Actual source code: biharmonic.c

  1: static char help[] = "Solves biharmonic equation in 1d.\n";

  3: /*
  4:   Solves the equation

  6:     u_t = - kappa  \Delta \Delta u
  7:     Periodic boundary conditions

  9: Evolve the biharmonic heat equation:
 10: ---------------
 11: ./biharmonic -ts_monitor -snes_monitor   -pc_type lu  -draw_pause .1 -snes_converged_reason  -draw_pause -2   -ts_type cn  -da_refine 5 -mymonitor

 13: Evolve with the restriction that -1 <= u <= 1; i.e. as a variational inequality
 14: ---------------
 15: ./biharmonic -ts_monitor -snes_monitor   -pc_type lu  -draw_pause .1 -snes_converged_reason  -draw_pause -2   -ts_type cn   -da_refine 5  -mymonitor

 17:    u_t =  kappa \Delta \Delta u +   6.*u*(u_x)^2 + (3*u^2 - 12) \Delta u
 18:     -1 <= u <= 1
 19:     Periodic boundary conditions

 21: Evolve the Cahn-Hillard equations: double well Initial hump shrinks then grows
 22: ---------------
 23: ./biharmonic -ts_monitor -snes_monitor   -pc_type lu  -draw_pause .1 -snes_converged_reason   -draw_pause -2   -ts_type cn    -da_refine 6   -kappa .00001 -ts_dt 5.96046e-06 -cahn-hillard -ts_monitor_draw_solution --mymonitor

 25: Initial hump neither shrinks nor grows when degenerate (otherwise similar solution)

 27: ./biharmonic -ts_monitor -snes_monitor   -pc_type lu  -draw_pause .1 -snes_converged_reason   -draw_pause -2   -ts_type cn    -da_refine 6   -kappa .00001 -ts_dt 5.96046e-06 -cahn-hillard -degenerate -ts_monitor_draw_solution --mymonitor

 29: ./biharmonic -ts_monitor -snes_monitor   -pc_type lu  -draw_pause .1 -snes_converged_reason   -draw_pause -2   -ts_type cn    -da_refine 6   -kappa .00001 -ts_dt 5.96046e-06 -cahn-hillard -snes_vi_ignore_function_sign -ts_monitor_draw_solution --mymonitor

 31: Evolve the Cahn-Hillard equations: double obstacle
 32: ---------------
 33: ./biharmonic -ts_monitor -snes_monitor  -pc_type lu  -draw_pause .1 -snes_converged_reason   -draw_pause -2   -ts_type cn    -da_refine 5   -kappa .00001 -ts_dt 5.96046e-06 -cahn-hillard -energy 2 -snes_linesearch_monitor    -ts_monitor_draw_solution --mymonitor

 35: Evolve the Cahn-Hillard equations: logarithmic + double well (never shrinks and then grows)
 36: ---------------
 37: ./biharmonic -ts_monitor -snes_monitor  -pc_type lu  --snes_converged_reason  -draw_pause -2   -ts_type cn    -da_refine 5   -kappa .0001 -ts_dt 5.96046e-06 -cahn-hillard -energy 3 -snes_linesearch_monitor -theta .00000001    -ts_monitor_draw_solution --ts_max_time 1. -mymonitor

 39: ./biharmonic -ts_monitor -snes_monitor  -pc_type lu  --snes_converged_reason  -draw_pause -2   -ts_type cn    -da_refine 5   -kappa .0001 -ts_dt 5.96046e-06 -cahn-hillard -energy 3 -snes_linesearch_monitor -theta .00000001    -ts_monitor_draw_solution --ts_max_time 1. -degenerate -mymonitor

 41: Evolve the Cahn-Hillard equations: logarithmic +  double obstacle (never shrinks, never grows)
 42: ---------------
 43: ./biharmonic -ts_monitor -snes_monitor  -pc_type lu  --snes_converged_reason  -draw_pause -2   -ts_type cn    -da_refine 5   -kappa .00001 -ts_dt 5.96046e-06 -cahn-hillard -energy 4 -snes_linesearch_monitor -theta .00000001   -ts_monitor_draw_solution --mymonitor

