Actual source code: tsdiscgrad.c

  1: /*
  2:   Code for timestepping with discrete gradient integrators
  3: */
  4: #include <petsc/private/tsimpl.h>
  5: #include <petscdm.h>

  7: PetscBool  DGCite       = PETSC_FALSE;
  8: const char DGCitation[] = "@article{Gonzalez1996,\n"
  9:                           "  title   = {Time integration and discrete Hamiltonian systems},\n"
 10:                           "  author  = {Oscar Gonzalez},\n"
 11:                           "  journal = {Journal of Nonlinear Science},\n"
 12:                           "  volume  = {6},\n"
 13:                           "  pages   = {449--467},\n"
 14:                           "  doi     = {10.1007/978-1-4612-1246-1_10},\n"
 15:                           "  year    = {1996}\n}\n";

 17: typedef struct {
 18:   PetscReal stage_time;
 19:   Vec       X0, X, Xdot;
 20:   void     *funcCtx;
 21:   PetscBool gonzalez;
 22:   PetscErrorCode (*Sfunc)(TS, PetscReal, Vec, Mat, void *);
 23:   PetscErrorCode (*Ffunc)(TS, PetscReal, Vec, PetscScalar *, void *);
 24:   PetscErrorCode (*Gfunc)(TS, PetscReal, Vec, Vec, void *);
 25: } TS_DiscGrad;

 27: static PetscErrorCode TSDiscGradGetX0AndXdot(TS ts, DM dm, Vec *X0, Vec *Xdot)
 28: {
 29:   TS_DiscGrad *dg = (TS_DiscGrad *)ts->data;

 31:   PetscFunctionBegin;
 32:   if (X0) {
 33:     if (dm && dm != ts->dm) PetscCall(DMGetNamedGlobalVector(dm, "TSDiscGrad_X0", X0));
 34:     else *X0 = ts->vec_sol;
 35:   }
 36:   if (Xdot) {
 37:     if (dm && dm != ts->dm) PetscCall(DMGetNamedGlobalVector(dm, "TSDiscGrad_Xdot", Xdot));
 38:     else *Xdot = dg->Xdot;
 39:   }
 40:   PetscFunctionReturn(PETSC_SUCCESS);
 41: }

 43: static PetscErrorCode TSDiscGradRestoreX0AndXdot(TS ts, DM dm, Vec *X0, Vec *Xdot)
 44: {
 45:   PetscFunctionBegin;
 46:   if (X0) {
 47:     if (dm && dm != ts->dm) PetscCall(DMRestoreNamedGlobalVector(dm, "TSDiscGrad_X0", X0));
 48:   }
 49:   if (Xdot) {
 50:     if (dm && dm != ts->dm) PetscCall(DMRestoreNamedGlobalVector(dm, "TSDiscGrad_Xdot", Xdot));
 51:   }
 52:   PetscFunctionReturn(PETSC_SUCCESS);
 53: }

 55: static PetscErrorCode DMCoarsenHook_TSDiscGrad(DM fine, DM coarse, void *ctx)
 56: {
 57:   PetscFunctionBegin;
 58:   PetscFunctionReturn(PETSC_SUCCESS);
 59: }

 61: static PetscErrorCode DMRestrictHook_TSDiscGrad(DM fine, Mat restrct, Vec rscale, Mat inject, DM coarse, void *ctx)
 62: {
 63:   TS  ts = (TS)ctx;
 64:   Vec X0, Xdot, X0_c, Xdot_c;

 66:   PetscFunctionBegin;
 67:   PetscCall(TSDiscGradGetX0AndXdot(ts, fine, &X0, &Xdot));
 68:   PetscCall(TSDiscGradGetX0AndXdot(ts, coarse, &X0_c, &Xdot_c));
 69:   PetscCall(MatRestrict(restrct, X0, X0_c));
 70:   PetscCall(MatRestrict(restrct, Xdot, Xdot_c));
 71:   PetscCall(VecPointwiseMult(X0_c, rscale, X0_c));
 72:   PetscCall(VecPointwiseMult(Xdot_c, rscale, Xdot_c));
 73:   PetscCall(TSDiscGradRestoreX0AndXdot(ts, fine, &X0, &Xdot));
 74:   PetscCall(TSDiscGradRestoreX0AndXdot(ts, coarse, &X0_c, &Xdot_c));
 75:   PetscFunctionReturn(PETSC_SUCCESS);
 76: }

