Actual source code: glee.c

  1: /*
  2:   Code for time stepping with the General Linear with Error Estimation method

  4:   Notes:
  5:   The general system is written as

  7:   Udot = F(t,U)

  9: */
 10: #include <petsc/private/tsimpl.h>
 11: #include <petscdm.h>

 13: static PetscBool  cited      = PETSC_FALSE;
 14: static const char citation[] = "@ARTICLE{Constantinescu_TR2016b,\n"
 15:                                " author = {Constantinescu, E.M.},\n"
 16:                                " title = {Estimating Global Errors in Time Stepping},\n"
 17:                                " journal = {ArXiv e-prints},\n"
 18:                                " year = 2016,\n"
 19:                                " adsurl = {http://adsabs.harvard.edu/abs/2015arXiv150305166C}\n}\n";

 21: static TSGLEEType TSGLEEDefaultType = TSGLEE35;
 22: static PetscBool  TSGLEERegisterAllCalled;
 23: static PetscBool  TSGLEEPackageInitialized;
 24: static PetscInt   explicit_stage_time_id;

 26: typedef struct _GLEETableau *GLEETableau;
 27: struct _GLEETableau {
 28:   char      *name;
 29:   PetscInt   order;                     /* Classical approximation order of the method i*/
 30:   PetscInt   s;                         /* Number of stages */
 31:   PetscInt   r;                         /* Number of steps */
 32:   PetscReal  gamma;                     /* LTE ratio */
 33:   PetscReal *A, *B, *U, *V, *S, *F, *c; /* Tableau */
 34:   PetscReal *Fembed;                    /* Embedded final method coefficients */
 35:   PetscReal *Ferror;                    /* Coefficients for computing error   */
 36:   PetscReal *Serror;                    /* Coefficients for initializing the error   */
 37:   PetscInt   pinterp;                   /* Interpolation order */
 38:   PetscReal *binterp;                   /* Interpolation coefficients */
 39:   PetscReal  ccfl;                      /* Placeholder for CFL coefficient relative to forward Euler  */
 40: };
 41: typedef struct _GLEETableauLink *GLEETableauLink;
 42: struct _GLEETableauLink {
 43:   struct _GLEETableau tab;
 44:   GLEETableauLink     next;
 45: };
 46: static GLEETableauLink GLEETableauList;

 48: typedef struct {
 49:   GLEETableau  tableau;
 50:   Vec         *Y;         /* Solution vector (along with auxiliary solution y~ or eps) */
 51:   Vec         *X;         /* Temporary solution vector */
 52:   Vec         *YStage;    /* Stage values */
 53:   Vec         *YdotStage; /* Stage right-hand side */
 54:   Vec          W;         /* Right-hand-side for implicit stage solve */
 55:   Vec          Ydot;      /* Work vector holding Ydot during residual evaluation */
 56:   Vec          yGErr;     /* Vector holding the global error after a step is completed */
 57:   PetscScalar *swork;     /* Scalar work (size of the number of stages)*/
 58:   PetscScalar *rwork;     /* Scalar work (size of the number of steps)*/
 59:   PetscReal    scoeff;    /* shift = scoeff/dt */
 60:   PetscReal    stage_time;
 61:   TSStepStatus status;
 62: } TS_GLEE;

 64: /*MC
 65:      TSGLEEi1 - Second order three stage implicit GLEE method

 67:      This method has two stages.
 68:      s = 3, r = 2

 70:      Level: advanced

 72: .seealso: [](ch_ts), `TSGLEE`
 73: M*/
 74: /*MC
 75:      TSGLEE23 - Second order three stage explicit GLEE method

 77:      This method has three stages.
 78:      s = 3, r = 2

 80:      Level: advanced

 82: .seealso: [](ch_ts), `TSGLEE`
 83: M*/
 84: /*MC
 85:      TSGLEE24 - Second order four stage explicit GLEE method

 87:      This method has four stages.
 88:      s = 4, r = 2

 90:      Level: advanced

 92: .seealso: [](ch_ts), `TSGLEE`
 93: M*/
 94: /*MC
 95:      TSGLEE25i - Second order five stage explict GLEE method

 97:      This method has five stages.
 98:      s = 5, r = 2

100:      Level: advanced

102: .seealso: [](ch_ts), `TSGLEE`
103: M*/
104: /*MC
105:      TSGLEE35  - Third order five stage explicit GLEE method

107:      This method has five stages.
108:      s = 5, r = 2

110:      Level: advanced

112: .seealso: [](ch_ts), `TSGLEE`
113: M*/
114: /*MC
115:      TSGLEEEXRK2A  - Second order six stage explict GLEE method

117:      This method has six stages.
118:      s = 6, r = 2

120:      Level: advanced

122: .seealso: [](ch_ts), `TSGLEE`
123: M*/
124: /*MC
125:      TSGLEERK32G1  - Third order eight stage explicit GLEE method

127:      This method has eight stages.
128:      s = 8, r = 2

130:      Level: advanced

132: .seealso: [](ch_ts), `TSGLEE`
133: M*/
134: /*MC
135:      TSGLEERK285EX  - Second order nine stage explicit GLEE method

137:      This method has nine stages.
138:      s = 9, r = 2

140:      Level: advanced

142: .seealso: [](ch_ts), `TSGLEE`
143: M*/

145: /*@C
146:   TSGLEERegisterAll - Registers all of the General Linear with Error Estimation methods in `TSGLEE`

148:   Not Collective, but should be called by all processes which will need the schemes to be registered

150:   Level: advanced

152: .seealso: [](ch_ts), `TSGLEERegisterDestroy()`
153: @*/
154: PetscErrorCode TSGLEERegisterAll(void)
155: {
156:   PetscFunctionBegin;
157:   if (TSGLEERegisterAllCalled) PetscFunctionReturn(PETSC_SUCCESS);
158:   TSGLEERegisterAllCalled = PETSC_TRUE;