 45: */
 46: #include <petscdm.h>
 47: #include <petscdmda.h>
 48: #include <petscts.h>
 49: #include <petscdraw.h>

 51: extern PetscErrorCode FormFunction(TS, PetscReal, Vec, Vec, void *), FormInitialSolution(DM, Vec), MyMonitor(TS, PetscInt, PetscReal, Vec, void *), MyDestroy(void **), FormJacobian(TS, PetscReal, Vec, Mat, Mat, void *);
 52: typedef struct {
 53:   PetscBool           cahnhillard;
 54:   PetscBool           degenerate;
 55:   PetscReal           kappa;
 56:   PetscInt            energy;
 57:   PetscReal           tol;
 58:   PetscReal           theta, theta_c;
 59:   PetscInt            truncation;
 60:   PetscBool           netforce;
 61:   PetscDrawViewPorts *ports;
 62: } UserCtx;

 64: int main(int argc, char **argv)
 65: {
 66:   TS        ts;   /* nonlinear solver */
 67:   Vec       x, r; /* solution, residual vectors */
 68:   Mat       J;    /* Jacobian matrix */
 69:   PetscInt  steps, Mx;
 70:   DM        da;
 71:   PetscReal dt;
 72:   PetscBool mymonitor;
 73:   UserCtx   ctx;

 75:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 76:      Initialize program
 77:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
 78:   PetscFunctionBeginUser;
 79:   PetscCall(PetscInitialize(&argc, &argv, NULL, help));
 80:   ctx.kappa = 1.0;
 81:   PetscCall(PetscOptionsGetReal(NULL, NULL, "-kappa", &ctx.kappa, NULL));
 82:   ctx.degenerate = PETSC_FALSE;
 83:   PetscCall(PetscOptionsGetBool(NULL, NULL, "-degenerate", &ctx.degenerate, NULL));
 84:   ctx.cahnhillard = PETSC_FALSE;
 85:   PetscCall(PetscOptionsGetBool(NULL, NULL, "-cahn-hillard", &ctx.cahnhillard, NULL));
 86:   ctx.netforce = PETSC_FALSE;
 87:   PetscCall(PetscOptionsGetBool(NULL, NULL, "-netforce", &ctx.netforce, NULL));
 88:   ctx.energy = 1;
 89:   PetscCall(PetscOptionsGetInt(NULL, NULL, "-energy", &ctx.energy, NULL));
 90:   ctx.tol = 1.0e-8;
 91:   PetscCall(PetscOptionsGetReal(NULL, NULL, "-tol", &ctx.tol, NULL));
 92:   ctx.theta   = .001;
 93:   ctx.theta_c = 1.0;
 94:   PetscCall(PetscOptionsGetReal(NULL, NULL, "-theta", &ctx.theta, NULL));
 95:   PetscCall(PetscOptionsGetReal(NULL, NULL, "-theta_c", &ctx.theta_c, NULL));
 96:   ctx.truncation = 1;
 97:   PetscCall(PetscOptionsGetInt(NULL, NULL, "-truncation", &ctx.truncation, NULL));
 98:   PetscCall(PetscOptionsHasName(NULL, NULL, "-mymonitor", &mymonitor));

100:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
101:      Create distributed array (DMDA) to manage parallel grid and vectors
102:   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
103:   PetscCall(DMDACreate1d(PETSC_COMM_WORLD, DM_BOUNDARY_PERIODIC, 10, 1, 2, NULL, &da));
104:   PetscCall(DMSetFromOptions(da));
105:   PetscCall(DMSetUp(da));
106:   PetscCall(DMDASetFieldName(da, 0, "Biharmonic heat equation: u"));
107:   PetscCall(DMDAGetInfo(da, 0, &Mx, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0));
108:   dt = 1.0 / (10. * ctx.kappa * Mx * Mx * Mx * Mx);

110:   /*  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
111:      Extract global vectors from DMDA; then duplicate for remaining
112:      vectors that are the same types
113:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
114:   PetscCall(DMCreateGlobalVector(da, &x));
115:   PetscCall(VecDuplicate(x, &r));

117:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
118:      Create timestepping solver context
119:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
120:   PetscCall(TSCreate(PETSC_COMM_WORLD, &ts));
121:   PetscCall(TSSetDM(ts, da));
122:   PetscCall(TSSetProblemType(ts, TS_NONLINEAR));
123:   PetscCall(TSSetRHSFunction(ts, NULL, FormFunction, &ctx));
124:   PetscCall(DMSetMatType(da, MATAIJ));
125:   PetscCall(DMCreateMatrix(da, &J));
126:   PetscCall(TSSetRHSJacobian(ts, J, J, FormJacobian, &ctx));
127:   PetscCall(TSSetMaxTime(ts, .02));
128:   PetscCall(TSSetExactFinalTime(ts, TS_EXACTFINALTIME_INTERPOLATE));

130:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
131:      Create matrix data structure; set Jacobian evaluation routine

133:      Set Jacobian matrix data structure and default Jacobian evaluation
134:      routine. User can override with:
135:      -snes_mf : matrix-free Newton-Krylov method with no preconditioning
136:                 (unless user explicitly sets preconditioner)
137:      -snes_mf_operator : form preconditioning matrix as set by the user,
138:                          but use matrix-free approx for Jacobian-vector
139:                          products within Newton-Krylov method

141:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
142:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
143:      Customize nonlinear solver
144:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
145:   PetscCall(TSSetType(ts, TSCN));

147:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
148:      Set initial conditions
149:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
150:   PetscCall(FormInitialSolution(da, x));
151:   PetscCall(TSSetTimeStep(ts, dt));
152:   PetscCall(TSSetSolution(ts, x));

154:   if (mymonitor) {
155:     ctx.ports = NULL;
156:     PetscCall(TSMonitorSet(ts, MyMonitor, &ctx, MyDestroy));
157:   }

159:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
160:      Set runtime options
161:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
162:   PetscCall(TSSetFromOptions(ts));

164:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
165:      Solve nonlinear system
166:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
167:   PetscCall(TSSolve(ts, x));
168:   PetscCall(TSGetStepNumber(ts, &steps));
169:   PetscCall(VecView(x, PETSC_VIEWER_BINARY_WORLD));

171:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
172:      Free work space.  All PETSc objects should be destroyed when they
173:      are no longer needed.
174:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
175:   PetscCall(MatDestroy(&J));
176:   PetscCall(VecDestroy(&x));
177:   PetscCall(VecDestroy(&r));
178:   PetscCall(TSDestroy(&ts));
179:   PetscCall(DMDestroy(&da));

181:   PetscCall(PetscFinalize());
182:   return 0;
183: }
184: /* ------------------------------------------------------------------- */
185: /*
186:    FormFunction - Evaluates nonlinear function, F(x).

188:    Input Parameters:
189: .  ts - the TS context
190: .  X - input vector
191: .  ptr - optional user-defined context, as set by SNESSetFunction()

193:    Output Parameter:
194: .  F - function vector
195:  */
196: PetscErrorCode FormFunction(TS ts, PetscReal ftime, Vec X, Vec F, void *ptr)
197: {
198:   DM           da;
199:   PetscInt     i, Mx, xs, xm;
200:   PetscReal    hx, sx;
201:   PetscScalar *x, *f, c, r, l;
202:   Vec          localX;
203:   UserCtx     *ctx = (UserCtx *)ptr;
204:   PetscReal    tol = ctx->tol, theta = ctx->theta, theta_c = ctx->theta_c, a, b; /* a and b are used in the cubic truncation of the log function */

206:   PetscFunctionBegin;
207:   PetscCall(TSGetDM(ts, &da));
208:   PetscCall(DMGetLocalVector(da, &localX));
209:   PetscCall(DMDAGetInfo(da, PETSC_IGNORE, &Mx, PETSC_IGNORE, PETSC_IGNORE, PETSC_IGNORE, PETSC_IGNORE, PETSC_IGNORE, PETSC_IGNORE, PETSC_IGNORE, PETSC_IGNORE, PETSC_IGNORE, PETSC_IGNORE, PETSC_IGNORE));

211:   hx = 1.0 / (PetscReal)Mx;
212:   sx = 1.0 / (hx * hx);