 78: static PetscErrorCode DMSubDomainHook_TSDiscGrad(DM dm, DM subdm, void *ctx)
 79: {
 80:   PetscFunctionBegin;
 81:   PetscFunctionReturn(PETSC_SUCCESS);
 82: }

 84: static PetscErrorCode DMSubDomainRestrictHook_TSDiscGrad(DM dm, VecScatter gscat, VecScatter lscat, DM subdm, void *ctx)
 85: {
 86:   TS  ts = (TS)ctx;
 87:   Vec X0, Xdot, X0_sub, Xdot_sub;

 89:   PetscFunctionBegin;
 90:   PetscCall(TSDiscGradGetX0AndXdot(ts, dm, &X0, &Xdot));
 91:   PetscCall(TSDiscGradGetX0AndXdot(ts, subdm, &X0_sub, &Xdot_sub));

 93:   PetscCall(VecScatterBegin(gscat, X0, X0_sub, INSERT_VALUES, SCATTER_FORWARD));
 94:   PetscCall(VecScatterEnd(gscat, X0, X0_sub, INSERT_VALUES, SCATTER_FORWARD));

 96:   PetscCall(VecScatterBegin(gscat, Xdot, Xdot_sub, INSERT_VALUES, SCATTER_FORWARD));
 97:   PetscCall(VecScatterEnd(gscat, Xdot, Xdot_sub, INSERT_VALUES, SCATTER_FORWARD));

 99:   PetscCall(TSDiscGradRestoreX0AndXdot(ts, dm, &X0, &Xdot));
100:   PetscCall(TSDiscGradRestoreX0AndXdot(ts, subdm, &X0_sub, &Xdot_sub));
101:   PetscFunctionReturn(PETSC_SUCCESS);
102: }

104: static PetscErrorCode TSSetUp_DiscGrad(TS ts)
105: {
106:   TS_DiscGrad *dg = (TS_DiscGrad *)ts->data;
107:   DM           dm;

109:   PetscFunctionBegin;
110:   if (!dg->X) PetscCall(VecDuplicate(ts->vec_sol, &dg->X));
111:   if (!dg->X0) PetscCall(VecDuplicate(ts->vec_sol, &dg->X0));
112:   if (!dg->Xdot) PetscCall(VecDuplicate(ts->vec_sol, &dg->Xdot));

114:   PetscCall(TSGetDM(ts, &dm));
115:   PetscCall(DMCoarsenHookAdd(dm, DMCoarsenHook_TSDiscGrad, DMRestrictHook_TSDiscGrad, ts));
116:   PetscCall(DMSubDomainHookAdd(dm, DMSubDomainHook_TSDiscGrad, DMSubDomainRestrictHook_TSDiscGrad, ts));
117:   PetscFunctionReturn(PETSC_SUCCESS);
118: }

120: static PetscErrorCode TSSetFromOptions_DiscGrad(TS ts, PetscOptionItems *PetscOptionsObject)
121: {
122:   TS_DiscGrad *dg = (TS_DiscGrad *)ts->data;

124:   PetscFunctionBegin;
125:   PetscOptionsHeadBegin(PetscOptionsObject, "Discrete Gradients ODE solver options");
126:   {
127:     PetscCall(PetscOptionsBool("-ts_discgrad_gonzalez", "Use Gonzalez term in discrete gradients formulation", "TSDiscGradUseGonzalez", dg->gonzalez, &dg->gonzalez, NULL));
128:   }
129:   PetscOptionsHeadEnd();
130:   PetscFunctionReturn(PETSC_SUCCESS);
131: }