160:   {
161: #define GAMMA 0.5
162:     /* y-eps form */
163:     const PetscInt  p = 1, s = 3, r = 2;
164:     const PetscReal A[3][3] =
165:       {
166:         {1.0, 0,   0  },
167:         {0,   0.5, 0  },
168:         {0,   0.5, 0.5}
169:     },
170:                     B[2][3] = {{1.0, 0, 0}, {-2.0, 1.0, 1.0}}, U[3][2] = {{1.0, 0}, {1.0, 0.5}, {1.0, 0.5}}, V[2][2] = {{1, 0}, {0, 1}}, S[2] = {1, 0}, F[2] = {1, 0}, Fembed[2] = {1, 1 - GAMMA}, Ferror[2] = {0, 1}, Serror[2] = {1, 0};
171:     PetscCall(TSGLEERegister(TSGLEEi1, p, s, r, GAMMA, &A[0][0], &B[0][0], &U[0][0], &V[0][0], S, F, NULL, Fembed, Ferror, Serror, 0, NULL));
172:   }
173:   {
174: #undef GAMMA
175: #define GAMMA 0.0
176:     /* y-eps form */
177:     const PetscInt  p = 2, s = 3, r = 2;
178:     const PetscReal A[3][3] =
179:       {
180:         {0,    0,    0},
181:         {1,    0,    0},
182:         {0.25, 0.25, 0}
183:     },
184:                     B[2][3] = {{1.0 / 12.0, 1.0 / 12.0, 5.0 / 6.0}, {1.0 / 12.0, 1.0 / 12.0, -1.0 / 6.0}}, U[3][2] = {{1, 0}, {1, 10}, {1, -1}}, V[2][2] = {{1, 0}, {0, 1}}, S[2] = {1, 0}, F[2] = {1, 0}, Fembed[2] = {1, 1 - GAMMA}, Ferror[2] = {0, 1}, Serror[2] = {1, 0};
185:     PetscCall(TSGLEERegister(TSGLEE23, p, s, r, GAMMA, &A[0][0], &B[0][0], &U[0][0], &V[0][0], S, F, NULL, Fembed, Ferror, Serror, 0, NULL));
186:   }
187:   {
188: #undef GAMMA
189: #define GAMMA 0.0
190:     /* y-y~ form */
191:     const PetscInt  p = 2, s = 4, r = 2;
192:     const PetscReal A[4][4] =
193:       {
194:         {0,            0,            0,            0},
195:         {0.75,         0,            0,            0},
196:         {0.25,         29.0 / 60.0,  0,            0},
197:         {-21.0 / 44.0, 145.0 / 44.0, -20.0 / 11.0, 0}
198:     },
199:                     B[2][4] = {{109.0 / 275.0, 58.0 / 75.0, -37.0 / 110.0, 1.0 / 6.0}, {3.0 / 11.0, 0, 75.0 / 88.0, -1.0 / 8.0}}, U[4][2] = {{0, 1}, {75.0 / 58.0, -17.0 / 58.0}, {0, 1}, {0, 1}}, V[2][2] = {{1, 0}, {0, 1}}, S[2] = {1, 1}, F[2] = {1, 0}, Fembed[2] = {0, 1}, Ferror[2] = {-1.0 / (1.0 - GAMMA), 1.0 / (1.0 - GAMMA)}, Serror[2] = {1.0 - GAMMA, 1.0};
200:     PetscCall(TSGLEERegister(TSGLEE24, p, s, r, GAMMA, &A[0][0], &B[0][0], &U[0][0], &V[0][0], S, F, NULL, Fembed, Ferror, Serror, 0, NULL));
201:   }
202:   {
203: #undef GAMMA
204: #define GAMMA 0.0
205:     /* y-y~ form */
206:     const PetscInt  p = 2, s = 5, r = 2;
207:     const PetscReal A[5][5] =
208:       {
209:         {0,                       0,                       0,                       0,                      0},
210:         {-0.94079244066783383269, 0,                       0,                       0,                      0},
211:         {0.64228187778301907108,  0.10915356933958500042,  0,                       0,                      0},
212:         {-0.51764297742287450812, 0.74414270351096040738,  -0.71404164927824538121, 0,                      0},
213:         {-0.44696561556825969206, -0.76768425657590196518, 0.20111608138142987881,  0.93828186737840469796, 0}
214:     },
215:                     B[2][5] = {{-0.029309178948150356153, -0.49671981884013874923, 0.34275801517650053274, 0.32941112623949194988, 0.85385985637229662276}, {0.78133219686062535272, 0.074238691892675897635, 0.57957363498384957966, -0.24638502829674959968, -0.18875949544040123033}}, U[5][2] = {{0.16911424754448327735, 0.83088575245551672265}, {0.53638465733199574340, 0.46361534266800425660}, {0.39901579167169582526, 0.60098420832830417474}, {0.87689005530618575480, 0.12310994469381424520}, {0.99056100455550913009, 0.0094389954444908699092}}, V[2][2] = {{1, 0}, {0, 1}}, S[2] = {1, 1}, F[2] = {1, 0}, Fembed[2] = {0, 1}, Ferror[2] = {-1.0 / (1.0 - GAMMA), 1.0 / (1.0 - GAMMA)}, Serror[2] = {1.0 - GAMMA, 1.0};
216:     PetscCall(TSGLEERegister(TSGLEE25I, p, s, r, GAMMA, &A[0][0], &B[0][0], &U[0][0], &V[0][0], S, F, NULL, Fembed, Ferror, Serror, 0, NULL));
217:   }
218:   {
219: #undef GAMMA
220: #define GAMMA 0.0
221:     /* y-y~ form */
222:     const PetscInt  p = 3, s = 5, r = 2;
223:     const PetscReal A[5][5] =
224:       {
225:         {0,                                                0,                                                 0,                                                 0,                                               0},
226:         {-2169604947363702313.0 / 24313474998937147335.0,  0,                                                 0,                                                 0,                                               0},
227:         {46526746497697123895.0 / 94116917485856474137.0,  -10297879244026594958.0 / 49199457603717988219.0,  0,                                                 0,                                               0},
228:         {23364788935845982499.0 / 87425311444725389446.0,  -79205144337496116638.0 / 148994349441340815519.0, 40051189859317443782.0 / 36487615018004984309.0,   0,                                               0},
229:         {42089522664062539205.0 / 124911313006412840286.0, -15074384760342762939.0 / 137927286865289746282.0, -62274678522253371016.0 / 125918573676298591413.0, 13755475729852471739.0 / 79257927066651693390.0, 0}
230:     },
231:                     B[2][5] = {{61546696837458703723.0 / 56982519523786160813.0, -55810892792806293355.0 / 206957624151308356511.0, 24061048952676379087.0 / 158739347956038723465.0, 3577972206874351339.0 / 7599733370677197135.0, -59449832954780563947.0 / 137360038685338563670.0}, {-9738262186984159168.0 / 99299082461487742983.0, -32797097931948613195.0 / 61521565616362163366.0, 42895514606418420631.0 / 71714201188501437336.0, 22608567633166065068.0 / 55371917805607957003.0, 94655809487476459565.0 / 151517167160302729021.0}}, U[5][2] = {{70820309139834661559.0 / 80863923579509469826.0, 10043614439674808267.0 / 80863923579509469826.0}, {161694774978034105510.0 / 106187653640211060371.0, -55507121337823045139.0 / 106187653640211060371.0}, {78486094644566264568.0 / 88171030896733822981.0, 9684936252167558413.0 / 88171030896733822981.0}, {65394922146334854435.0 / 84570853840405479554.0, 19175931694070625119.0 / 84570853840405479554.0}, {8607282770183754108.0 / 108658046436496925911.0, 100050763666313171803.0 / 108658046436496925911.0}}, V[2][2] = {{1, 0}, {0, 1}}, S[2] = {1, 1}, F[2] = {1, 0}, Fembed[2] = {0, 1}, Ferror[2] = {-1.0 / (1.0 - GAMMA), 1.0 / (1.0 - GAMMA)}, Serror[2] = {1.0 - GAMMA, 1.0};
232:     PetscCall(TSGLEERegister(TSGLEE35, p, s, r, GAMMA, &A[0][0], &B[0][0], &U[0][0], &V[0][0], S, F, NULL, Fembed, Ferror, Serror, 0, NULL));
233:   }
234:   {
235: #undef GAMMA
236: #define GAMMA 0.25
237:     /* y-eps form */
238:     const PetscInt  p = 2, s = 6, r = 2;
239:     const PetscReal A[6][6] =
240:       {
241:         {0, 0, 0,    0,    0,   0},
242:         {1, 0, 0,    0,    0,   0},
243:         {0, 0, 0,    0,    0,   0},
244:         {0, 0, 0.5,  0,    0,   0},
245:         {0, 0, 0.25, 0.25, 0,   0},
246:         {0, 0, 0.25, 0.25, 0.5, 0}
247:     },
248:                     B[2][6] = {{0.5, 0.5, 0, 0, 0, 0}, {-2.0 / 3.0, -2.0 / 3.0, 1.0 / 3.0, 1.0 / 3.0, 1.0 / 3.0, 1.0 / 3.0}}, U[6][2] = {{1, 0}, {1, 0}, {1, 0.75}, {1, 0.75}, {1, 0.75}, {1, 0.75}}, V[2][2] = {{1, 0}, {0, 1}}, S[2] = {1, 0}, F[2] = {1, 0}, Fembed[2] = {1, 1 - GAMMA}, Ferror[2] = {0, 1}, Serror[2] = {1, 0};
249:     PetscCall(TSGLEERegister(TSGLEEEXRK2A, p, s, r, GAMMA, &A[0][0], &B[0][0], &U[0][0], &V[0][0], S, F, NULL, Fembed, Ferror, Serror, 0, NULL));
250:   }
251:   {
252: #undef GAMMA
253: #define GAMMA 0.0
254:     /* y-eps form */
255:     const PetscInt  p = 3, s = 8, r = 2;
256:     const PetscReal A[8][8] =
257:       {
258:         {0,           0,          0,          0,          0,         0,         0,         0},
259:         {0.5,         0,          0,          0,          0,         0,         0,         0},
260:         {-1,          2,          0,          0,          0,         0,         0,         0},
261:         {1.0 / 6.0,   2.0 / 3.0,  1.0 / 6.0,  0,          0,         0,         0,         0},
262:         {0,           0,          0,          0,          0,         0,         0,         0},
263:         {-7.0 / 24.0, 1.0 / 3.0,  1.0 / 12.0, -1.0 / 8.0, 0.5,       0,         0,         0},
264:         {7.0 / 6.0,   -4.0 / 3.0, -1.0 / 3.0, 0.5,        -1.0,      2.0,       0,         0},
265:         {0,           0,          0,          0,          1.0 / 6.0, 2.0 / 3.0, 1.0 / 6.0, 0}
266:     },
267:                     B[2][8] = {{1.0 / 6.0, 2.0 / 3.0, 1.0 / 6.0, 0, 0, 0, 0, 0}, {-1.0 / 6.0, -2.0 / 3.0, -1.0 / 6.0, 0, 1.0 / 6.0, 2.0 / 3.0, 1.0 / 6.0, 0}}, U[8][2] = {{1, 0}, {1, 0}, {1, 0}, {1, 0}, {1, 1}, {1, 1}, {1, 1}, {1, 1}}, V[2][2] = {{1, 0}, {0, 1}}, S[2] = {1, 0}, F[2] = {1, 0}, Fembed[2] = {1, 1 - GAMMA}, Ferror[2] = {0, 1}, Serror[2] = {1, 0};
268:     PetscCall(TSGLEERegister(TSGLEERK32G1, p, s, r, GAMMA, &A[0][0], &B[0][0], &U[0][0], &V[0][0], S, F, NULL, Fembed, Ferror, Serror, 0, NULL));
269:   }
270:   {
271: #undef GAMMA
272: #define GAMMA 0.25
273:     /* y-eps form */
274:     const PetscInt  p = 2, s = 9, r = 2;
275:     const PetscReal A[9][9] =
276:       {
277:         {0,                    0,                    0, 0,                     0,                    0,                    0,                     0,                    0},
278:         {0.585786437626904966, 0,                    0, 0,                     0,                    0,                    0,                     0,                    0},
279:         {0.149999999999999994, 0.849999999999999978, 0, 0,                     0,                    0,                    0,                     0,                    0},
280:         {0,                    0,                    0, 0,                     0,                    0,                    0,                     0,                    0},
281:         {0,                    0,                    0, 0.292893218813452483,  0,                    0,                    0,                     0,                    0},
282:         {0,                    0,                    0, 0.0749999999999999972, 0.424999999999999989, 0,                    0,                     0,                    0},
283:         {0,                    0,                    0, 0.176776695296636893,  0.176776695296636893, 0.146446609406726241, 0,                     0,                    0},
284:         {0,                    0,                    0, 0.176776695296636893,  0.176776695296636893, 0.146446609406726241, 0.292893218813452483,  0,                    0},
285:         {0,                    0,                    0, 0.176776695296636893,  0.176776695296636893, 0.146446609406726241, 0.0749999999999999972, 0.424999999999999989, 0}
286:     },
287:                     B[2][9] = {{0.353553390593273786, 0.353553390593273786, 0.292893218813452483, 0, 0, 0, 0, 0, 0}, {-0.471404520791031678, -0.471404520791031678, -0.390524291751269959, 0.235702260395515839, 0.235702260395515839, 0.195262145875634979, 0.235702260395515839, 0.235702260395515839, 0.195262145875634979}}, U[9][2] = {{1, 0}, {1, 0}, {1, 0}, {1, 0.75}, {1, 0.75}, {1, 0.75}, {1, 0.75}, {1, 0.75}, {1, 0.75}}, V[2][2] = {{1, 0}, {0, 1}}, S[2] = {1, 0}, F[2] = {1, 0}, Fembed[2] = {1, 1 - GAMMA}, Ferror[2] = {0, 1}, Serror[2] = {1, 0};
288:     PetscCall(TSGLEERegister(TSGLEERK285EX, p, s, r, GAMMA, &A[0][0], &B[0][0], &U[0][0], &V[0][0], S, F, NULL, Fembed, Ferror, Serror, 0, NULL));
289:   }
290:   PetscFunctionReturn(PETSC_SUCCESS);
291: }