214:   /*
215:      Scatter ghost points to local vector,using the 2-step process
216:         DMGlobalToLocalBegin(),DMGlobalToLocalEnd().
217:      By placing code between these two statements, computations can be
218:      done while messages are in transition.
219:   */
220:   PetscCall(DMGlobalToLocalBegin(da, X, INSERT_VALUES, localX));
221:   PetscCall(DMGlobalToLocalEnd(da, X, INSERT_VALUES, localX));

223:   /*
224:      Get pointers to vector data
225:   */
226:   PetscCall(DMDAVecGetArrayRead(da, localX, &x));
227:   PetscCall(DMDAVecGetArray(da, F, &f));

229:   /*
230:      Get local grid boundaries
231:   */
232:   PetscCall(DMDAGetCorners(da, &xs, NULL, NULL, &xm, NULL, NULL));

234:   /*
235:      Compute function over the locally owned part of the grid
236:   */
237:   for (i = xs; i < xs + xm; i++) {
238:     if (ctx->degenerate) {
239:       c = (1. - x[i] * x[i]) * (x[i - 1] + x[i + 1] - 2.0 * x[i]) * sx;
240:       r = (1. - x[i + 1] * x[i + 1]) * (x[i] + x[i + 2] - 2.0 * x[i + 1]) * sx;
241:       l = (1. - x[i - 1] * x[i - 1]) * (x[i - 2] + x[i] - 2.0 * x[i - 1]) * sx;
242:     } else {
243:       c = (x[i - 1] + x[i + 1] - 2.0 * x[i]) * sx;
244:       r = (x[i] + x[i + 2] - 2.0 * x[i + 1]) * sx;
245:       l = (x[i - 2] + x[i] - 2.0 * x[i - 1]) * sx;
246:     }
247:     f[i] = -ctx->kappa * (l + r - 2.0 * c) * sx;
248:     if (ctx->cahnhillard) {
249:       switch (ctx->energy) {
250:       case 1: /*  double well */
251:         f[i] += 6. * .25 * x[i] * (x[i + 1] - x[i - 1]) * (x[i + 1] - x[i - 1]) * sx + (3. * x[i] * x[i] - 1.) * (x[i - 1] + x[i + 1] - 2.0 * x[i]) * sx;
252:         break;
253:       case 2: /* double obstacle */
254:         f[i] += -(x[i - 1] + x[i + 1] - 2.0 * x[i]) * sx;
255:         break;
256:       case 3: /* logarithmic + double well */
257:         f[i] += 6. * .25 * x[i] * (x[i + 1] - x[i - 1]) * (x[i + 1] - x[i - 1]) * sx + (3. * x[i] * x[i] - 1.) * (x[i - 1] + x[i + 1] - 2.0 * x[i]) * sx;
258:         if (ctx->truncation == 2) { /* log function with approximated with a quadratic polynomial outside -1.0+2*tol, 1.0-2*tol */
259:           if (PetscRealPart(x[i]) < -1.0 + 2.0 * tol) f[i] += (.25 * theta / (tol - tol * tol)) * (x[i - 1] + x[i + 1] - 2.0 * x[i]) * sx;
260:           else if (PetscRealPart(x[i]) > 1.0 - 2.0 * tol) f[i] += (.25 * theta / (tol - tol * tol)) * (x[i - 1] + x[i + 1] - 2.0 * x[i]) * sx;
261:           else f[i] += 2.0 * theta * x[i] / ((1.0 - x[i] * x[i]) * (1.0 - x[i] * x[i])) * .25 * (x[i + 1] - x[i - 1]) * (x[i + 1] - x[i - 1]) * sx + (theta / (1.0 - x[i] * x[i])) * (x[i - 1] + x[i + 1] - 2.0 * x[i]) * sx;
