Actual source code: ex1f.F90

  1: !
  2: !   Solves the time dependent Bratu problem using pseudo-timestepping
  3: !
  4: !   This code demonstrates how one may solve a nonlinear problem
  5: !   with pseudo-timestepping. In this simple example, the pseudo-timestep
  6: !   is the same for all grid points, i.e., this is equivalent to using
  7: !   the backward Euler method with a variable timestep.
  8: !
  9: !   Note: This example does not require pseudo-timestepping since it
 10: !   is an easy nonlinear problem, but it is included to demonstrate how
 11: !   the pseudo-timestepping may be done.
 12: !
 13: !   See snes/tutorials/ex4.c[ex4f.F] and
 14: !   snes/tutorials/ex5.c[ex5f.F] where the problem is described
 15: !   and solved using the method of Newton alone.
 16: !
 17: !
 18: !23456789012345678901234567890123456789012345678901234567890123456789012
 19: program main
 20: #include <petsc/finclude/petscts.h>
 21:   use petscts
 22:   implicit none

 24: !
 25: !  Create an application context to contain data needed by the
 26: !  application-provided call-back routines, FormJacobian() and
 27: !  FormFunction(). We use a double precision array with three
 28: !  entries indexed by param, lmx, lmy.
 29: !
 30:   PetscReal user(3)
 31:   PetscInt param, lmx, lmy, i5
 32:   parameter(param=1, lmx=2, lmy=3)
 33: !
 34: !   User-defined routines
 35: !
 36:   external FormJacobian, FormFunction
 37: !
 38: !   Data for problem
 39: !
 40:   TS ts
 41:   Vec x, r
 42:   Mat J
 43:   PetscInt its, N, i1000, itmp
 44:   PetscBool flg
 45:   PetscErrorCode ierr
 46:   PetscReal param_max, param_min, dt
 47:   PetscReal tmax
 48:   PetscReal ftime
 49:   TSConvergedReason reason

 51:   i5 = 5
 52:   param_max = 6.81
 53:   param_min = 0

 55:   PetscCallA(PetscInitialize(ierr))
 56:   user(lmx) = 4
 57:   user(lmy) = 4
 58:   user(param) = 6.0

 60: !
 61: !     Allow user to set the grid dimensions and nonlinearity parameter at run-time
 62: !
 63:   PetscCallA(PetscOptionsGetReal(PETSC_NULL_OPTIONS, PETSC_NULL_CHARACTER, '-mx', user(lmx), flg, ierr))
 64:   itmp = 4
 65:   PetscCallA(PetscOptionsGetInt(PETSC_NULL_OPTIONS, PETSC_NULL_CHARACTER, '-my', itmp, flg, ierr))
 66:   user(lmy) = itmp
 67:   PetscCallA(PetscOptionsGetReal(PETSC_NULL_OPTIONS, PETSC_NULL_CHARACTER, '-param', user(param), flg, ierr))
 68:   if (user(param) >= param_max .or. user(param) <= param_min) then
 69:     print *, 'Parameter is out of range'
 70:   end if
 71:   if (user(lmx) > user(lmy)) then
 72:     dt = .5/user(lmx)
 73:   else
 74:     dt = .5/user(lmy)
 75:   end if
 76:   PetscCallA(PetscOptionsGetReal(PETSC_NULL_OPTIONS, PETSC_NULL_CHARACTER, '-dt', dt, flg, ierr))
 77:   N = int(user(lmx)*user(lmy))

 79: !
 80: !      Create vectors to hold the solution and function value
 81: !
 82:   PetscCallA(VecCreateSeq(PETSC_COMM_SELF, N, x, ierr))
 83:   PetscCallA(VecDuplicate(x, r, ierr))

 85: !
 86: !    Create matrix to hold Jacobian. Preallocate 5 nonzeros per row
 87: !    in the sparse matrix. Note that this is not the optimal strategy see
 88: !    the Performance chapter of the users manual for information on
 89: !    preallocating memory in sparse matrices.
 90: !
 91:   i5 = 5
 92:   PetscCallA(MatCreateSeqAIJ(PETSC_COMM_SELF, N, N, i5, PETSC_NULL_INTEGER_ARRAY, J, ierr))

 94: !
 95: !     Create timestepper context
 96: !

 98:   PetscCallA(TSCreate(PETSC_COMM_WORLD, ts, ierr))
 99:   PetscCallA(TSSetProblemType(ts, TS_NONLINEAR, ierr))

101: !
102: !     Tell the timestepper context where to compute solutions
103: !