293: /*@C
294:   TSGLEERegisterDestroy - Frees the list of schemes that were registered by `TSGLEERegister()`.

296:   Not Collective

298:   Level: advanced

300: .seealso: [](ch_ts), `TSGLEERegister()`, `TSGLEERegisterAll()`
301: @*/
302: PetscErrorCode TSGLEERegisterDestroy(void)
303: {
304:   GLEETableauLink link;

306:   PetscFunctionBegin;
307:   while ((link = GLEETableauList)) {
308:     GLEETableau t   = &link->tab;
309:     GLEETableauList = link->next;
310:     PetscCall(PetscFree5(t->A, t->B, t->U, t->V, t->c));
311:     PetscCall(PetscFree2(t->S, t->F));
312:     PetscCall(PetscFree(t->Fembed));
313:     PetscCall(PetscFree(t->Ferror));
314:     PetscCall(PetscFree(t->Serror));
315:     PetscCall(PetscFree(t->binterp));
316:     PetscCall(PetscFree(t->name));
317:     PetscCall(PetscFree(link));
318:   }
319:   TSGLEERegisterAllCalled = PETSC_FALSE;
320:   PetscFunctionReturn(PETSC_SUCCESS);
321: }

323: /*@C
324:   TSGLEEInitializePackage - This function initializes everything in the `TSGLEE` package. It is called
325:   from `TSInitializePackage()`.

327:   Level: developer

329: .seealso: [](ch_ts), `PetscInitialize()`
330: @*/
331: PetscErrorCode TSGLEEInitializePackage(void)
332: {
333:   PetscFunctionBegin;
334:   if (TSGLEEPackageInitialized) PetscFunctionReturn(PETSC_SUCCESS);
335:   TSGLEEPackageInitialized = PETSC_TRUE;
336:   PetscCall(TSGLEERegisterAll());
337:   PetscCall(PetscObjectComposedDataRegister(&explicit_stage_time_id));
338:   PetscCall(PetscRegisterFinalize(TSGLEEFinalizePackage));
339:   PetscFunctionReturn(PETSC_SUCCESS);
340: }

342: /*@C
343:   TSGLEEFinalizePackage - This function destroys everything in the `TSGLEE` package. It is
344:   called from `PetscFinalize()`.