262:         } else { /* log function is approximated with a cubic polynomial outside -1.0+2*tol, 1.0-2*tol */
263:           a = 2.0 * theta * (1.0 - 2.0 * tol) / (16.0 * tol * tol * (1.0 - tol) * (1.0 - tol));
264:           b = theta / (4.0 * tol * (1.0 - tol)) - a * (1.0 - 2.0 * tol);
265:           if (PetscRealPart(x[i]) < -1.0 + 2.0 * tol) f[i] += -1.0 * a * .25 * (x[i + 1] - x[i - 1]) * (x[i + 1] - x[i - 1]) * sx + (-1.0 * a * x[i] + b) * (x[i - 1] + x[i + 1] - 2.0 * x[i]) * sx;
266:           else if (PetscRealPart(x[i]) > 1.0 - 2.0 * tol) f[i] += 1.0 * a * .25 * (x[i + 1] - x[i - 1]) * (x[i + 1] - x[i - 1]) * sx + (a * x[i] + b) * (x[i - 1] + x[i + 1] - 2.0 * x[i]) * sx;
267:           else f[i] += 2.0 * theta * x[i] / ((1.0 - x[i] * x[i]) * (1.0 - x[i] * x[i])) * .25 * (x[i + 1] - x[i - 1]) * (x[i + 1] - x[i - 1]) * sx + (theta / (1.0 - x[i] * x[i])) * (x[i - 1] + x[i + 1] - 2.0 * x[i]) * sx;
268:         }
269:         break;
270:       case 4: /* logarithmic + double obstacle */
271:         f[i] += -theta_c * (x[i - 1] + x[i + 1] - 2.0 * x[i]) * sx;
272:         if (ctx->truncation == 2) { /* quadratic */
273:           if (PetscRealPart(x[i]) < -1.0 + 2.0 * tol) f[i] += (.25 * theta / (tol - tol * tol)) * (x[i - 1] + x[i + 1] - 2.0 * x[i]) * sx;
274:           else if (PetscRealPart(x[i]) > 1.0 - 2.0 * tol) f[i] += (.25 * theta / (tol - tol * tol)) * (x[i - 1] + x[i + 1] - 2.0 * x[i]) * sx;
275:           else f[i] += 2.0 * theta * x[i] / ((1.0 - x[i] * x[i]) * (1.0 - x[i] * x[i])) * .25 * (x[i + 1] - x[i - 1]) * (x[i + 1] - x[i - 1]) * sx + (theta / (1.0 - x[i] * x[i])) * (x[i - 1] + x[i + 1] - 2.0 * x[i]) * sx;
276:         } else { /* cubic */
277:           a = 2.0 * theta * (1.0 - 2.0 * tol) / (16.0 * tol * tol * (1.0 - tol) * (1.0 - tol));
278:           b = theta / (4.0 * tol * (1.0 - tol)) - a * (1.0 - 2.0 * tol);
279:           if (PetscRealPart(x[i]) < -1.0 + 2.0 * tol) f[i] += -1.0 * a * .25 * (x[i + 1] - x[i - 1]) * (x[i + 1] - x[i - 1]) * sx + (-1.0 * a * x[i] + b) * (x[i - 1] + x[i + 1] - 2.0 * x[i]) * sx;
280:           else if (PetscRealPart(x[i]) > 1.0 - 2.0 * tol) f[i] += 1.0 * a * .25 * (x[i + 1] - x[i - 1]) * (x[i + 1] - x[i - 1]) * sx + (a * x[i] + b) * (x[i - 1] + x[i + 1] - 2.0 * x[i]) * sx;
281:           else f[i] += 2.0 * theta * x[i] / ((1.0 - x[i] * x[i]) * (1.0 - x[i] * x[i])) * .25 * (x[i + 1] - x[i - 1]) * (x[i + 1] - x[i - 1]) * sx + (theta / (1.0 - x[i] * x[i])) * (x[i - 1] + x[i + 1] - 2.0 * x[i]) * sx;
282:         }
283:         break;
284:       }
285:     }
286:   }