133: static PetscErrorCode TSView_DiscGrad(TS ts, PetscViewer viewer)
134: {
135:   PetscBool iascii;

137:   PetscFunctionBegin;
138:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer, PETSCVIEWERASCII, &iascii));
139:   if (iascii) PetscCall(PetscViewerASCIIPrintf(viewer, "  Discrete Gradients\n"));
140:   PetscFunctionReturn(PETSC_SUCCESS);
141: }

143: static PetscErrorCode TSDiscGradIsGonzalez_DiscGrad(TS ts, PetscBool *gonzalez)
144: {
145:   TS_DiscGrad *dg = (TS_DiscGrad *)ts->data;

147:   PetscFunctionBegin;
148:   *gonzalez = dg->gonzalez;
149:   PetscFunctionReturn(PETSC_SUCCESS);
150: }

152: static PetscErrorCode TSDiscGradUseGonzalez_DiscGrad(TS ts, PetscBool flg)
153: {
154:   TS_DiscGrad *dg = (TS_DiscGrad *)ts->data;

156:   PetscFunctionBegin;
157:   dg->gonzalez = flg;
158:   PetscFunctionReturn(PETSC_SUCCESS);
159: }

161: static PetscErrorCode TSReset_DiscGrad(TS ts)
162: {
163:   TS_DiscGrad *dg = (TS_DiscGrad *)ts->data;

165:   PetscFunctionBegin;
166:   PetscCall(VecDestroy(&dg->X));
167:   PetscCall(VecDestroy(&dg->X0));
168:   PetscCall(VecDestroy(&dg->Xdot));
169:   PetscFunctionReturn(PETSC_SUCCESS);
170: }

172: static PetscErrorCode TSDestroy_DiscGrad(TS ts)
173: {
174:   DM dm;

176:   PetscFunctionBegin;
177:   PetscCall(TSReset_DiscGrad(ts));
178:   PetscCall(TSGetDM(ts, &dm));
179:   if (dm) {
180:     PetscCall(DMCoarsenHookRemove(dm, DMCoarsenHook_TSDiscGrad, DMRestrictHook_TSDiscGrad, ts));
181:     PetscCall(DMSubDomainHookRemove(dm, DMSubDomainHook_TSDiscGrad, DMSubDomainRestrictHook_TSDiscGrad, ts));
182:   }
183:   PetscCall(PetscFree(ts->data));
184:   PetscCall(PetscObjectComposeFunction((PetscObject)ts, "TSDiscGradGetFormulation_C", NULL));
185:   PetscCall(PetscObjectComposeFunction((PetscObject)ts, "TSDiscGradSetFormulation_C", NULL));
186:   PetscCall(PetscObjectComposeFunction((PetscObject)ts, "TSDiscGradIsGonzalez_C", NULL));
187:   PetscCall(PetscObjectComposeFunction((PetscObject)ts, "TSDiscGradUseGonzalez_C", NULL));
188:   PetscFunctionReturn(PETSC_SUCCESS);
189: }

191: static PetscErrorCode TSInterpolate_DiscGrad(TS ts, PetscReal t, Vec X)
192: {
193:   TS_DiscGrad *dg = (TS_DiscGrad *)ts->data;
194:   PetscReal    dt = t - ts->ptime;

196:   PetscFunctionBegin;
197:   PetscCall(VecCopy(ts->vec_sol, dg->X));
198:   PetscCall(VecWAXPY(X, dt, dg->Xdot, dg->X));
199:   PetscFunctionReturn(PETSC_SUCCESS);
200: }

202: static PetscErrorCode TSDiscGrad_SNESSolve(TS ts, Vec b, Vec x)
203: {
204:   SNES     snes;
205:   PetscInt nits, lits;

207:   PetscFunctionBegin;
208:   PetscCall(TSGetSNES(ts, &snes));
209:   PetscCall(SNESSolve(snes, b, x));
210:   PetscCall(SNESGetIterationNumber(snes, &nits));
211:   PetscCall(SNESGetLinearSolveIterations(snes, &lits));
212:   ts->snes_its += nits;
213:   ts->ksp_its += lits;
214:   PetscFunctionReturn(PETSC_SUCCESS);
215: }