346:   Level: developer

348: .seealso: [](ch_ts), `PetscFinalize()`
349: @*/
350: PetscErrorCode TSGLEEFinalizePackage(void)
351: {
352:   PetscFunctionBegin;
353:   TSGLEEPackageInitialized = PETSC_FALSE;
354:   PetscCall(TSGLEERegisterDestroy());
355:   PetscFunctionReturn(PETSC_SUCCESS);
356: }

358: /*@C
359:   TSGLEERegister - register a new `TSGLEE` scheme by providing the entries in the Butcher tableau

361:   Not Collective, but the same schemes should be registered on all processes on which they will be used, No Fortran Support

363:   Input Parameters:
364: + name    - identifier for method
365: . order   - order of method
366: . s       - number of stages
367: . r       - number of steps
368: . gamma   - LTE ratio
369: . A       - stage coefficients (dimension s*s, row-major)
370: . B       - step completion coefficients (dimension r*s, row-major)
371: . U       - method coefficients (dimension s*r, row-major)
372: . V       - method coefficients (dimension r*r, row-major)
373: . S       - starting coefficients
374: . F       - finishing coefficients
375: . c       - abscissa (dimension s; NULL to use row sums of A)
376: . Fembed  - step completion coefficients for embedded method
377: . Ferror  - error computation coefficients
378: . Serror  - error initialization coefficients
379: . pinterp - order of interpolation (0 if unavailable)
380: - binterp - array of interpolation coefficients (NULL if unavailable)

382:   Level: advanced

384:   Note:
385:   Several `TSGLEE` methods are provided, this function is only needed to create new methods.

387: .seealso: [](ch_ts), `TSGLEE`
388: @*/
389: PetscErrorCode TSGLEERegister(TSGLEEType name, PetscInt order, PetscInt s, PetscInt r, PetscReal gamma, const PetscReal A[], const PetscReal B[], const PetscReal U[], const PetscReal V[], const PetscReal S[], const PetscReal F[], const PetscReal c[], const PetscReal Fembed[], const PetscReal Ferror[], const PetscReal Serror[], PetscInt pinterp, const PetscReal binterp[])
390: {
391:   GLEETableauLink link;
392:   GLEETableau     t;
393:   PetscInt        i, j;

395:   PetscFunctionBegin;
396:   PetscCall(TSGLEEInitializePackage());
397:   PetscCall(PetscNew(&link));
398:   t = &link->tab;
399:   PetscCall(PetscStrallocpy(name, &t->name));
400:   t->order = order;
401:   t->s     = s;
402:   t->r     = r;
403:   t->gamma = gamma;
404:   PetscCall(PetscMalloc5(s * s, &t->A, r * r, &t->V, s, &t->c, r * s, &t->B, s * r, &t->U));
405:   PetscCall(PetscMalloc2(r, &t->S, r, &t->F));
406:   PetscCall(PetscArraycpy(t->A, A, s * s));
407:   PetscCall(PetscArraycpy(t->B, B, r * s));
408:   PetscCall(PetscArraycpy(t->U, U, s * r));
409:   PetscCall(PetscArraycpy(t->V, V, r * r));
410:   PetscCall(PetscArraycpy(t->S, S, r));
411:   PetscCall(PetscArraycpy(t->F, F, r));
412:   if (c) {
413:     PetscCall(PetscArraycpy(t->c, c, s));
414:   } else {
415:     for (i = 0; i < s; i++)
416:       for (j = 0, t->c[i] = 0; j < s; j++) t->c[i] += A[i * s + j];
417:   }
418:   PetscCall(PetscMalloc1(r, &t->Fembed));
419:   PetscCall(PetscMalloc1(r, &t->Ferror));
420:   PetscCall(PetscMalloc1(r, &t->Serror));
421:   PetscCall(PetscArraycpy(t->Fembed, Fembed, r));
422:   PetscCall(PetscArraycpy(t->Ferror, Ferror, r));
423:   PetscCall(PetscArraycpy(t->Serror, Serror, r));
424:   t->pinterp = pinterp;
425:   PetscCall(PetscMalloc1(s * pinterp, &t->binterp));
426:   PetscCall(PetscArraycpy(t->binterp, binterp, s * pinterp));

428:   link->next      = GLEETableauList;
429:   GLEETableauList = link;
430:   PetscFunctionReturn(PETSC_SUCCESS);
431: }

433: static PetscErrorCode TSEvaluateStep_GLEE(TS ts, PetscInt order, Vec X, PetscBool *done)
434: {
435:   TS_GLEE     *glee = (TS_GLEE *)ts->data;
436:   GLEETableau  tab  = glee->tableau;
437:   PetscReal    h, *B = tab->B, *V = tab->V, *F = tab->F, *Fembed = tab->Fembed;
438:   PetscInt     s = tab->s, r = tab->r, i, j;
439:   Vec         *Y = glee->Y, *YdotStage = glee->YdotStage;
440:   PetscScalar *ws = glee->swork, *wr = glee->rwork;

442:   PetscFunctionBegin;
443:   switch (glee->status) {
444:   case TS_STEP_INCOMPLETE:
445:   case TS_STEP_PENDING:
446:     h = ts->time_step;
447:     break;
448:   case TS_STEP_COMPLETE:
449:     h = ts->ptime - ts->ptime_prev;
450:     break;
451:   default:
452:     SETERRQ(PetscObjectComm((PetscObject)ts), PETSC_ERR_PLIB, "Invalid TSStepStatus");
453:   }

455:   if (order == tab->order) {
456:     /* Note: Irrespective of whether status is TS_STEP_INCOMPLETE
457:              or TS_STEP_COMPLETE, glee->X has the solution at the
458:              beginning of the time step. So no need to roll-back.
459:     */
460:     if (glee->status == TS_STEP_INCOMPLETE) {
461:       for (i = 0; i < r; i++) {
462:         PetscCall(VecZeroEntries(Y[i]));
463:         for (j = 0; j < r; j++) wr[j] = V[i * r + j];
464:         PetscCall(VecMAXPY(Y[i], r, wr, glee->X));
465:         for (j = 0; j < s; j++) ws[j] = h * B[i * s + j];
466:         PetscCall(VecMAXPY(Y[i], s, ws, YdotStage));
467:       }
468:       PetscCall(VecZeroEntries(X));
469:       for (j = 0; j < r; j++) wr[j] = F[j];
470:       PetscCall(VecMAXPY(X, r, wr, Y));
471:     } else PetscCall(VecCopy(ts->vec_sol, X));
472:     PetscFunctionReturn(PETSC_SUCCESS);

474:   } else if (order == tab->order - 1) {
475:     /* Complete with the embedded method (Fembed) */
476:     for (i = 0; i < r; i++) {
477:       PetscCall(VecZeroEntries(Y[i]));
478:       for (j = 0; j < r; j++) wr[j] = V[i * r + j];
479:       PetscCall(VecMAXPY(Y[i], r, wr, glee->X));
480:       for (j = 0; j < s; j++) ws[j] = h * B[i * s + j];
481:       PetscCall(VecMAXPY(Y[i], s, ws, YdotStage));
482:     }
483:     PetscCall(VecZeroEntries(X));
484:     for (j = 0; j < r; j++) wr[j] = Fembed[j];
485:     PetscCall(VecMAXPY(X, r, wr, Y));