288:   /*
289:      Restore vectors
290:   */
291:   PetscCall(DMDAVecRestoreArrayRead(da, localX, &x));
292:   PetscCall(DMDAVecRestoreArray(da, F, &f));
293:   PetscCall(DMRestoreLocalVector(da, &localX));
294:   PetscFunctionReturn(PETSC_SUCCESS);
295: }

297: /* ------------------------------------------------------------------- */
298: /*
299:    FormJacobian - Evaluates nonlinear function's Jacobian

301: */
302: PetscErrorCode FormJacobian(TS ts, PetscReal ftime, Vec X, Mat A, Mat B, void *ptr)
303: {
304:   DM           da;
305:   PetscInt     i, Mx, xs, xm;
306:   MatStencil   row, cols[5];
307:   PetscReal    hx, sx;
308:   PetscScalar *x, vals[5];
309:   Vec          localX;
310:   UserCtx     *ctx = (UserCtx *)ptr;

312:   PetscFunctionBegin;
313:   PetscCall(TSGetDM(ts, &da));
314:   PetscCall(DMGetLocalVector(da, &localX));
315:   PetscCall(DMDAGetInfo(da, PETSC_IGNORE, &Mx, PETSC_IGNORE, PETSC_IGNORE, PETSC_IGNORE, PETSC_IGNORE, PETSC_IGNORE, PETSC_IGNORE, PETSC_IGNORE, PETSC_IGNORE, PETSC_IGNORE, PETSC_IGNORE, PETSC_IGNORE));

317:   hx = 1.0 / (PetscReal)Mx;
318:   sx = 1.0 / (hx * hx);

320:   /*
321:      Scatter ghost points to local vector,using the 2-step process
322:         DMGlobalToLocalBegin(),DMGlobalToLocalEnd().
323:      By placing code between these two statements, computations can be
324:      done while messages are in transition.
325:   */
326:   PetscCall(DMGlobalToLocalBegin(da, X, INSERT_VALUES, localX));
327:   PetscCall(DMGlobalToLocalEnd(da, X, INSERT_VALUES, localX));

329:   /*
330:      Get pointers to vector data
331:   */
332:   PetscCall(DMDAVecGetArrayRead(da, localX, &x));

334:   /*
335:      Get local grid boundaries
336:   */
337:   PetscCall(DMDAGetCorners(da, &xs, NULL, NULL, &xm, NULL, NULL));

339:   /*
340:      Compute function over the locally owned part of the grid
341:   */
342:   for (i = xs; i < xs + xm; i++) {
343:     row.i = i;
344:     if (ctx->degenerate) {
345:       /*PetscScalar c,r,l;
346:       c = (1. - x[i]*x[i])*(x[i-1] + x[i+1] - 2.0*x[i])*sx;
347:       r = (1. - x[i+1]*x[i+1])*(x[i] + x[i+2] - 2.0*x[i+1])*sx;
348:       l = (1. - x[i-1]*x[i-1])*(x[i-2] + x[i] - 2.0*x[i-1])*sx; */
349:     } else {
350:       cols[0].i = i - 2;
351:       vals[0]   = -ctx->kappa * sx * sx;
352:       cols[1].i = i - 1;
353:       vals[1]   = 4.0 * ctx->kappa * sx * sx;
354:       cols[2].i = i;
355:       vals[2]   = -6.0 * ctx->kappa * sx * sx;
356:       cols[3].i = i + 1;
357:       vals[3]   = 4.0 * ctx->kappa * sx * sx;
358:       cols[4].i = i + 2;
359:       vals[4]   = -ctx->kappa * sx * sx;
360:     }
361:     PetscCall(MatSetValuesStencil(B, 1, &row, 5, cols, vals, INSERT_VALUES));

363:     if (ctx->cahnhillard) {
364:       switch (ctx->energy) {
365:       case 1: /* double well */
366:         /*  f[i] += 6.*.25*x[i]*(x[i+1] - x[i-1])*(x[i+1] - x[i-1])*sx + (3.*x[i]*x[i] - 1.)*(x[i-1] + x[i+1] - 2.0*x[i])*sx; */
367:         break;
368:       case 2: /* double obstacle */
369:         /*        f[i] += -(x[i-1] + x[i+1] - 2.0*x[i])*sx; */
370:         break;
371:       case 3: /* logarithmic + double well */
372:         break;
373:       case 4: /* logarithmic + double obstacle */
374:         break;
375:       }
376:     }
377:   }

379:   /*
380:      Restore vectors
381:   */
382:   PetscCall(DMDAVecRestoreArrayRead(da, localX, &x));
383:   PetscCall(DMRestoreLocalVector(da, &localX));
384:   PetscCall(MatAssemblyBegin(B, MAT_FINAL_ASSEMBLY));
385:   PetscCall(MatAssemblyEnd(B, MAT_FINAL_ASSEMBLY));
386:   if (A != B) {
387:     PetscCall(MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY));
388:     PetscCall(MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY));
389:   }
390:   PetscFunctionReturn(PETSC_SUCCESS);
391: }
392: /* ------------------------------------------------------------------- */
393: PetscErrorCode FormInitialSolution(DM da, Vec U)
394: {
395:   PetscInt           i, xs, xm, Mx, N, scale;
396:   PetscScalar       *u;
397:   PetscReal          r, hx, x;
398:   const PetscScalar *f;
399:   Vec                finesolution;
400:   PetscViewer        viewer;

