Actual source code: ex4.c

  1: /*
  2:        The Problem:
  3:            Solve the convection-diffusion equation:

  5:              u_t+a*(u_x+u_y)=epsilon*(u_xx+u_yy)
  6:              u=0   at x=0, y=0
  7:              u_x=0 at x=1
  8:              u_y=0 at y=1
  9:              u = exp(-20.0*(pow(x-0.5,2.0)+pow(y-0.5,2.0))) at t=0

 11:        This program tests the routine of computing the Jacobian by the
 12:        finite difference method as well as PETSc.

 14: */

 16: static char help[] = "Solve the convection-diffusion equation. \n\n";

 18: #include <petscts.h>

 20: typedef struct {
 21:   PetscInt  m;       /* the number of mesh points in x-direction */
 22:   PetscInt  n;       /* the number of mesh points in y-direction */
 23:   PetscReal dx;      /* the grid space in x-direction */
 24:   PetscReal dy;      /* the grid space in y-direction */
 25:   PetscReal a;       /* the convection coefficient    */
 26:   PetscReal epsilon; /* the diffusion coefficient     */
 27:   PetscReal tfinal;
 28: } Data;

 30: extern PetscErrorCode Monitor(TS, PetscInt, PetscReal, Vec, void *);
 31: extern PetscErrorCode Initial(Vec, void *);
 32: extern PetscErrorCode RHSFunction(TS, PetscReal, Vec, Vec, void *);
 33: extern PetscErrorCode RHSJacobian(TS, PetscReal, Vec, Mat, Mat, void *);
 34: extern PetscErrorCode PostStep(TS);

 36: int main(int argc, char **argv)
 37: {
 38:   PetscInt      time_steps = 100, iout, NOUT = 1;
 39:   Vec           global;
 40:   PetscReal     dt, ftime, ftime_original;
 41:   TS            ts;
 42:   PetscViewer   viewfile;
 43:   Mat           J = 0;
 44:   Vec           x;
 45:   Data          data;
 46:   PetscInt      mn;
 47:   PetscBool     flg;
 48:   MatColoring   mc;
 49:   ISColoring    iscoloring;
 50:   MatFDColoring matfdcoloring        = 0;
 51:   PetscBool     fd_jacobian_coloring = PETSC_FALSE;
 52:   SNES          snes;
 53:   KSP           ksp;
 54:   PC            pc;

 56:   PetscFunctionBeginUser;
 57:   PetscCall(PetscInitialize(&argc, &argv, NULL, help));

 59:   /* set data */
 60:   data.m       = 9;
 61:   data.n       = 9;
 62:   data.a       = 1.0;
 63:   data.epsilon = 0.1;
 64:   data.dx      = 1.0 / (data.m + 1.0);
 65:   data.dy      = 1.0 / (data.n + 1.0);
 66:   mn           = (data.m) * (data.n);
 67:   PetscCall(PetscOptionsGetInt(NULL, NULL, "-time", &time_steps, NULL));

 69:   /* set initial conditions */
 70:   PetscCall(VecCreate(PETSC_COMM_WORLD, &global));
 71:   PetscCall(VecSetSizes(global, PETSC_DECIDE, mn));
 72:   PetscCall(VecSetFromOptions(global));
 73:   PetscCall(Initial(global, &data));
 74:   PetscCall(VecDuplicate(global, &x));

 76:   /* create timestep context */
 77:   PetscCall(TSCreate(PETSC_COMM_WORLD, &ts));
 78:   PetscCall(TSMonitorSet(ts, Monitor, &data, NULL));
 79:   PetscCall(TSSetType(ts, TSEULER));
 80:   dt             = 0.1;
 81:   ftime_original = data.tfinal = 1.0;

