->cnorm    = cnorm;
2509:   tao->step     = steplength;
2510:   if (!its) {
2511:     tao->cnorm0 = cnorm;
2512:     tao->gnorm0 = res;
2513:   }
2514:   PetscCall(VecLockReadPush(tao->solution));
2515:   for (i = 0; i < tao->numbermonitors; i++) PetscCall((*tao->monitor[i])(tao, tao->monitorcontext[i]));
2516:   PetscCall(VecLockReadPop(tao->solution));
2517:   PetscFunctionReturn(PETSC_SUCCESS);
2518: }

2520: /*@
2521:   TaoSetConvergenceHistory - Sets the array used to hold the convergence history.

2523:   Logically Collective

2525:   Input Parameters:
2526: + tao   - the `Tao` solver context
2527: . obj   - array to hold objective value history
2528: . resid - array to hold residual history
2529: . cnorm - array to hold constraint violation history
2530: . lits  - integer array holds the number of linear iterations for each Tao iteration
2531: . na    - size of `obj`, `resid`, and `cnorm`
2532: - reset - `PETSC_TRUE` indicates each new minimization resets the history counter to zero,
2533:            else it continues storing new values for new minimizations after the old ones

2535:   Level: intermediate

2537:   Notes:
2538:   If set, `Tao` will fill the given arrays with the indicated
2539:   information at each iteration.  If 'obj','resid','cnorm','lits' are
2540:   *all* `NULL` then space (using size `na`, or 1000 if `na` is `PETSC_DECIDE`) is allocated for the history.
2541:   If not all are `NULL`, then only the non-`NULL` information categories
2542:   will be stored, the others will be ignored.

2544:   Any convergence information after iteration number 'na' will not be stored.

2546:   This routine is useful, e.g., when running a code for purposes
2547:   of accurate performance monitoring, when no I/O should be done
2548:   during the section of code that is being timed.

2550: .seealso: [](ch_tao), `TaoGetConvergenceHistory()`
2551: @*/
2552: PetscErrorCode TaoSetConvergenceHistory(Tao tao, PetscReal obj[], PetscReal resid[], PetscReal cnorm[], PetscInt lits[], PetscInt na, PetscBool reset)
2553: {
2554:   PetscFunctionBegin;
2556:   if (obj) PetscAssertPointer(obj, 2);
2557:   if (resid) PetscAssertPointer(resid, 3);
2558:   if (cnorm) PetscAssertPointer(cnorm, 4);
2559:   if (lits) PetscAssertPointer(lits, 5);

2561:   if (na == PETSC_DECIDE || na == PETSC_CURRENT) na = 1000;
2562:   if (!obj && !resid && !cnorm && !lits) {
2563:     PetscCall(PetscCalloc4(na, &obj, na, &resid, na, &cnorm, na, &lits));
2564:     tao->hist_malloc = PETSC_TRUE;
2565:   }

2567:   tao->hist_obj   = obj;
2568:   tao->hist_resid = resid;
2569:   tao->hist_cnorm = cnorm;
2570:   tao->hist_lits  = lits;
2571:   tao->hist_max   = na;
2572:   tao->hist_reset = reset;
2573:   tao->hist_len   = 0;
2574:   PetscFunctionReturn(PETSC_SUCCESS);
2575: }

2577: /*@C
2578:   TaoGetConvergenceHistory - Gets the arrays used that hold the convergence history.

2580:   Collective

2582:   Input Parameter:
2583: . tao - the `Tao` context

2585:   Output Parameters:
2586: + obj   - array used to hold objective value history
2587: . resid - array used to hold residual history
2588: . cnorm - array used to hold constraint violation history
2589: . lits  - integer array used to hold linear solver iteration count
2590: - nhist - size of `obj`, `resid`, `cnorm`, and `lits`

2592:   Level: advanced

2594:   Notes:
2595:   This routine must be preceded by calls to `TaoSetConvergenceHistory()`
2596:   and `TaoSolve()`, otherwise it returns useless information.

2598:   This routine is useful, e.g., when running a code for purposes
2599:   of accurate performance monitoring, when no I/O should be done
2600:   during the section of code that is being timed.

2602:   Fortran Notes:
2603:   The calling sequence is
2604: .vb
2605:    call TaoGetConvergenceHistory(Tao tao, PetscInt nhist, PetscErrorCode ierr)
2606: .ve
2607:   In other words this gets the current number of entries in the history. Access the history through the array you passed to `TaoSetConvergenceHistory()`

2609: .seealso: [](ch_tao), `Tao`, `TaoSolve()`, `TaoSetConvergenceHistory()`
2610: @*/
2611: PetscErrorCode TaoGetConvergenceHistory(Tao tao, PetscReal **obj, PetscReal **resid, PetscReal **cnorm, PetscInt **lits, PetscInt *nhist)
2612: {
2613:   PetscFunctionBegin;
2615:   if (obj) *obj = tao->hist_obj;
2616:   if (cnorm) *cnorm = tao->hist_cnorm;
2617:   if (resid) *resid = tao->hist_resid;
2618:   if (lits) *lits = tao->hist_lits;
2619:   if (nhist) *nhist = tao->hist_len;
2620:   PetscFunctionReturn(PETSC_SUCCESS);
2621: }