402:   PetscFunctionBegin;
403:   PetscCall(DMDAGetInfo(da, PETSC_IGNORE, &Mx, PETSC_IGNORE, PETSC_IGNORE, PETSC_IGNORE, PETSC_IGNORE, PETSC_IGNORE, PETSC_IGNORE, PETSC_IGNORE, PETSC_IGNORE, PETSC_IGNORE, PETSC_IGNORE, PETSC_IGNORE));

405:   hx = 1.0 / (PetscReal)Mx;

407:   /*
408:      Get pointers to vector data
409:   */
410:   PetscCall(DMDAVecGetArray(da, U, &u));

412:   /*
413:      Get local grid boundaries
414:   */
415:   PetscCall(DMDAGetCorners(da, &xs, NULL, NULL, &xm, NULL, NULL));

417:   /*
418:       Seee heat.c for how to generate InitialSolution.heat
419:   */
420:   PetscCall(PetscViewerBinaryOpen(PETSC_COMM_WORLD, "InitialSolution.heat", FILE_MODE_READ, &viewer));
421:   PetscCall(VecCreate(PETSC_COMM_WORLD, &finesolution));
422:   PetscCall(VecLoad(finesolution, viewer));
423:   PetscCall(PetscViewerDestroy(&viewer));
424:   PetscCall(VecGetSize(finesolution, &N));
425:   scale = N / Mx;
426:   PetscCall(VecGetArrayRead(finesolution, &f));

428:   /*
429:      Compute function over the locally owned part of the grid
430:   */
431:   for (i = xs; i < xs + xm; i++) {
432:     x = i * hx;
433:     r = PetscSqrtReal((x - .5) * (x - .5));
434:     if (r < .125) u[i] = 1.0;
435:     else u[i] = -.5;

437:     /* With the initial condition above the method is first order in space */
438:     /* this is a smooth initial condition so the method becomes second order in space */
439:     /*u[i] = PetscSinScalar(2*PETSC_PI*x); */
440:     u[i] = f[scale * i];
441:   }
442:   PetscCall(VecRestoreArrayRead(finesolution, &f));
443:   PetscCall(VecDestroy(&finesolution));

445:   /*
446:      Restore vectors
447:   */
448:   PetscCall(DMDAVecRestoreArray(da, U, &u));
449:   PetscFunctionReturn(PETSC_SUCCESS);
450: }

452: /*
453:     This routine is not parallel
454: */
455: PetscErrorCode MyMonitor(TS ts, PetscInt step, PetscReal time, Vec U, void *ptr)
456: {
457:   UserCtx     *ctx = (UserCtx *)ptr;
458:   PetscDrawLG  lg;
459:   PetscScalar *u, l, r, c;
460:   PetscInt     Mx, i, xs, xm, cnt;
461:   PetscReal    x, y, hx, pause, sx, len, max, xx[4], yy[4], xx_netforce, yy_netforce, yup, ydown, y2, len2;
462:   PetscDraw    draw;
463:   Vec          localU;
464:   DM           da;
465:   int          colors[] = {PETSC_DRAW_YELLOW, PETSC_DRAW_RED, PETSC_DRAW_BLUE, PETSC_DRAW_PLUM, PETSC_DRAW_BLACK};
466:   /*
467:   const char *const  legend[3][3] = {{"-kappa (\\grad u,\\grad u)","(1 - u^2)^2"},{"-kappa (\\grad u,\\grad u)","(1 - u^2)"},{"-kappa (\\grad u,\\grad u)","logarithmic"}};
468:    */
469:   PetscDrawAxis       axis;
470:   PetscDrawViewPorts *ports;
471:   PetscReal           tol = ctx->tol, theta = ctx->theta, theta_c = ctx->theta_c, a, b; /* a and b are used in the cubic truncation of the log function */
472:   PetscReal           vbounds[] = {-1.1, 1.1};