 83:   PetscCall(TSSetTimeStep(ts, dt));
 84:   PetscCall(TSSetMaxSteps(ts, time_steps));
 85:   PetscCall(TSSetMaxTime(ts, ftime_original));
 86:   PetscCall(TSSetExactFinalTime(ts, TS_EXACTFINALTIME_STEPOVER));
 87:   PetscCall(TSSetSolution(ts, global));

 89:   /* set user provided RHSFunction and RHSJacobian */
 90:   PetscCall(TSSetRHSFunction(ts, NULL, RHSFunction, &data));
 91:   PetscCall(MatCreate(PETSC_COMM_WORLD, &J));
 92:   PetscCall(MatSetSizes(J, PETSC_DECIDE, PETSC_DECIDE, mn, mn));
 93:   PetscCall(MatSetFromOptions(J));
 94:   PetscCall(MatSeqAIJSetPreallocation(J, 5, NULL));
 95:   PetscCall(MatMPIAIJSetPreallocation(J, 5, NULL, 5, NULL));

 97:   PetscCall(PetscOptionsHasName(NULL, NULL, "-ts_fd", &flg));
 98:   if (!flg) {
 99:     PetscCall(TSSetRHSJacobian(ts, J, J, RHSJacobian, &data));
100:   } else {
101:     PetscCall(TSGetSNES(ts, &snes));
102:     PetscCall(PetscOptionsHasName(NULL, NULL, "-fd_color", &fd_jacobian_coloring));
103:     if (fd_jacobian_coloring) { /* Use finite differences with coloring */
104:       /* Get data structure of J */
105:       PetscBool pc_diagonal;
106:       PetscCall(PetscOptionsHasName(NULL, NULL, "-pc_diagonal", &pc_diagonal));
107:       if (pc_diagonal) { /* the preconditioner of J is a diagonal matrix */
108:         PetscInt    rstart, rend, i;
109:         PetscScalar zero = 0.0;
110:         PetscCall(MatGetOwnershipRange(J, &rstart, &rend));
111:         for (i = rstart; i < rend; i++) PetscCall(MatSetValues(J, 1, &i, 1, &i, &zero, INSERT_VALUES));
112:         PetscCall(MatAssemblyBegin(J, MAT_FINAL_ASSEMBLY));
113:         PetscCall(MatAssemblyEnd(J, MAT_FINAL_ASSEMBLY));
114:       } else {
115:         /* Fill the structure using the expensive SNESComputeJacobianDefault. Temporarily set up the TS so we can call this function */
116:         PetscCall(TSSetType(ts, TSBEULER));
117:         PetscCall(TSSetUp(ts));
118:         PetscCall(SNESComputeJacobianDefault(snes, x, J, J, ts));
119:       }

121:       /* create coloring context */
122:       PetscCall(MatColoringCreate(J, &mc));
123:       PetscCall(MatColoringSetType(mc, MATCOLORINGSL));
124:       PetscCall(MatColoringSetFromOptions(mc));
125:       PetscCall(MatColoringApply(mc, &iscoloring));
126:       PetscCall(MatColoringDestroy(&mc));
127:       PetscCall(MatFDColoringCreate(J, iscoloring, &matfdcoloring));
128:       PetscCall(MatFDColoringSetFunction(matfdcoloring, (PetscErrorCode (*)(void))SNESTSFormFunction, ts));
129:       PetscCall(MatFDColoringSetFromOptions(matfdcoloring));
130:       PetscCall(MatFDColoringSetUp(J, iscoloring, matfdcoloring));
131:       PetscCall(SNESSetJacobian(snes, J, J, SNESComputeJacobianDefaultColor, matfdcoloring));
132:       PetscCall(ISColoringDestroy(&iscoloring));
133:     } else { /* Use finite differences (slow) */
134:       PetscCall(SNESSetJacobian(snes, J, J, SNESComputeJacobianDefault, NULL));
135:     }
136:   }