487:     if (done) *done = PETSC_TRUE;
488:     PetscFunctionReturn(PETSC_SUCCESS);
489:   }
490:   PetscCheck(done, PetscObjectComm((PetscObject)ts), PETSC_ERR_SUP, "GLEE '%s' of order %" PetscInt_FMT " cannot evaluate step at order %" PetscInt_FMT, tab->name, tab->order, order);
491:   *done = PETSC_FALSE;
492:   PetscFunctionReturn(PETSC_SUCCESS);
493: }

495: static PetscErrorCode TSStep_GLEE(TS ts)
496: {
497:   TS_GLEE       *glee = (TS_GLEE *)ts->data;
498:   GLEETableau    tab  = glee->tableau;
499:   const PetscInt s = tab->s, r = tab->r;
500:   PetscReal     *A = tab->A, *U = tab->U, *F = tab->F, *c = tab->c;
501:   Vec           *Y = glee->Y, *X = glee->X, *YStage = glee->YStage, *YdotStage = glee->YdotStage, W = glee->W;
502:   SNES           snes;
503:   PetscScalar   *ws = glee->swork, *wr = glee->rwork;
504:   TSAdapt        adapt;
505:   PetscInt       i, j, reject, next_scheme, its, lits;
506:   PetscReal      next_time_step;
507:   PetscReal      t;
508:   PetscBool      accept;

510:   PetscFunctionBegin;
511:   PetscCall(PetscCitationsRegister(citation, &cited));

513:   for (i = 0; i < r; i++) PetscCall(VecCopy(Y[i], X[i]));

515:   PetscCall(TSGetSNES(ts, &snes));
516:   next_time_step = ts->time_step;
517:   t              = ts->ptime;
518:   accept         = PETSC_TRUE;
519:   glee->status   = TS_STEP_INCOMPLETE;

521:   for (reject = 0; reject < ts->max_reject && !ts->reason; reject++, ts->reject++) {
522:     PetscReal h = ts->time_step;
523:     PetscCall(TSPreStep(ts));

525:     for (i = 0; i < s; i++) {
526:       glee->stage_time = t + h * c[i];
527:       PetscCall(TSPreStage(ts, glee->stage_time));

529:       if (A[i * s + i] == 0) { /* Explicit stage */
530:         PetscCall(VecZeroEntries(YStage[i]));
531:         for (j = 0; j < r; j++) wr[j] = U[i * r + j];
532:         PetscCall(VecMAXPY(YStage[i], r, wr, X));
533:         for (j = 0; j < i; j++) ws[j] = h * A[i * s + j];
534:         PetscCall(VecMAXPY(YStage[i], i, ws, YdotStage));
535:       } else { /* Implicit stage */
536:         glee->scoeff = 1.0 / A[i * s + i];
537:         /* compute right-hand side */
538:         PetscCall(VecZeroEntries(W));
539:         for (j = 0; j < r; j++) wr[j] = U[i * r + j];
540:         PetscCall(VecMAXPY(W, r, wr, X));
541:         for (j = 0; j < i; j++) ws[j] = h * A[i * s + j];
542:         PetscCall(VecMAXPY(W, i, ws, YdotStage));
543:         PetscCall(VecScale(W, glee->scoeff / h));
544:         /* set initial guess */
545:         PetscCall(VecCopy(i > 0 ? YStage[i - 1] : ts->vec_sol, YStage[i]));
546:         /* solve for this stage */
547:         PetscCall(SNESSolve(snes, W, YStage[i]));
548:         PetscCall(SNESGetIterationNumber(snes, &its));
549:         PetscCall(SNESGetLinearSolveIterations(snes, &lits));
550:         ts->snes_its += its;
551:         ts->ksp_its += lits;
552:       }
553:       PetscCall(TSGetAdapt(ts, &adapt));
554:       PetscCall(TSAdaptCheckStage(adapt, ts, glee->stage_time, YStage[i], &accept));
555:       if (!accept) goto reject_step;
556:       PetscCall(TSPostStage(ts, glee->stage_time, i, YStage));
557:       PetscCall(TSComputeRHSFunction(ts, t + h * c[i], YStage[i], YdotStage[i]));
558:     }
559:     PetscCall(TSEvaluateStep(ts, tab->order, ts->vec_sol, NULL));
560:     glee->status = TS_STEP_PENDING;

562:     /* Register only the current method as a candidate because we're not supporting multiple candidates yet. */
563:     PetscCall(TSGetAdapt(ts, &adapt));
564:     PetscCall(TSAdaptCandidatesClear(adapt));
565:     PetscCall(TSAdaptCandidateAdd(adapt, tab->name, tab->order, 1, tab->ccfl, (PetscReal)tab->s, PETSC_TRUE));
566:     PetscCall(TSAdaptChoose(adapt, ts, ts->time_step, &next_scheme, &next_time_step, &accept));
567:     if (accept) {
568:       /* ignore next_scheme for now */
569:       ts->ptime += ts->time_step;
570:       ts->time_step = next_time_step;
571:       glee->status  = TS_STEP_COMPLETE;
572:       /* compute and store the global error */
573:       /* Note: this is not needed if TSAdaptGLEE is not used */
574:       PetscCall(TSGetTimeError(ts, 0, &glee->yGErr));
575:       PetscCall(PetscObjectComposedDataSetReal((PetscObject)ts->vec_sol, explicit_stage_time_id, ts->ptime));
576:       break;
577:     } else { /* Roll back the current step */
578:       for (j = 0; j < r; j++) wr[j] = F[j];
579:       PetscCall(VecMAXPY(ts->vec_sol, r, wr, X));
580:       ts->time_step = next_time_step;
581:       glee->status  = TS_STEP_INCOMPLETE;
582:     }
583:   reject_step:
584:     continue;
585:   }
586:   if (glee->status != TS_STEP_COMPLETE && !ts->reason) ts->reason = TS_DIVERGED_STEP_REJECTED;
587:   PetscFunctionReturn(PETSC_SUCCESS);
588: }

590: static PetscErrorCode TSInterpolate_GLEE(TS ts, PetscReal itime, Vec X)
591: {
592:   TS_GLEE         *glee = (TS_GLEE *)ts->data;
593:   PetscInt         s = glee->tableau->s, pinterp = glee->tableau->pinterp, i, j;
594:   PetscReal        h, tt, t;
595:   PetscScalar     *b;
596:   const PetscReal *B = glee->tableau->binterp;

598:   PetscFunctionBegin;
599:   PetscCheck(B, PetscObjectComm((PetscObject)ts), PETSC_ERR_SUP, "TSGLEE %s does not have an interpolation formula", glee->tableau->name);
600:   switch (glee->status) {
601:   case TS_STEP_INCOMPLETE:
602:   case TS_STEP_PENDING:
603:     h = ts->time_step;
604:     t = (itime - ts->ptime) / h;
605:     break;
606:   case TS_STEP_COMPLETE:
607:     h = ts->ptime - ts->ptime_prev;
608:     t = (itime - ts->ptime) / h + 1; /* In the interval [0,1] */
609:     break;
610:   default:
611:     SETERRQ(PetscObjectComm((PetscObject)ts), PETSC_ERR_PLIB, "Invalid TSStepStatus");
612:   }
613:   PetscCall(PetscMalloc1(s, &b));
614:   for (i = 0; i < s; i++) b[i] = 0;
615:   for (j = 0, tt = t; j < pinterp; j++, tt *= t) {
616:     for (i = 0; i < s; i++) b[i] += h * B[i * pinterp + j] * tt;
617:   }
618:   PetscCall(VecCopy(glee->YStage[0], X));
619:   PetscCall(VecMAXPY(X, s, b, glee->YdotStage));
620:   PetscCall(PetscFree(b));
621:   PetscFunctionReturn(PETSC_SUCCESS);
622: }