217: static PetscErrorCode TSStep_DiscGrad(TS ts)
218: {
219:   TS_DiscGrad *dg = (TS_DiscGrad *)ts->data;
220:   TSAdapt      adapt;
221:   TSStepStatus status     = TS_STEP_INCOMPLETE;
222:   PetscInt     rejections = 0;
223:   PetscBool    stageok, accept = PETSC_TRUE;
224:   PetscReal    next_time_step = ts->time_step;

226:   PetscFunctionBegin;
227:   PetscCall(TSGetAdapt(ts, &adapt));
228:   if (!ts->steprollback) PetscCall(VecCopy(ts->vec_sol, dg->X0));

230:   while (!ts->reason && status != TS_STEP_COMPLETE) {
231:     PetscReal shift = 1 / (0.5 * ts->time_step);

233:     dg->stage_time = ts->ptime + 0.5 * ts->time_step;

235:     PetscCall(VecCopy(dg->X0, dg->X));
236:     PetscCall(TSPreStage(ts, dg->stage_time));
237:     PetscCall(TSDiscGrad_SNESSolve(ts, NULL, dg->X));
238:     PetscCall(TSPostStage(ts, dg->stage_time, 0, &dg->X));
239:     PetscCall(TSAdaptCheckStage(adapt, ts, dg->stage_time, dg->X, &stageok));
240:     if (!stageok) goto reject_step;

242:     status = TS_STEP_PENDING;
243:     PetscCall(VecAXPBYPCZ(dg->Xdot, -shift, shift, 0, dg->X0, dg->X));
244:     PetscCall(VecAXPY(ts->vec_sol, ts->time_step, dg->Xdot));
245:     PetscCall(TSAdaptChoose(adapt, ts, ts->time_step, NULL, &next_time_step, &accept));
246:     status = accept ? TS_STEP_COMPLETE : TS_STEP_INCOMPLETE;
247:     if (!accept) {
248:       PetscCall(VecCopy(dg->X0, ts->vec_sol));
249:       ts->time_step = next_time_step;
250:       goto reject_step;
251:     }
252:     ts->ptime += ts->time_step;
253:     ts->time_step = next_time_step;
254:     break;

256:   reject_step:
257:     ts->reject++;
258:     accept = PETSC_FALSE;
259:     if (!ts->reason && ts->max_reject >= 0 && ++rejections > ts->max_reject) {
260:       ts->reason = TS_DIVERGED_STEP_REJECTED;
261:       PetscCall(PetscInfo(ts, "Step=%" PetscInt_FMT ", step rejections %" PetscInt_FMT " greater than current TS allowed, stopping solve\n", ts->steps, rejections));
262:     }
263:   }
264:   PetscFunctionReturn(PETSC_SUCCESS);
265: }

267: static PetscErrorCode TSGetStages_DiscGrad(TS ts, PetscInt *ns, Vec **Y)
268: {
269:   TS_DiscGrad *dg = (TS_DiscGrad *)ts->data;

271:   PetscFunctionBegin;
272:   if (ns) *ns = 1;
273:   if (Y) *Y = &dg->X;
274:   PetscFunctionReturn(PETSC_SUCCESS);
275: }

277: /*
278:   This defines the nonlinear equation that is to be solved with SNES
279:     G(U) = F[t0 + 0.5*dt, U, (U-U0)/dt] = 0
280: */

282: /* x = (x+x')/2 */
283: /* NEED TO CALCULATE x_{n+1} from x and x_{n}*/
284: static PetscErrorCode SNESTSFormFunction_DiscGrad(SNES snes, Vec x, Vec y, TS ts)
285: {
286:   TS_DiscGrad *dg = (TS_DiscGrad *)ts->data;
287:   PetscReal    norm, shift = 1 / (0.5 * ts->time_step);
288:   PetscInt     n;
289:   Vec          X0, Xdot, Xp, Xdiff;
290:   Mat          S;
291:   PetscScalar  F = 0, F0 = 0, Gp;
292:   Vec          G, SgF;
293:   DM           dm, dmsave;