138:   /* Pick up a Petsc preconditioner */
139:   /* one can always set method or preconditioner during the run time */
140:   PetscCall(TSGetSNES(ts, &snes));
141:   PetscCall(SNESGetKSP(snes, &ksp));
142:   PetscCall(KSPGetPC(ksp, &pc));
143:   PetscCall(PCSetType(pc, PCJACOBI));
144:   PetscCall(TSSetExactFinalTime(ts, TS_EXACTFINALTIME_STEPOVER));

146:   PetscCall(TSSetFromOptions(ts));
147:   PetscCall(TSSetUp(ts));

149:   /* Test TSSetPostStep() */
150:   PetscCall(PetscOptionsHasName(NULL, NULL, "-test_PostStep", &flg));
151:   if (flg) PetscCall(TSSetPostStep(ts, PostStep));

153:   PetscCall(PetscOptionsGetInt(NULL, NULL, "-NOUT", &NOUT, NULL));
154:   for (iout = 1; iout <= NOUT; iout++) {
155:     PetscCall(TSSetMaxSteps(ts, time_steps));
156:     PetscCall(TSSetMaxTime(ts, iout * ftime_original / NOUT));
157:     PetscCall(TSSolve(ts, global));
158:     PetscCall(TSGetSolveTime(ts, &ftime));
159:     PetscCall(TSSetTime(ts, ftime));
160:     PetscCall(TSSetTimeStep(ts, dt));
161:   }
162:   /* Interpolate solution at tfinal */
163:   PetscCall(TSGetSolution(ts, &global));
164:   PetscCall(TSInterpolate(ts, ftime_original, global));

166:   PetscCall(PetscOptionsHasName(NULL, NULL, "-matlab_view", &flg));
167:   if (flg) { /* print solution into a MATLAB file */
168:     PetscCall(PetscViewerASCIIOpen(PETSC_COMM_WORLD, "out.m", &viewfile));
169:     PetscCall(PetscViewerPushFormat(viewfile, PETSC_VIEWER_ASCII_MATLAB));
170:     PetscCall(VecView(global, viewfile));
171:     PetscCall(PetscViewerPopFormat(viewfile));
172:     PetscCall(PetscViewerDestroy(&viewfile));
173:   }

175:   /* free the memories */
176:   PetscCall(TSDestroy(&ts));
177:   PetscCall(VecDestroy(&global));
178:   PetscCall(VecDestroy(&x));
179:   PetscCall(MatDestroy(&J));
180:   if (fd_jacobian_coloring) PetscCall(MatFDColoringDestroy(&matfdcoloring));
181:   PetscCall(PetscFinalize());
182:   return 0;
183: }

185: /* -------------------------------------------------------------------*/
186: /* the initial function */
187: PetscReal f_ini(PetscReal x, PetscReal y)
188: {
189:   PetscReal f;

191:   f = PetscExpReal(-20.0 * (PetscPowRealInt(x - 0.5, 2) + PetscPowRealInt(y - 0.5, 2)));
192:   return f;
193: }

195: PetscErrorCode Initial(Vec global, void *ctx)
196: {
197:   Data        *data = (Data *)ctx;
198:   PetscInt     m, row, col;
199:   PetscReal    x, y, dx, dy;
200:   PetscScalar *localptr;
201:   PetscInt     i, mybase, myend, locsize;

203:   PetscFunctionBeginUser;
204:   /* make the local  copies of parameters */
205:   m  = data->m;
206:   dx = data->dx;
207:   dy = data->dy;

209:   /* determine starting point of each processor */
210:   PetscCall(VecGetOwnershipRange(global, &mybase, &myend));
211:   PetscCall(VecGetLocalSize(global, &locsize));

213:   /* Initialize the array */
214:   PetscCall(VecGetArrayWrite(global, &localptr));

216:   for (i = 0; i < locsize; i++) {
217:     row         = 1 + (mybase + i) - ((mybase + i) / m) * m;
218:     col         = (mybase + i) / m + 1;
219:     x           = dx * row;
220:     y           = dy * col;
221:     localptr[i] = f_ini(x, y);
222:   }