624: static PetscErrorCode TSReset_GLEE(TS ts)
625: {
626:   TS_GLEE *glee = (TS_GLEE *)ts->data;
627:   PetscInt s, r;

629:   PetscFunctionBegin;
630:   if (!glee->tableau) PetscFunctionReturn(PETSC_SUCCESS);
631:   s = glee->tableau->s;
632:   r = glee->tableau->r;
633:   PetscCall(VecDestroyVecs(r, &glee->Y));
634:   PetscCall(VecDestroyVecs(r, &glee->X));
635:   PetscCall(VecDestroyVecs(s, &glee->YStage));
636:   PetscCall(VecDestroyVecs(s, &glee->YdotStage));
637:   PetscCall(VecDestroy(&glee->Ydot));
638:   PetscCall(VecDestroy(&glee->yGErr));
639:   PetscCall(VecDestroy(&glee->W));
640:   PetscCall(PetscFree2(glee->swork, glee->rwork));
641:   PetscFunctionReturn(PETSC_SUCCESS);
642: }

644: static PetscErrorCode TSGLEEGetVecs(TS ts, DM dm, Vec *Ydot)
645: {
646:   TS_GLEE *glee = (TS_GLEE *)ts->data;

648:   PetscFunctionBegin;
649:   if (Ydot) {
650:     if (dm && dm != ts->dm) PetscCall(DMGetNamedGlobalVector(dm, "TSGLEE_Ydot", Ydot));
651:     else *Ydot = glee->Ydot;
652:   }
653:   PetscFunctionReturn(PETSC_SUCCESS);
654: }

656: static PetscErrorCode TSGLEERestoreVecs(TS ts, DM dm, Vec *Ydot)
657: {
658:   PetscFunctionBegin;
659:   if (Ydot) {
660:     if (dm && dm != ts->dm) PetscCall(DMRestoreNamedGlobalVector(dm, "TSGLEE_Ydot", Ydot));
661:   }
662:   PetscFunctionReturn(PETSC_SUCCESS);
663: }

665: /*
666:   This defines the nonlinear equation that is to be solved with SNES
667: */
668: static PetscErrorCode SNESTSFormFunction_GLEE(SNES snes, Vec X, Vec F, TS ts)
669: {
670:   TS_GLEE  *glee = (TS_GLEE *)ts->data;
671:   DM        dm, dmsave;
672:   Vec       Ydot;
673:   PetscReal shift = glee->scoeff / ts->time_step;

675:   PetscFunctionBegin;
676:   PetscCall(SNESGetDM(snes, &dm));
677:   PetscCall(TSGLEEGetVecs(ts, dm, &Ydot));
678:   /* Set Ydot = shift*X */
679:   PetscCall(VecCopy(X, Ydot));
680:   PetscCall(VecScale(Ydot, shift));
681:   dmsave = ts->dm;
682:   ts->dm = dm;

684:   PetscCall(TSComputeIFunction(ts, glee->stage_time, X, Ydot, F, PETSC_FALSE));

686:   ts->dm = dmsave;
687:   PetscCall(TSGLEERestoreVecs(ts, dm, &Ydot));
688:   PetscFunctionReturn(PETSC_SUCCESS);
689: }

691: static PetscErrorCode SNESTSFormJacobian_GLEE(SNES snes, Vec X, Mat A, Mat B, TS ts)
692: {
693:   TS_GLEE  *glee = (TS_GLEE *)ts->data;
694:   DM        dm, dmsave;
695:   Vec       Ydot;
696:   PetscReal shift = glee->scoeff / ts->time_step;

698:   PetscFunctionBegin;
699:   PetscCall(SNESGetDM(snes, &dm));
700:   PetscCall(TSGLEEGetVecs(ts, dm, &Ydot));
701:   /* glee->Ydot has already been computed in SNESTSFormFunction_GLEE (SNES guarantees this) */
702:   dmsave = ts->dm;
703:   ts->dm = dm;

705:   PetscCall(TSComputeIJacobian(ts, glee->stage_time, X, Ydot, shift, A, B, PETSC_FALSE));

707:   ts->dm = dmsave;
708:   PetscCall(TSGLEERestoreVecs(ts, dm, &Ydot));
709:   PetscFunctionReturn(PETSC_SUCCESS);
710: }

712: static PetscErrorCode DMCoarsenHook_TSGLEE(DM fine, DM coarse, void *ctx)
713: {
714:   PetscFunctionBegin;
715:   PetscFunctionReturn(PETSC_SUCCESS);
716: }

718: static PetscErrorCode DMRestrictHook_TSGLEE(DM fine, Mat restrct, Vec rscale, Mat inject, DM coarse, void *ctx)
719: {
720:   PetscFunctionBegin;
721:   PetscFunctionReturn(PETSC_SUCCESS);
722: }

724: static PetscErrorCode DMSubDomainHook_TSGLEE(DM dm, DM subdm, void *ctx)
725: {
726:   PetscFunctionBegin;
727:   PetscFunctionReturn(PETSC_SUCCESS);
728: }

730: static PetscErrorCode DMSubDomainRestrictHook_TSGLEE(DM dm, VecScatter gscat, VecScatter lscat, DM subdm, void *ctx)
731: {
732:   PetscFunctionBegin;
733:   PetscFunctionReturn(PETSC_SUCCESS);
734: }

736: static PetscErrorCode TSSetUp_GLEE(TS ts)
737: {
738:   TS_GLEE    *glee = (TS_GLEE *)ts->data;
739:   GLEETableau tab;
740:   PetscInt    s, r;
741:   DM          dm;

743:   PetscFunctionBegin;
744:   if (!glee->tableau) PetscCall(TSGLEESetType(ts, TSGLEEDefaultType));
745:   tab = glee->tableau;
746:   s   = tab->s;
747:   r   = tab->r;
748:   PetscCall(VecDuplicateVecs(ts->vec_sol, r, &glee->Y));
749:   PetscCall(VecDuplicateVecs(ts->vec_sol, r, &glee->X));
750:   PetscCall(VecDuplicateVecs(ts->vec_sol, s, &glee->YStage));
751:   PetscCall(VecDuplicateVecs(ts->vec_sol, s, &glee->YdotStage));
752:   PetscCall(VecDuplicate(ts->vec_sol, &glee->Ydot));
753:   PetscCall(VecDuplicate(ts->vec_sol, &glee->yGErr));
754:   PetscCall(VecZeroEntries(glee->yGErr));
755:   PetscCall(VecDuplicate(ts->vec_sol, &glee->W));
756:   PetscCall(PetscMalloc2(s, &glee->swork, r, &glee->rwork));
757:   PetscCall(TSGetDM(ts, &dm));
758:   PetscCall(DMCoarsenHookAdd(dm, DMCoarsenHook_TSGLEE, DMRestrictHook_TSGLEE, ts));
759:   PetscCall(DMSubDomainHookAdd(dm, DMSubDomainHook_TSGLEE, DMSubDomainRestrictHook_TSGLEE, ts));
760:   PetscFunctionReturn(PETSC_SUCCESS);
761: }