295:   PetscFunctionBegin;
296:   PetscCall(SNESGetDM(snes, &dm));

298:   PetscCall(VecDuplicate(y, &Xp));
299:   PetscCall(VecDuplicate(y, &Xdiff));
300:   PetscCall(VecDuplicate(y, &SgF));
301:   PetscCall(VecDuplicate(y, &G));

303:   PetscCall(VecGetLocalSize(y, &n));
304:   PetscCall(MatCreate(PETSC_COMM_WORLD, &S));
305:   PetscCall(MatSetSizes(S, PETSC_DECIDE, PETSC_DECIDE, n, n));
306:   PetscCall(MatSetFromOptions(S));
307:   PetscCall(MatSetUp(S));
308:   PetscCall(MatAssemblyBegin(S, MAT_FINAL_ASSEMBLY));
309:   PetscCall(MatAssemblyEnd(S, MAT_FINAL_ASSEMBLY));

311:   PetscCall(TSDiscGradGetX0AndXdot(ts, dm, &X0, &Xdot));
312:   PetscCall(VecAXPBYPCZ(Xdot, -shift, shift, 0, X0, x)); /* Xdot = shift (x - X0) */

314:   PetscCall(VecAXPBYPCZ(Xp, -1, 2, 0, X0, x));     /* Xp = 2*x - X0 + (0)*Xmid */
315:   PetscCall(VecAXPBYPCZ(Xdiff, -1, 1, 0, X0, Xp)); /* Xdiff = xp - X0 + (0)*Xdiff */

317:   if (dg->gonzalez) {
318:     PetscCall((*dg->Sfunc)(ts, dg->stage_time, x, S, dg->funcCtx));
319:     PetscCall((*dg->Ffunc)(ts, dg->stage_time, Xp, &F, dg->funcCtx));
320:     PetscCall((*dg->Ffunc)(ts, dg->stage_time, X0, &F0, dg->funcCtx));
321:     PetscCall((*dg->Gfunc)(ts, dg->stage_time, x, G, dg->funcCtx));

323:     /* Adding Extra Gonzalez Term */
324:     PetscCall(VecDot(Xdiff, G, &Gp));
325:     PetscCall(VecNorm(Xdiff, NORM_2, &norm));
326:     if (norm < PETSC_SQRT_MACHINE_EPSILON) {
327:       Gp = 0;
328:     } else {
329:       /* Gp = (1/|xn+1 - xn|^2) * (F(xn+1) - F(xn) - Gp) */
330:       Gp = (F - F0 - Gp) / PetscSqr(norm);
331:     }
332:     PetscCall(VecAXPY(G, Gp, Xdiff));
333:     PetscCall(MatMult(S, G, SgF)); /* S*gradF */

335:   } else {
336:     PetscCall((*dg->Sfunc)(ts, dg->stage_time, x, S, dg->funcCtx));
337:     PetscCall((*dg->Gfunc)(ts, dg->stage_time, x, G, dg->funcCtx));

339:     PetscCall(MatMult(S, G, SgF)); /* Xdot = S*gradF */
340:   }
341:   /* DM monkey-business allows user code to call TSGetDM() inside of functions evaluated on levels of FAS */
342:   dmsave = ts->dm;
343:   ts->dm = dm;
344:   PetscCall(VecAXPBYPCZ(y, 1, -1, 0, Xdot, SgF));
345:   ts->dm = dmsave;
346:   PetscCall(TSDiscGradRestoreX0AndXdot(ts, dm, &X0, &Xdot));

348:   PetscCall(VecDestroy(&Xp));
349:   PetscCall(VecDestroy(&Xdiff));
350:   PetscCall(VecDestroy(&SgF));
351:   PetscCall(VecDestroy(&G));
352:   PetscCall(MatDestroy(&S));
353:   PetscFunctionReturn(PETSC_SUCCESS);
354: }