105:   PetscCallA(TSSetSolution(ts, x, ierr))

107: !
108: !    Provide the call-back for the nonlinear function we are
109: !    evaluating. Thus whenever the timestepping routines need the
110: !    function they will call this routine. Note the final argument
111: !    is the application context used by the call-back functions.
112: !

114:   PetscCallA(TSSetRHSFunction(ts, PETSC_NULL_VEC, FormFunction, user, ierr))

116: !
117: !     Set the Jacobian matrix and the function used to compute
118: !     Jacobians.
119: !

121:   PetscCallA(TSSetRHSJacobian(ts, J, J, FormJacobian, user, ierr))

123: !
124: !       For the initial guess for the problem
125: !

127:   PetscCallA(FormInitialGuess(x, user, ierr))

129: !
130: !       This indicates that we are using pseudo timestepping to
131: !     find a steady state solution to the nonlinear problem.
132: !

134:   PetscCallA(TSSetType(ts, TSPSEUDO, ierr))

136: !
137: !       Set the initial time to start at (this is arbitrary for
138: !     steady state problems and the initial timestep given above
139: !

141:   PetscCallA(TSSetTimeStep(ts, dt, ierr))

143: !
144: !      Set a large number of timesteps and final duration time
145: !     to insure convergence to steady state.
146: !
147:   i1000 = 1000
148:   tmax = 1.e12
149:   PetscCallA(TSSetMaxSteps(ts, i1000, ierr))
150:   PetscCallA(TSSetMaxTime(ts, tmax, ierr))
151:   PetscCallA(TSSetExactFinalTime(ts, TS_EXACTFINALTIME_STEPOVER, ierr))

153: !
154: !      Set any additional options from the options database. This
155: !     includes all options for the nonlinear and linear solvers used
156: !     internally the timestepping routines.
157: !

159:   PetscCallA(TSSetFromOptions(ts, ierr))

161:   PetscCallA(TSSetUp(ts, ierr))

163: !
164: !      Perform the solve. This is where the timestepping takes place.
165: !
166:   PetscCallA(TSSolve(ts, x, ierr))
167:   PetscCallA(TSGetSolveTime(ts, ftime, ierr))
168:   PetscCallA(TSGetStepNumber(ts, its, ierr))
169:   PetscCallA(TSGetConvergedReason(ts, reason, ierr))

171:   write (6, 100) its, ftime, reason
172: 100 format('Number of pseudo time-steps ', i5, ' final time ', 1pe9.2, ' reason ', i3)

174: !
175: !     Free the data structures constructed above
176: !

178:   PetscCallA(VecDestroy(x, ierr))
179:   PetscCallA(VecDestroy(r, ierr))
180:   PetscCallA(MatDestroy(J, ierr))
181:   PetscCallA(TSDestroy(ts, ierr))
182:   PetscCallA(PetscFinalize(ierr))
183: end

185: !
186: !  --------------------  Form initial approximation -----------------
187: !
188: subroutine FormInitialGuess(X, user, ierr)
189:   use petscts
190:   implicit none

192:   Vec X
193:   PetscReal user(3)
194:   PetscInt i, j, row, mx, my
195:   PetscErrorCode ierr
196:   PetscReal one, lambda
197:   PetscReal temp1, temp, hx, hy
198:   PetscScalar, pointer :: xx(:)
199:   PetscInt param, lmx, lmy
200:   parameter(param=1, lmx=2, lmy=3)

202:   one = 1.0

204:   mx = int(user(lmx))
205:   my = int(user(lmy))
206:   lambda = user(param)

208:   hy = one/(my - 1)
209:   hx = one/(mx - 1)

211:   PetscCall(VecGetArray(X, xx, ierr))
212:   temp1 = lambda/(lambda + one)
213:   do 10, j = 1, my
214:     temp = min(j - 1, my - j)*hy
215:     do 20 i = 1, mx
216:       row = i + (j - 1)*mx
217:       if (i == 1 .or. j == 1 .or. i == mx .or. j == my) then
218:         xx(row) = 0.0
219:       else
220:         xx(row) = temp1*sqrt(min(min(i - 1, mx - i)*hx, temp))
221:       end if
222: 20    continue
223: 10    continue
224:       PetscCall(VecRestoreArray(X, xx, ierr))
225:     end
226: !
227: !  --------------------  Evaluate Function F(x) ---------------------
228: !
229:     subroutine FormFunction(ts, t, X, F, user, ierr)
230:       use petscts
231:       implicit none