224:   PetscCall(VecRestoreArrayWrite(global, &localptr));
225:   PetscFunctionReturn(PETSC_SUCCESS);
226: }

228: PetscErrorCode Monitor(TS ts, PetscInt step, PetscReal time, Vec global, void *ctx)
229: {
230:   VecScatter         scatter;
231:   IS                 from, to;
232:   PetscInt           i, n, *idx, nsteps, maxsteps;
233:   Vec                tmp_vec;
234:   const PetscScalar *tmp;

236:   PetscFunctionBeginUser;
237:   PetscCall(TSGetStepNumber(ts, &nsteps));
238:   /* display output at selected time steps */
239:   PetscCall(TSGetMaxSteps(ts, &maxsteps));
240:   if (nsteps % 10 != 0) PetscFunctionReturn(PETSC_SUCCESS);

242:   /* Get the size of the vector */
243:   PetscCall(VecGetSize(global, &n));

245:   /* Set the index sets */
246:   PetscCall(PetscMalloc1(n, &idx));
247:   for (i = 0; i < n; i++) idx[i] = i;

249:   /* Create local sequential vectors */
250:   PetscCall(VecCreateSeq(PETSC_COMM_SELF, n, &tmp_vec));

252:   /* Create scatter context */
253:   PetscCall(ISCreateGeneral(PETSC_COMM_SELF, n, idx, PETSC_COPY_VALUES, &from));
254:   PetscCall(ISCreateGeneral(PETSC_COMM_SELF, n, idx, PETSC_COPY_VALUES, &to));
255:   PetscCall(VecScatterCreate(global, from, tmp_vec, to, &scatter));
256:   PetscCall(VecScatterBegin(scatter, global, tmp_vec, INSERT_VALUES, SCATTER_FORWARD));
257:   PetscCall(VecScatterEnd(scatter, global, tmp_vec, INSERT_VALUES, SCATTER_FORWARD));

259:   PetscCall(VecGetArrayRead(tmp_vec, &tmp));
260:   PetscCall(PetscPrintf(PETSC_COMM_WORLD, "At t[%" PetscInt_FMT "] =%14.2e u= %14.2e at the center \n", nsteps, (double)time, (double)PetscRealPart(tmp[n / 2])));
261:   PetscCall(VecRestoreArrayRead(tmp_vec, &tmp));

263:   PetscCall(PetscFree(idx));
264:   PetscCall(ISDestroy(&from));
265:   PetscCall(ISDestroy(&to));
266:   PetscCall(VecScatterDestroy(&scatter));
267:   PetscCall(VecDestroy(&tmp_vec));
268:   PetscFunctionReturn(PETSC_SUCCESS);
269: }

271: PetscErrorCode RHSJacobian(TS ts, PetscReal t, Vec x, Mat A, Mat BB, void *ptr)
272: {
273:   Data       *data = (Data *)ptr;
274:   PetscScalar v[5];
275:   PetscInt    idx[5], i, j, row;
276:   PetscInt    m, n, mn;
277:   PetscReal   dx, dy, a, epsilon, xc, xl, xr, yl, yr;

279:   PetscFunctionBeginUser;
280:   m       = data->m;
281:   n       = data->n;
282:   mn      = m * n;
283:   dx      = data->dx;
284:   dy      = data->dy;
285:   a       = data->a;
286:   epsilon = data->epsilon;

288:   xc = -2.0 * epsilon * (1.0 / (dx * dx) + 1.0 / (dy * dy));
289:   xl = 0.5 * a / dx + epsilon / (dx * dx);
290:   xr = -0.5 * a / dx + epsilon / (dx * dx);
291:   yl = 0.5 * a / dy + epsilon / (dy * dy);
292:   yr = -0.5 * a / dy + epsilon / (dy * dy);