356: static PetscErrorCode SNESTSFormJacobian_DiscGrad(SNES snes, Vec x, Mat A, Mat B, TS ts)
357: {
358:   TS_DiscGrad *dg    = (TS_DiscGrad *)ts->data;
359:   PetscReal    shift = 1 / (0.5 * ts->time_step);
360:   Vec          Xdot;
361:   DM           dm, dmsave;

363:   PetscFunctionBegin;
364:   PetscCall(SNESGetDM(snes, &dm));
365:   /* Xdot has already been computed in SNESTSFormFunction_DiscGrad (SNES guarantees this) */
366:   PetscCall(TSDiscGradGetX0AndXdot(ts, dm, NULL, &Xdot));

368:   dmsave = ts->dm;
369:   ts->dm = dm;
370:   PetscCall(TSComputeIJacobian(ts, dg->stage_time, x, Xdot, shift, A, B, PETSC_FALSE));
371:   ts->dm = dmsave;
372:   PetscCall(TSDiscGradRestoreX0AndXdot(ts, dm, NULL, &Xdot));
373:   PetscFunctionReturn(PETSC_SUCCESS);
374: }

376: static PetscErrorCode TSDiscGradGetFormulation_DiscGrad(TS ts, PetscErrorCode (**Sfunc)(TS, PetscReal, Vec, Mat, void *), PetscErrorCode (**Ffunc)(TS, PetscReal, Vec, PetscScalar *, void *), PetscErrorCode (**Gfunc)(TS, PetscReal, Vec, Vec, void *), void *ctx)
377: {
378:   TS_DiscGrad *dg = (TS_DiscGrad *)ts->data;

380:   PetscFunctionBegin;
381:   *Sfunc = dg->Sfunc;
382:   *Ffunc = dg->Ffunc;
383:   *Gfunc = dg->Gfunc;
384:   PetscFunctionReturn(PETSC_SUCCESS);
385: }

387: static PetscErrorCode TSDiscGradSetFormulation_DiscGrad(TS ts, PetscErrorCode (*Sfunc)(TS, PetscReal, Vec, Mat, void *), PetscErrorCode (*Ffunc)(TS, PetscReal, Vec, PetscScalar *, void *), PetscErrorCode (*Gfunc)(TS, PetscReal, Vec, Vec, void *), void *ctx)
388: {
389:   TS_DiscGrad *dg = (TS_DiscGrad *)ts->data;

391:   PetscFunctionBegin;
392:   dg->Sfunc   = Sfunc;
393:   dg->Ffunc   = Ffunc;
394:   dg->Gfunc   = Gfunc;
395:   dg->funcCtx = ctx;
396:   PetscFunctionReturn(PETSC_SUCCESS);
397: }

399: /*MC
400:   TSDISCGRAD - ODE solver using the discrete gradients version of the implicit midpoint method

402:   Level: intermediate

404:   Notes:
405:   This is the implicit midpoint rule, with an optional term that guarantees the discrete
406:   gradient property. This timestepper applies to systems of the form $u_t = S(u) \nabla F(u)$
407:   where $S(u)$ is a linear operator, and $F$ is a functional of $u$.

409: .seealso: [](ch_ts), `TSCreate()`, `TSSetType()`, `TS`, `TSDISCGRAD`, `TSDiscGradSetFormulation()`
410: M*/
411: PETSC_EXTERN PetscErrorCode TSCreate_DiscGrad(TS ts)
412: {
413:   TS_DiscGrad *th;

415:   PetscFunctionBegin;
416:   PetscCall(PetscCitationsRegister(DGCitation, &DGCite));
417:   ts->ops->reset          = TSReset_DiscGrad;
418:   ts->ops->destroy        = TSDestroy_DiscGrad;
419:   ts->ops->view           = TSView_DiscGrad;
420:   ts->ops->setfromoptions = TSSetFromOptions_DiscGrad;
421:   ts->ops->setup          = TSSetUp_DiscGrad;
422:   ts->ops->step           = TSStep_DiscGrad;
423:   ts->ops->interpolate    = TSInterpolate_DiscGrad;
424:   ts->ops->getstages      = TSGetStages_DiscGrad;
425:   ts->ops->snesfunction   = SNESTSFormFunction_DiscGrad;
426:   ts->ops->snesjacobian   = SNESTSFormJacobian_DiscGrad;
427:   ts->default_adapt_type  = TSADAPTNONE;