233:       TS ts
234:       PetscReal t
235:       Vec X, F
236:       PetscReal user(3)
237:       PetscErrorCode ierr
238:       PetscInt i, j, row, mx, my
239:       PetscReal two, lambda
240:       PetscReal hx, hy, hxdhy, hydhx
241:       PetscScalar ut, ub, ul, ur, u
242:       PetscScalar uxx, uyy, sc
243:       PetscScalar, pointer :: xx(:), ff(:)
244:       PetscInt param, lmx, lmy
245:       parameter(param=1, lmx=2, lmy=3)

247:       two = 2.0

249:       mx = int(user(lmx))
250:       my = int(user(lmy))
251:       lambda = user(param)

253:       hx = 1.0/real(mx - 1)
254:       hy = 1.0/real(my - 1)
255:       sc = hx*hy
256:       hxdhy = hx/hy
257:       hydhx = hy/hx

259:       PetscCall(VecGetArrayRead(X, xx, ierr))
260:       PetscCall(VecGetArray(F, ff, ierr))
261:       do 10 j = 1, my
262:         do 20 i = 1, mx
263:           row = i + (j - 1)*mx
264:           if (i == 1 .or. j == 1 .or. i == mx .or. j == my) then
265:             ff(row) = xx(row)
266:           else
267:             u = xx(row)
268:             ub = xx(row - mx)
269:             ul = xx(row - 1)
270:             ut = xx(row + mx)
271:             ur = xx(row + 1)
272:             uxx = (-ur + two*u - ul)*hydhx
273:             uyy = (-ut + two*u - ub)*hxdhy
274:             ff(row) = -uxx - uyy + sc*lambda*exp(u)
275:           end if
276: 20        continue
277: 10        continue

279:           PetscCall(VecRestoreArrayRead(X, xx, ierr))
280:           PetscCall(VecRestoreArray(F, ff, ierr))
281:         end
282: !
283: !  --------------------  Evaluate Jacobian of F(x) --------------------
284: !
285:         subroutine FormJacobian(ts, ctime, X, JJ, B, user, ierr)
286:           use petscts
287:           implicit none

289:           TS ts
290:           Vec X
291:           Mat JJ, B
292:           PetscReal user(3), ctime
293:           PetscErrorCode ierr
294:           Mat jac
295:           PetscInt i, j, row(1), mx, my
296:           PetscInt col(5), i1, i5
297:           PetscScalar two, one, lambda
298:           PetscScalar v(5), sc
299:           PetscScalar, pointer :: xx(:)
300:           PetscReal hx, hy, hxdhy, hydhx

302:           PetscInt param, lmx, lmy
303:           parameter(param=1, lmx=2, lmy=3)

305:           i1 = 1
306:           i5 = 5
307:           jac = B
308:           two = 2.0
309:           one = 1.0

311:           mx = int(user(lmx))
312:           my = int(user(lmy))
313:           lambda = user(param)

315:           hx = 1.0/real(mx - 1)
316:           hy = 1.0/real(my - 1)
317:           sc = hx*hy
318:           hxdhy = hx/hy
319:           hydhx = hy/hx

321:           PetscCall(VecGetArrayRead(X, xx, ierr))
322:           do 10 j = 1, my
323:             do 20 i = 1, mx
324: !
325: !      When inserting into PETSc matrices, indices start at 0
326: !
327:               row(1) = i - 1 + (j - 1)*mx
328:               if (i == 1 .or. j == 1 .or. i == mx .or. j == my) then
329:                 PetscCall(MatSetValues(jac, i1, [row], i1, [row], [one], INSERT_VALUES, ierr))
330:               else
331:                 v(1) = hxdhy
332:                 col(1) = row(1) - mx
333:                 v(2) = hydhx
334:                 col(2) = row(1) - 1
335:                 v(3) = -two*(hydhx + hxdhy) + sc*lambda*exp(xx(row(1)))
336:                 col(3) = row(1)
337:                 v(4) = hydhx
338:                 col(4) = row(1) + 1
339:                 v(5) = hxdhy
340:                 col(5) = row(1) + mx
341:                 PetscCall(MatSetValues(jac, i1, [row], i5, col, v, INSERT_VALUES, ierr))
342:               end if
343: 20            continue
344: 10            continue
345:               PetscCall(MatAssemblyBegin(jac, MAT_FINAL_ASSEMBLY, ierr))
346:               PetscCall(MatAssemblyEnd(jac, MAT_FINAL_ASSEMBLY, ierr))
347:               PetscCall(VecRestoreArray(X, xx, ierr))
348:             end

350: !/*TEST
351: !
352: !    test:
353: !      TODO: broken
354: !      args: -ksp_gmres_cgs_refinement_type refine_always -snes_type newtonls -ts_monitor_pseudo -ts_max_snes_failures 3 -ts_pseudo_frtol 1.e-5 -snes_stol 1e-5
355: !
356: !TEST*/