294:   row    = 0;
295:   v[0]   = xc;
296:   v[1]   = xr;
297:   v[2]   = yr;
298:   idx[0] = 0;
299:   idx[1] = 2;
300:   idx[2] = m;
301:   PetscCall(MatSetValues(A, 1, &row, 3, idx, v, INSERT_VALUES));

303:   row    = m - 1;
304:   v[0]   = 2.0 * xl;
305:   v[1]   = xc;
306:   v[2]   = yr;
307:   idx[0] = m - 2;
308:   idx[1] = m - 1;
309:   idx[2] = m - 1 + m;
310:   PetscCall(MatSetValues(A, 1, &row, 3, idx, v, INSERT_VALUES));

312:   for (i = 1; i < m - 1; i++) {
313:     row    = i;
314:     v[0]   = xl;
315:     v[1]   = xc;
316:     v[2]   = xr;
317:     v[3]   = yr;
318:     idx[0] = i - 1;
319:     idx[1] = i;
320:     idx[2] = i + 1;
321:     idx[3] = i + m;
322:     PetscCall(MatSetValues(A, 1, &row, 4, idx, v, INSERT_VALUES));
323:   }

325:   for (j = 1; j < n - 1; j++) {
326:     row    = j * m;
327:     v[0]   = xc;
328:     v[1]   = xr;
329:     v[2]   = yl;
330:     v[3]   = yr;
331:     idx[0] = j * m;
332:     idx[1] = j * m;
333:     idx[2] = j * m - m;
334:     idx[3] = j * m + m;
335:     PetscCall(MatSetValues(A, 1, &row, 4, idx, v, INSERT_VALUES));

337:     row    = j * m + m - 1;
338:     v[0]   = xc;
339:     v[1]   = 2.0 * xl;
340:     v[2]   = yl;
341:     v[3]   = yr;
342:     idx[0] = j * m + m - 1;
343:     idx[1] = j * m + m - 1 - 1;
344:     idx[2] = j * m + m - 1 - m;
345:     idx[3] = j * m + m - 1 + m;
346:     PetscCall(MatSetValues(A, 1, &row, 4, idx, v, INSERT_VALUES));

348:     for (i = 1; i < m - 1; i++) {
349:       row    = j * m + i;
350:       v[0]   = xc;
351:       v[1]   = xl;
352:       v[2]   = xr;
353:       v[3]   = yl;
354:       v[4]   = yr;
355:       idx[0] = j * m + i;
356:       idx[1] = j * m + i - 1;
357:       idx[2] = j * m + i + 1;
358:       idx[3] = j * m + i - m;
359:       idx[4] = j * m + i + m;
360:       PetscCall(MatSetValues(A, 1, &row, 5, idx, v, INSERT_VALUES));
361:     }
362:   }

364:   row    = mn - m;
365:   v[0]   = xc;
366:   v[1]   = xr;
367:   v[2]   = 2.0 * yl;
368:   idx[0] = mn - m;
369:   idx[1] = mn - m + 1;
370:   idx[2] = mn - m - m;
371:   PetscCall(MatSetValues(A, 1, &row, 3, idx, v, INSERT_VALUES));

373:   row    = mn - 1;
374:   v[0]   = xc;
375:   v[1]   = 2.0 * xl;
376:   v[2]   = 2.0 * yl;
377:   idx[0] = mn - 1;
378:   idx[1] = mn - 2;
379:   idx[2] = mn - 1 - m;
380:   PetscCall(MatSetValues(A, 1, &i, 3, idx, v, INSERT_VALUES));

382:   for (i = 1; i < m - 1; i++) {
383:     row    = mn - m + i;
384:     v[0]   = xl;
385:     v[1]   = xc;
386:     v[2]   = xr;
387:     v[3]   = 2.0 * yl;
388:     idx[0] = mn - m + i - 1;
389:     idx[1] = mn - m + i;
390:     idx[2] = mn - m + i + 1;
391:     idx[3] = mn - m + i - m;
392:     PetscCall(MatSetValues(A, 1, &row, 4, idx, v, INSERT_VALUES));
393:   }