2623: /*@
2624:   TaoSetApplicationContext - Sets the optional user-defined context for a `Tao` solver that can be accessed later, for example in the
2625:   `Tao` callback functions with `TaoGetApplicationContext()`

2627:   Logically Collective

2629:   Input Parameters:
2630: + tao - the `Tao` context
2631: - ctx - the user context

2633:   Level: intermediate

2635:   Fortran Note:
2636:   This only works when `ctx` is a Fortran derived type (it cannot be a `PetscObject`), we recommend writing a Fortran interface definition for this
2637:   function that tells the Fortran compiler the derived data type that is passed in as the `ctx` argument. See `TaoGetApplicationContext()` for
2638:   an example.

2640: .seealso: [](ch_tao), `Tao`, `TaoGetApplicationContext()`
2641: @*/
2642: PetscErrorCode TaoSetApplicationContext(Tao tao, void *ctx)
2643: {
2644:   PetscFunctionBegin;
2646:   tao->ctx = ctx;
2647:   PetscFunctionReturn(PETSC_SUCCESS);
2648: }

2650: /*@
2651:   TaoGetApplicationContext - Gets the user-defined context for a `Tao` solver provided with `TaoSetApplicationContext()`

2653:   Not Collective

2655:   Input Parameter:
2656: . tao - the `Tao` context

2658:   Output Parameter:
2659: . ctx - a pointer to the user context

2661:   Level: intermediate

2663:   Fortran Notes:
2664:   This only works when the context is a Fortran derived type (it cannot be a `PetscObject`) and you **must** write a Fortran interface definition for this
2665:   function that tells the Fortran compiler the derived data type that is returned as the `ctx` argument. For example,
2666: .vb
2667:   Interface TaoGetApplicationContext
2668:     Subroutine TaoGetApplicationContext(tao,ctx,ierr)
2669:   #include <petsc/finclude/petsctao.h>
2670:       use petsctao
2671:       Tao tao
2672:       type(tUsertype), pointer :: ctx
2673:       PetscErrorCode ierr
2674:     End Subroutine
2675:   End Interface TaoGetApplicationContext
2676: .ve

2678:   The prototype for `ctx` must be
2679: .vb
2680:   type(tUsertype), pointer :: ctx
2681: .ve

2683: .seealso: [](ch_tao), `Tao`, `TaoSetApplicationContext()`
2684: @*/
2685: PetscErrorCode TaoGetApplicationContext(Tao tao, PeCtx ctx)
2686: {
2687:   PetscFunctionBegin;
2689:   PetscAssertPointer(ctx, 2);
2690:   *(void **)ctx = tao->ctx;
2691:   PetscFunctionReturn(PETSC_SUCCESS);
2692: }

2694: /*@
2695:   TaoSetGradientNorm - Sets the matrix used to define the norm that measures the size of the gradient in some of the `Tao` algorithms

2697:   Collective

2699:   Input Parameters:
2700: + tao - the `Tao` context
2701: - M   - matrix that defines the norm

2703:   Level: beginner

2705: .seealso: [](ch_tao), `Tao`, `TaoGetGradientNorm()`, `TaoGradientNorm()`
2706: @*/
2707: PetscErrorCode TaoSetGradientNorm(Tao tao, Mat M)
2708: {
2709:   PetscFunctionBegin;
2712:   PetscCall(PetscObjectReference((PetscObject)M));
2713:   PetscCall(MatDestroy(&tao->gradient_norm));
2714:   PetscCall(VecDestroy(&tao->gradient_norm_tmp));
2715:   tao->gradient_norm = M;
2716:   PetscCall(MatCreateVecs(M, NULL, &tao->gradient_norm_tmp));
2717:   PetscFunctionReturn(PETSC_SUCCESS);
2718: }

2720: /*@
2721:   TaoGetGradientNorm - Returns the matrix used to define the norm used for measuring the size of the gradient in some of the `Tao` algorithms

2723:   Not Collective

2725:   Input Parameter:
2726: . tao - the `Tao` context

2728:   Output Parameter:
2729: . M - gradient norm

2731:   Level: beginner

2733: .seealso: [](ch_tao), `Tao`, `TaoSetGradientNorm()`, `TaoGradientNorm()`
2734: @*/
2735: PetscErrorCode TaoGetGradientNorm(Tao tao, Mat *M)
2736: {
2737:   PetscFunctionBegin;
2739:   PetscAssertPointer(M, 2);
2740:   *M = tao->gradient_norm;
2741:   PetscFunctionReturn(PETSC_SUCCESS);
2742: }

2744: /*@
2745:   TaoGradientNorm - Compute the norm using the `NormType`, the user has selected

2747:   Collective

2749:   Input Parameters:
2750: + tao      - the `Tao` context
2751: . gradient - the gradient
2752: - type     - the norm type

2754:   Output Parameter:
2755: . gnorm - the gradient norm

2757:   Level: advanced

2759:   Note:
2760:   If `TaoSetGradientNorm()` has been set and `type` is `NORM_2` then the norm provided with `TaoSetGradientNorm()` is used.