763: static PetscErrorCode TSStartingMethod_GLEE(TS ts)
764: {
765:   TS_GLEE    *glee = (TS_GLEE *)ts->data;
766:   GLEETableau tab  = glee->tableau;
767:   PetscInt    r    = tab->r, i;
768:   PetscReal  *S    = tab->S;

770:   PetscFunctionBegin;
771:   for (i = 0; i < r; i++) {
772:     PetscCall(VecZeroEntries(glee->Y[i]));
773:     PetscCall(VecAXPY(glee->Y[i], S[i], ts->vec_sol));
774:   }
775:   PetscFunctionReturn(PETSC_SUCCESS);
776: }

778: static PetscErrorCode TSSetFromOptions_GLEE(TS ts, PetscOptionItems PetscOptionsObject)
779: {
780:   char gleetype[256];

782:   PetscFunctionBegin;
783:   PetscOptionsHeadBegin(PetscOptionsObject, "GLEE ODE solver options");
784:   {
785:     GLEETableauLink link;
786:     PetscInt        count, choice;
787:     PetscBool       flg;
788:     const char    **namelist;

790:     PetscCall(PetscStrncpy(gleetype, TSGLEEDefaultType, sizeof(gleetype)));
791:     for (link = GLEETableauList, count = 0; link; link = link->next, count++);
792:     PetscCall(PetscMalloc1(count, (char ***)&namelist));
793:     for (link = GLEETableauList, count = 0; link; link = link->next, count++) namelist[count] = link->tab.name;
794:     PetscCall(PetscOptionsEList("-ts_glee_type", "Family of GLEE method", "TSGLEESetType", (const char *const *)namelist, count, gleetype, &choice, &flg));
795:     PetscCall(TSGLEESetType(ts, flg ? namelist[choice] : gleetype));
796:     PetscCall(PetscFree(namelist));
797:   }
798:   PetscOptionsHeadEnd();
799:   PetscFunctionReturn(PETSC_SUCCESS);
800: }

802: static PetscErrorCode TSView_GLEE(TS ts, PetscViewer viewer)
803: {
804:   TS_GLEE    *glee = (TS_GLEE *)ts->data;
805:   GLEETableau tab  = glee->tableau;
806:   PetscBool   isascii;

808:   PetscFunctionBegin;
809:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &isascii));
810:   if (isascii) {
811:     TSGLEEType gleetype;
812:     char       buf[512];
813:     PetscCall(TSGLEEGetType(ts, &gleetype));
814:     PetscCall(PetscViewerASCIIPrintf(viewer, "  GLEE type %s\n", gleetype));
815:     PetscCall(PetscFormatRealArray(buf, sizeof(buf), "% 8.6f", tab->s, tab->c));
816:     PetscCall(PetscViewerASCIIPrintf(viewer, "  Abscissa     c = %s\n", buf));
817:     /* Note: print out r as well */
818:   }
819:   PetscFunctionReturn(PETSC_SUCCESS);
820: }

822: static PetscErrorCode TSLoad_GLEE(TS ts, PetscViewer viewer)
823: {
824:   SNES    snes;
825:   TSAdapt tsadapt;

827:   PetscFunctionBegin;
828:   PetscCall(TSGetAdapt(ts, &tsadapt));
829:   PetscCall(TSAdaptLoad(tsadapt, viewer));
830:   PetscCall(TSGetSNES(ts, &snes));
831:   PetscCall(SNESLoad(snes, viewer));
832:   /* function and Jacobian context for SNES when used with TS is always ts object */
833:   PetscCall(SNESSetFunction(snes, NULL, NULL, ts));
834:   PetscCall(SNESSetJacobian(snes, NULL, NULL, NULL, ts));
835:   PetscFunctionReturn(PETSC_SUCCESS);
836: }

838: /*@
839:   TSGLEESetType - Set the type of `TSGLEE` scheme

841:   Logically Collective

843:   Input Parameters:
844: + ts       - timestepping context
845: - gleetype - type of `TSGLEE` scheme

847:   Level: intermediate

849: .seealso: [](ch_ts), `TSGLEEGetType()`, `TSGLEE`
850: @*/
851: PetscErrorCode TSGLEESetType(TS ts, TSGLEEType gleetype)
852: {
853:   PetscFunctionBegin;
855:   PetscAssertPointer(gleetype, 2);
856:   PetscTryMethod(ts, "TSGLEESetType_C", (TS, TSGLEEType), (ts, gleetype));
857:   PetscFunctionReturn(PETSC_SUCCESS);
858: }

860: /*@
861:   TSGLEEGetType - Get the type of `TSGLEE` scheme

863:   Logically Collective

865:   Input Parameter:
866: . ts - timestepping context

868:   Output Parameter:
869: . gleetype - type of `TSGLEE` scheme

871:   Level: intermediate

873: .seealso: [](ch_ts), `TSGLEE`, `TSGLEESetType()`
874: @*/
875: PetscErrorCode TSGLEEGetType(TS ts, TSGLEEType *gleetype)
876: {
877:   PetscFunctionBegin;
879:   PetscUseMethod(ts, "TSGLEEGetType_C", (TS, TSGLEEType *), (ts, gleetype));
880:   PetscFunctionReturn(PETSC_SUCCESS);
881: }

883: static PetscErrorCode TSGLEEGetType_GLEE(TS ts, TSGLEEType *gleetype)
884: {
885:   TS_GLEE *glee = (TS_GLEE *)ts->data;

887:   PetscFunctionBegin;
888:   if (!glee->tableau) PetscCall(TSGLEESetType(ts, TSGLEEDefaultType));
889:   *gleetype = glee->tableau->name;
890:   PetscFunctionReturn(PETSC_SUCCESS);
891: }
892: static PetscErrorCode TSGLEESetType_GLEE(TS ts, TSGLEEType gleetype)
893: {
894:   TS_GLEE        *glee = (TS_GLEE *)ts->data;
895:   PetscBool       match;
896:   GLEETableauLink link;

898:   PetscFunctionBegin;
899:   if (glee->tableau) {
900:     PetscCall(PetscStrcmp(glee->tableau->name, gleetype, &match));
901:     if (match) PetscFunctionReturn(PETSC_SUCCESS);
902:   }
903:   for (link = GLEETableauList; link; link = link->next) {
904:     PetscCall(PetscStrcmp(link->tab.name, gleetype, &match));
905:     if (match) {
906:       PetscCall(TSReset_GLEE(ts));
907:       glee->tableau = &link->tab;
908:       PetscFunctionReturn(PETSC_SUCCESS);
909:     }
910:   }
911:   SETERRQ(PetscObjectComm((PetscObject)ts), PETSC_ERR_ARG_UNKNOWN_TYPE, "Could not find '%s'", gleetype);
912: }

914: static PetscErrorCode TSGetStages_GLEE(TS ts, PetscInt *ns, Vec **Y)
915: {
916:   TS_GLEE *glee = (TS_GLEE *)ts->data;

918:   PetscFunctionBegin;
919:   if (ns) *ns = glee->tableau->s;
920:   if (Y) *Y = glee->YStage;
921:   PetscFunctionReturn(PETSC_SUCCESS);
922: }

924: static PetscErrorCode TSGetSolutionComponents_GLEE(TS ts, PetscInt *n, Vec *Y)
925: {
926:   TS_GLEE    *glee = (TS_GLEE *)ts->data;
927:   GLEETableau tab  = glee->tableau;