429:   ts->usessnes = PETSC_TRUE;

431:   PetscCall(PetscNew(&th));
432:   ts->data = (void *)th;

434:   th->gonzalez = PETSC_FALSE;

436:   PetscCall(PetscObjectComposeFunction((PetscObject)ts, "TSDiscGradGetFormulation_C", TSDiscGradGetFormulation_DiscGrad));
437:   PetscCall(PetscObjectComposeFunction((PetscObject)ts, "TSDiscGradSetFormulation_C", TSDiscGradSetFormulation_DiscGrad));
438:   PetscCall(PetscObjectComposeFunction((PetscObject)ts, "TSDiscGradIsGonzalez_C", TSDiscGradIsGonzalez_DiscGrad));
439:   PetscCall(PetscObjectComposeFunction((PetscObject)ts, "TSDiscGradUseGonzalez_C", TSDiscGradUseGonzalez_DiscGrad));
440:   PetscFunctionReturn(PETSC_SUCCESS);
441: }

443: /*@C
444:   TSDiscGradGetFormulation - Get the construction method for S, F, and grad F from the
445:   formulation $u_t = S \nabla F$ for `TSDISCGRAD`

447:   Not Collective

449:   Input Parameter:
450: . ts - timestepping context

452:   Output Parameters:
453: + Sfunc - constructor for the S matrix from the formulation
454: . Ffunc - functional F from the formulation
455: . Gfunc - constructor for the gradient of F from the formulation
456: - ctx   - the user context

458:   Calling sequence of `Sfunc`:
459: + ts   - the integrator
460: . time - the current time
461: . u    - the solution
462: . S    - the S-matrix from the formulation
463: - ctx  - the user context

465:   Calling sequence of `Ffunc`:
466: + ts   - the integrator
467: . time - the current time
468: . u    - the solution
469: . F    - the computed function from the formulation
470: - ctx  - the user context

472:   Calling sequence of `Gfunc`:
473: + ts   - the integrator
474: . time - the current time
475: . u    - the solution
476: . G    - the gradient of the computed function from the formulation
477: - ctx  - the user context

479:   Level: intermediate

481: .seealso: [](ch_ts), `TS`, `TSDISCGRAD`, `TSDiscGradSetFormulation()`
482: @*/
483: PetscErrorCode TSDiscGradGetFormulation(TS ts, PetscErrorCode (**Sfunc)(TS ts, PetscReal time, Vec u, Mat S, void *ctx), PetscErrorCode (**Ffunc)(TS ts, PetscReal time, Vec u, PetscScalar *F, void *ctx), PetscErrorCode (**Gfunc)(TS ts, PetscReal time, Vec u, Vec G, void *ctx), void *ctx)
484: {
485:   PetscFunctionBegin;
487:   PetscAssertPointer(Sfunc, 2);
488:   PetscAssertPointer(Ffunc, 3);
489:   PetscAssertPointer(Gfunc, 4);
490:   PetscUseMethod(ts, "TSDiscGradGetFormulation_C", (TS, PetscErrorCode (**Sfunc)(TS, PetscReal, Vec, Mat, void *), PetscErrorCode (**Ffunc)(TS, PetscReal, Vec, PetscScalar *, void *), PetscErrorCode (**Gfunc)(TS, PetscReal, Vec, Vec, void *), void *), (ts, Sfunc, Ffunc, Gfunc, ctx));
491:   PetscFunctionReturn(PETSC_SUCCESS);
492: }

494: /*@C
495:   TSDiscGradSetFormulation - Set the construction method for S, F, and grad F from the
496:   formulation $u_t = S(u) \nabla F(u)$ for `TSDISCGRAD`