395:   PetscCall(MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY));
396:   PetscCall(MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY));
397:   PetscFunctionReturn(PETSC_SUCCESS);
398: }

400: /* globalout = -a*(u_x+u_y) + epsilon*(u_xx+u_yy) */
401: PetscErrorCode RHSFunction(TS ts, PetscReal t, Vec globalin, Vec globalout, void *ctx)
402: {
403:   Data              *data = (Data *)ctx;
404:   PetscInt           m, n, mn;
405:   PetscReal          dx, dy;
406:   PetscReal          xc, xl, xr, yl, yr;
407:   PetscReal          a, epsilon;
408:   PetscScalar       *outptr;
409:   const PetscScalar *inptr;
410:   PetscInt           i, j, len;
411:   IS                 from, to;
412:   PetscInt          *idx;
413:   VecScatter         scatter;
414:   Vec                tmp_in, tmp_out;

416:   PetscFunctionBeginUser;
417:   m       = data->m;
418:   n       = data->n;
419:   mn      = m * n;
420:   dx      = data->dx;
421:   dy      = data->dy;
422:   a       = data->a;
423:   epsilon = data->epsilon;

425:   xc = -2.0 * epsilon * (1.0 / (dx * dx) + 1.0 / (dy * dy));
426:   xl = 0.5 * a / dx + epsilon / (dx * dx);
427:   xr = -0.5 * a / dx + epsilon / (dx * dx);
428:   yl = 0.5 * a / dy + epsilon / (dy * dy);
429:   yr = -0.5 * a / dy + epsilon / (dy * dy);

431:   /* Get the length of parallel vector */
432:   PetscCall(VecGetSize(globalin, &len));

434:   /* Set the index sets */
435:   PetscCall(PetscMalloc1(len, &idx));
436:   for (i = 0; i < len; i++) idx[i] = i;

438:   /* Create local sequential vectors */
439:   PetscCall(VecCreateSeq(PETSC_COMM_SELF, len, &tmp_in));
440:   PetscCall(VecDuplicate(tmp_in, &tmp_out));

442:   /* Create scatter context */
443:   PetscCall(ISCreateGeneral(PETSC_COMM_SELF, len, idx, PETSC_COPY_VALUES, &from));
444:   PetscCall(ISCreateGeneral(PETSC_COMM_SELF, len, idx, PETSC_COPY_VALUES, &to));
445:   PetscCall(VecScatterCreate(globalin, from, tmp_in, to, &scatter));
446:   PetscCall(VecScatterBegin(scatter, globalin, tmp_in, INSERT_VALUES, SCATTER_FORWARD));
447:   PetscCall(VecScatterEnd(scatter, globalin, tmp_in, INSERT_VALUES, SCATTER_FORWARD));
448:   PetscCall(VecScatterDestroy(&scatter));

450:   /*Extract income array - include ghost points */
451:   PetscCall(VecGetArrayRead(tmp_in, &inptr));

453:   /* Extract outcome array*/
454:   PetscCall(VecGetArrayWrite(tmp_out, &outptr));

456:   outptr[0]     = xc * inptr[0] + xr * inptr[1] + yr * inptr[m];
457:   outptr[m - 1] = 2.0 * xl * inptr[m - 2] + xc * inptr[m - 1] + yr * inptr[m - 1 + m];
458:   for (i = 1; i < m - 1; i++) outptr[i] = xc * inptr[i] + xl * inptr[i - 1] + xr * inptr[i + 1] + yr * inptr[i + m];