2762:   Developer Notes:
2763:   Should be named `TaoComputeGradientNorm()`.

2765:   The usage is a bit confusing, with `TaoSetGradientNorm()` plus `NORM_2` resulting in the computation of the user provided
2766:   norm, perhaps a refactorization is in order.

2768: .seealso: [](ch_tao), `Tao`, `TaoSetGradientNorm()`, `TaoGetGradientNorm()`
2769: @*/
2770: PetscErrorCode TaoGradientNorm(Tao tao, Vec gradient, NormType type, PetscReal *gnorm)
2771: {
2772:   PetscFunctionBegin;
2776:   PetscAssertPointer(gnorm, 4);
2777:   if (tao->gradient_norm) {
2778:     PetscScalar gnorms;

2780:     PetscCheck(type == NORM_2, PetscObjectComm((PetscObject)gradient), PETSC_ERR_ARG_WRONG, "Norm type must be NORM_2 if an inner product for the gradient norm is set.");
2781:     PetscCall(MatMult(tao->gradient_norm, gradient, tao->gradient_norm_tmp));
2782:     PetscCall(VecDot(gradient, tao->gradient_norm_tmp, &gnorms));
2783:     *gnorm = PetscRealPart(PetscSqrtScalar(gnorms));
2784:   } else {
2785:     PetscCall(VecNorm(gradient, type, gnorm));
2786:   }
2787:   PetscFunctionReturn(PETSC_SUCCESS);
2788: }

2790: /*@C
2791:   TaoMonitorDrawCtxCreate - Creates the monitor context for `TaoMonitorSolutionDraw()`

2793:   Collective

2795:   Input Parameters:
2796: + comm     - the communicator to share the context
2797: . host     - the name of the X Windows host that will display the monitor
2798: . label    - the label to put at the top of the display window
2799: . x        - the horizontal coordinate of the lower left corner of the window to open
2800: . y        - the vertical coordinate of the lower left corner of the window to open
2801: . m        - the width of the window
2802: . n        - the height of the window
2803: - howoften - how many `Tao` iterations between displaying the monitor information

2805:   Output Parameter:
2806: . ctx - the monitor context

2808:   Options Database Keys:
2809: + -tao_monitor_solution_draw - use `TaoMonitorSolutionDraw()` to monitor the solution
2810: - -tao_draw_solution_initial - show initial guess as well as current solution

2812:   Level: intermediate

2814:   Note:
2815:   The context this creates, along with `TaoMonitorSolutionDraw()`, and `TaoMonitorDrawCtxDestroy()`
2816:   are passed to `TaoMonitorSet()`.

2818: .seealso: [](ch_tao), `Tao`, `TaoMonitorSet()`, `TaoMonitorDefault()`, `VecView()`, `TaoMonitorDrawCtx()`
2819: @*/
2820: PetscErrorCode TaoMonitorDrawCtxCreate(MPI_Comm comm, const char host[], const char label[], int x, int y, int m, int n, PetscInt howoften, TaoMonitorDrawCtx *ctx)
2821: {
2822:   PetscFunctionBegin;
2823:   PetscCall(PetscNew(ctx));
2824:   PetscCall(PetscViewerDrawOpen(comm, host, label, x, y, m, n, &(*ctx)->viewer));
2825:   PetscCall(PetscViewerSetFromOptions((*ctx)->viewer));
2826:   (*ctx)->howoften = howoften;
2827:   PetscFunctionReturn(PETSC_SUCCESS);
2828: }

2830: /*@C
2831:   TaoMonitorDrawCtxDestroy - Destroys the monitor context for `TaoMonitorSolutionDraw()`

2833:   Collective

2835:   Input Parameter:
2836: . ictx - the monitor context

2838:   Level: intermediate

2840:   Note:
2841:   This is passed to `TaoMonitorSet()` as the final argument, along with `TaoMonitorSolutionDraw()`, and the context
2842:   obtained with `TaoMonitorDrawCtxCreate()`.

2844: .seealso: [](ch_tao), `Tao`, `TaoMonitorSet()`, `TaoMonitorDefault()`, `VecView()`, `TaoMonitorSolutionDraw()`
2845: @*/
2846: PetscErrorCode TaoMonitorDrawCtxDestroy(TaoMonitorDrawCtx *ictx)
2847: {
2848:   PetscFunctionBegin;
2849:   PetscCall(PetscViewerDestroy(&(*ictx)->viewer));
2850:   PetscCall(PetscFree(*ictx));
2851:   PetscFunctionReturn(PETSC_SUCCESS);
2852: }