498:   Not Collective

500:   Input Parameters:
501: + ts    - timestepping context
502: . Sfunc - constructor for the S matrix from the formulation
503: . Ffunc - functional F from the formulation
504: . Gfunc - constructor for the gradient of F from the formulation
505: - ctx   - optional context for the functions

507:   Calling sequence of `Sfunc`:
508: + ts   - the integrator
509: . time - the current time
510: . u    - the solution
511: . S    - the S-matrix from the formulation
512: - ctx  - the user context

514:   Calling sequence of `Ffunc`:
515: + ts   - the integrator
516: . time - the current time
517: . u    - the solution
518: . F    - the computed function from the formulation
519: - ctx  - the user context

521:   Calling sequence of `Gfunc`:
522: + ts   - the integrator
523: . time - the current time
524: . u    - the solution
525: . G    - the gradient of the computed function from the formulation
526: - ctx  - the user context

528:   Level: intermediate

530: .seealso: [](ch_ts), `TSDISCGRAD`, `TSDiscGradGetFormulation()`
531: @*/
532: PetscErrorCode TSDiscGradSetFormulation(TS ts, PetscErrorCode (*Sfunc)(TS ts, PetscReal time, Vec u, Mat S, void *ctx), PetscErrorCode (*Ffunc)(TS ts, PetscReal time, Vec u, PetscScalar *F, void *ctx), PetscErrorCode (*Gfunc)(TS ts, PetscReal time, Vec u, Vec G, void *ctx), void *ctx)
533: {
534:   PetscFunctionBegin;
539:   PetscTryMethod(ts, "TSDiscGradSetFormulation_C", (TS, PetscErrorCode (*Sfunc)(TS, PetscReal, Vec, Mat, void *), PetscErrorCode (*Ffunc)(TS, PetscReal, Vec, PetscScalar *, void *), PetscErrorCode (*Gfunc)(TS, PetscReal, Vec, Vec, void *), void *), (ts, Sfunc, Ffunc, Gfunc, ctx));
540:   PetscFunctionReturn(PETSC_SUCCESS);
541: }

543: /*@
544:   TSDiscGradIsGonzalez - Checks flag for whether to use additional conservative terms in
545:   discrete gradient formulation for `TSDISCGRAD`

547:   Not Collective

549:   Input Parameter:
550: . ts - timestepping context

552:   Output Parameter:
553: . gonzalez - `PETSC_TRUE` when using the Gonzalez term

555:   Level: advanced

557: .seealso: [](ch_ts), `TSDISCGRAD`, `TSDiscGradUseGonzalez()`
558: @*/
559: PetscErrorCode TSDiscGradIsGonzalez(TS ts, PetscBool *gonzalez)
560: {
561:   PetscFunctionBegin;
563:   PetscAssertPointer(gonzalez, 2);
564:   PetscUseMethod(ts, "TSDiscGradIsGonzalez_C", (TS, PetscBool *), (ts, gonzalez));
565:   PetscFunctionReturn(PETSC_SUCCESS);
566: }

568: /*@
569:   TSDiscGradUseGonzalez - Sets discrete gradient formulation with or without additional
570:   conservative terms.

572:   Not Collective

574:   Input Parameters:
575: + ts  - timestepping context
576: - flg - `PETSC_TRUE` to use the Gonzalez term

578:   Options Database Key:
579: . -ts_discgrad_gonzalez <flg> - use the Gonzalez term for the discrete gradient formulation

581:   Level: intermediate

583:   Notes:
584:   Without `flg`, the discrete gradients timestepper is just backwards Euler.

586: .seealso: [](ch_ts), `TSDISCGRAD`
587: @*/
588: PetscErrorCode TSDiscGradUseGonzalez(TS ts, PetscBool flg)
589: {
590:   PetscFunctionBegin;
592:   PetscTryMethod(ts, "TSDiscGradUseGonzalez_C", (TS, PetscBool), (ts, flg));
593:   PetscFunctionReturn(PETSC_SUCCESS);
594: }