460:   for (j = 1; j < n - 1; j++) {
461:     outptr[j * m]         = xc * inptr[j * m] + xr * inptr[j * m + 1] + yl * inptr[j * m - m] + yr * inptr[j * m + m];
462:     outptr[j * m + m - 1] = xc * inptr[j * m + m - 1] + 2.0 * xl * inptr[j * m + m - 1 - 1] + yl * inptr[j * m + m - 1 - m] + yr * inptr[j * m + m - 1 + m];
463:     for (i = 1; i < m - 1; i++) outptr[j * m + i] = xc * inptr[j * m + i] + xl * inptr[j * m + i - 1] + xr * inptr[j * m + i + 1] + yl * inptr[j * m + i - m] + yr * inptr[j * m + i + m];
464:   }

466:   outptr[mn - m] = xc * inptr[mn - m] + xr * inptr[mn - m + 1] + 2.0 * yl * inptr[mn - m - m];
467:   outptr[mn - 1] = 2.0 * xl * inptr[mn - 2] + xc * inptr[mn - 1] + 2.0 * yl * inptr[mn - 1 - m];
468:   for (i = 1; i < m - 1; i++) outptr[mn - m + i] = xc * inptr[mn - m + i] + xl * inptr[mn - m + i - 1] + xr * inptr[mn - m + i + 1] + 2 * yl * inptr[mn - m + i - m];

470:   PetscCall(VecRestoreArrayRead(tmp_in, &inptr));
471:   PetscCall(VecRestoreArrayWrite(tmp_out, &outptr));

473:   PetscCall(VecScatterCreate(tmp_out, from, globalout, to, &scatter));
474:   PetscCall(VecScatterBegin(scatter, tmp_out, globalout, INSERT_VALUES, SCATTER_FORWARD));
475:   PetscCall(VecScatterEnd(scatter, tmp_out, globalout, INSERT_VALUES, SCATTER_FORWARD));

477:   /* Destroy idx and scatter */
478:   PetscCall(VecDestroy(&tmp_in));
479:   PetscCall(VecDestroy(&tmp_out));
480:   PetscCall(ISDestroy(&from));
481:   PetscCall(ISDestroy(&to));
482:   PetscCall(VecScatterDestroy(&scatter));

484:   PetscCall(PetscFree(idx));
485:   PetscFunctionReturn(PETSC_SUCCESS);
486: }

488: PetscErrorCode PostStep(TS ts)
489: {
490:   PetscReal t;

492:   PetscFunctionBeginUser;
493:   PetscCall(TSGetTime(ts, &t));
494:   PetscCall(PetscPrintf(PETSC_COMM_SELF, "  PostStep, t: %g\n", (double)t));
495:   PetscFunctionReturn(PETSC_SUCCESS);
496: }

498: /*TEST

500:     test:
501:       args: -ts_fd -ts_type beuler
502:       output_file: output/ex4.out

504:     test:
505:       suffix: 2
506:       args: -ts_fd -ts_type beuler
507:       nsize: 2
508:       output_file: output/ex4.out

510:     test:
511:       suffix: 3
512:       args: -ts_fd -ts_type cn

514:     test:
515:       suffix: 4
516:       args: -ts_fd -ts_type cn
517:       output_file: output/ex4_3.out
518:       nsize: 2

520:     test:
521:       suffix: 5
522:       args: -ts_type beuler -ts_fd -fd_color -mat_coloring_type sl
523:       output_file: output/ex4.out

525:     test:
526:       suffix: 6
527:       args: -ts_type beuler -ts_fd -fd_color -mat_coloring_type sl
528:       output_file: output/ex4.out
529:       nsize: 2

531:     test:
532:       suffix: 7
533:       requires: !single
534:       args: -ts_fd -ts_type beuler -test_PostStep -ts_dt .1

536:     test:
537:       suffix: 8
538:       requires: !single
539:       args: -ts_type rk -ts_rk_type 5dp -ts_dt .01 -ts_adapt_type none -ts_view

541: TEST*/