929:   PetscFunctionBegin;
930:   if (!Y) *n = tab->r;
931:   else {
932:     PetscCheck(*n >= 0 && *n < tab->r, PetscObjectComm((PetscObject)ts), PETSC_ERR_ARG_OUTOFRANGE, "Second argument (%" PetscInt_FMT ") out of range[0,%" PetscInt_FMT "].", *n, tab->r - 1);
933:     PetscCall(VecCopy(glee->Y[*n], *Y));
934:   }
935:   PetscFunctionReturn(PETSC_SUCCESS);
936: }

938: static PetscErrorCode TSGetAuxSolution_GLEE(TS ts, Vec *X)
939: {
940:   TS_GLEE     *glee = (TS_GLEE *)ts->data;
941:   GLEETableau  tab  = glee->tableau;
942:   PetscReal   *F    = tab->Fembed;
943:   PetscInt     r    = tab->r;
944:   Vec         *Y    = glee->Y;
945:   PetscScalar *wr   = glee->rwork;
946:   PetscInt     i;

948:   PetscFunctionBegin;
949:   PetscCall(VecZeroEntries(*X));
950:   for (i = 0; i < r; i++) wr[i] = F[i];
951:   PetscCall(VecMAXPY(*X, r, wr, Y));
952:   PetscFunctionReturn(PETSC_SUCCESS);
953: }

955: static PetscErrorCode TSGetTimeError_GLEE(TS ts, PetscInt n, Vec *X)
956: {
957:   TS_GLEE     *glee = (TS_GLEE *)ts->data;
958:   GLEETableau  tab  = glee->tableau;
959:   PetscReal   *F    = tab->Ferror;
960:   PetscInt     r    = tab->r;
961:   Vec         *Y    = glee->Y;
962:   PetscScalar *wr   = glee->rwork;
963:   PetscInt     i;

965:   PetscFunctionBegin;
966:   PetscCall(VecZeroEntries(*X));
967:   if (n == 0) {
968:     for (i = 0; i < r; i++) wr[i] = F[i];
969:     PetscCall(VecMAXPY(*X, r, wr, Y));
970:   } else if (n == -1) {
971:     *X = glee->yGErr;
972:   }
973:   PetscFunctionReturn(PETSC_SUCCESS);
974: }

976: static PetscErrorCode TSSetTimeError_GLEE(TS ts, Vec X)
977: {
978:   TS_GLEE    *glee = (TS_GLEE *)ts->data;
979:   GLEETableau tab  = glee->tableau;
980:   PetscReal  *S    = tab->Serror;
981:   PetscInt    r    = tab->r, i;
982:   Vec        *Y    = glee->Y;

984:   PetscFunctionBegin;
985:   PetscCheck(r == 2, PetscObjectComm((PetscObject)ts), PETSC_ERR_SUP, "TSSetTimeError_GLEE not supported for '%s' with r=%" PetscInt_FMT ".", tab->name, tab->r);
986:   for (i = 1; i < r; i++) {
987:     PetscCall(VecCopy(ts->vec_sol, Y[i]));
988:     PetscCall(VecAXPBY(Y[i], S[0], S[1], X));
989:     PetscCall(VecCopy(X, glee->yGErr));
990:   }
991:   PetscFunctionReturn(PETSC_SUCCESS);
992: }

994: static PetscErrorCode TSDestroy_GLEE(TS ts)
995: {
996:   PetscFunctionBegin;
997:   PetscCall(TSReset_GLEE(ts));
998:   if (ts->dm) {
999:     PetscCall(DMCoarsenHookRemove(ts->dm, DMCoarsenHook_TSGLEE, DMRestrictHook_TSGLEE, ts));
1000:     PetscCall(DMSubDomainHookRemove(ts->dm, DMSubDomainHook_TSGLEE, DMSubDomainRestrictHook_TSGLEE, ts));
1001:   }
1002:   PetscCall(PetscFree(ts->data));
1003:   PetscCall(PetscObjectComposeFunction((PetscObject)ts, "TSGLEEGetType_C", NULL));
1004:   PetscCall(PetscObjectComposeFunction((PetscObject)ts, "TSGLEESetType_C", NULL));
1005:   PetscFunctionReturn(PETSC_SUCCESS);
1006: }

1008: /*MC
1009:   TSGLEE - ODE and DAE solver using General Linear with Error Estimation schemes

1011:   The user should provide the right-hand side of the equation using `TSSetRHSFunction()`
1012:   and for `TSGLEEi1` the Jacobian of the right-hand side using `TSSetRHSJacobian()`

1014:   Level: beginner

1016:   Notes:
1017:   The default is `TSGLEE35`, it can be changed with `TSGLEESetType()` or `-ts_glee_type type`

1019:   The only implicit scheme is `TSGLEEi1`

1021: .seealso: [](ch_ts), [](sec_ts_glee), `TSCreate()`, `TS`, `TSSetType()`, `TSGLEESetType()`, `TSGLEEGetType()`,
1022:           `TSGLEE23`, `TSGLEE24`, `TSGLEE35`, `TSGLEE25I`, `TSGLEEEXRK2A`,
1023:           `TSGLEERK32G1`, `TSGLEERK285EX`, `TSGLEEType`, `TSGLEERegister()`, `TSType`
1024: M*/
1025: PETSC_EXTERN PetscErrorCode TSCreate_GLEE(TS ts)
1026: {
1027:   TS_GLEE *th;

1029:   PetscFunctionBegin;
1030:   PetscCall(TSGLEEInitializePackage());

1032:   ts->ops->reset                 = TSReset_GLEE;
1033:   ts->ops->destroy               = TSDestroy_GLEE;
1034:   ts->ops->view                  = TSView_GLEE;
1035:   ts->ops->load                  = TSLoad_GLEE;
1036:   ts->ops->setup                 = TSSetUp_GLEE;
1037:   ts->ops->step                  = TSStep_GLEE;
1038:   ts->ops->interpolate           = TSInterpolate_GLEE;
1039:   ts->ops->evaluatestep          = TSEvaluateStep_GLEE;
1040:   ts->ops->setfromoptions        = TSSetFromOptions_GLEE;
1041:   ts->ops->getstages             = TSGetStages_GLEE;
1042:   ts->ops->snesfunction          = SNESTSFormFunction_GLEE;
1043:   ts->ops->snesjacobian          = SNESTSFormJacobian_GLEE;
1044:   ts->ops->getsolutioncomponents = TSGetSolutionComponents_GLEE;
1045:   ts->ops->getauxsolution        = TSGetAuxSolution_GLEE;
1046:   ts->ops->gettimeerror          = TSGetTimeError_GLEE;
1047:   ts->ops->settimeerror          = TSSetTimeError_GLEE;
1048:   ts->ops->startingmethod        = TSStartingMethod_GLEE;
1049:   ts->default_adapt_type         = TSADAPTGLEE;

1051:   ts->usessnes = PETSC_TRUE;

1053:   PetscCall(PetscNew(&th));
1054:   ts->data = (void *)th;

1056:   PetscCall(PetscObjectComposeFunction((PetscObject)ts, "TSGLEEGetType_C", TSGLEEGetType_GLEE));
1057:   PetscCall(PetscObjectComposeFunction((PetscObject)ts, "TSGLEESetType_C", TSGLEESetType_GLEE));
1058:   PetscFunctionReturn(PETSC_SUCCESS);
1059: }