474:   PetscFunctionBegin;
475:   PetscCall(PetscViewerDrawSetBounds(PETSC_VIEWER_DRAW_(PETSC_COMM_WORLD), 1, vbounds));
476:   PetscCall(PetscViewerDrawResize(PETSC_VIEWER_DRAW_(PETSC_COMM_WORLD), 800, 600));
477:   PetscCall(TSGetDM(ts, &da));
478:   PetscCall(DMGetLocalVector(da, &localU));
479:   PetscCall(DMDAGetInfo(da, PETSC_IGNORE, &Mx, PETSC_IGNORE, PETSC_IGNORE, PETSC_IGNORE, PETSC_IGNORE, PETSC_IGNORE, PETSC_IGNORE, PETSC_IGNORE, PETSC_IGNORE, PETSC_IGNORE, PETSC_IGNORE, PETSC_IGNORE));
480:   PetscCall(DMDAGetCorners(da, &xs, NULL, NULL, &xm, NULL, NULL));
481:   hx = 1.0 / (PetscReal)Mx;
482:   sx = 1.0 / (hx * hx);
483:   PetscCall(DMGlobalToLocalBegin(da, U, INSERT_VALUES, localU));
484:   PetscCall(DMGlobalToLocalEnd(da, U, INSERT_VALUES, localU));
485:   PetscCall(DMDAVecGetArrayRead(da, localU, &u));

487:   PetscCall(PetscViewerDrawGetDrawLG(PETSC_VIEWER_DRAW_(PETSC_COMM_WORLD), 1, &lg));
488:   PetscCall(PetscDrawLGGetDraw(lg, &draw));
489:   PetscCall(PetscDrawCheckResizedWindow(draw));
490:   if (!ctx->ports) PetscCall(PetscDrawViewPortsCreateRect(draw, 1, 3, &ctx->ports));
491:   ports = ctx->ports;
492:   PetscCall(PetscDrawLGGetAxis(lg, &axis));
493:   PetscCall(PetscDrawLGReset(lg));

495:   xx[0] = 0.0;
496:   xx[1] = 1.0;
497:   cnt   = 2;
498:   PetscCall(PetscOptionsGetRealArray(NULL, NULL, "-zoom", xx, &cnt, NULL));
499:   xs = xx[0] / hx;
500:   xm = (xx[1] - xx[0]) / hx;

502:   /*
503:       Plot the  energies
504:   */
505:   PetscCall(PetscDrawLGSetDimension(lg, 1 + (ctx->cahnhillard ? 1 : 0) + (ctx->energy == 3)));
506:   PetscCall(PetscDrawLGSetColors(lg, colors + 1));
507:   PetscCall(PetscDrawViewPortsSet(ports, 2));
508:   x = hx * xs;
509:   for (i = xs; i < xs + xm; i++) {
510:     xx[0] = xx[1] = xx[2] = x;
511:     if (ctx->degenerate) yy[0] = PetscRealPart(.25 * (1. - u[i] * u[i]) * ctx->kappa * (u[i - 1] - u[i + 1]) * (u[i - 1] - u[i + 1]) * sx);
512:     else yy[0] = PetscRealPart(.25 * ctx->kappa * (u[i - 1] - u[i + 1]) * (u[i - 1] - u[i + 1]) * sx);

514:     if (ctx->cahnhillard) {
515:       switch (ctx->energy) {
516:       case 1: /* double well */
517:         yy[1] = .25 * PetscRealPart((1. - u[i] * u[i]) * (1. - u[i] * u[i]));
518:         break;
519:       case 2: /* double obstacle */
520:         yy[1] = .5 * PetscRealPart(1. - u[i] * u[i]);
521:         break;
522:       case 3: /* logarithm + double well */
523:         yy[1] = .25 * PetscRealPart((1. - u[i] * u[i]) * (1. - u[i] * u[i]));
524:         if (PetscRealPart(u[i]) < -1.0 + 2.0 * tol) yy[2] = .5 * theta * (2.0 * tol * PetscLogReal(tol) + PetscRealPart(1.0 - u[i]) * PetscLogReal(PetscRealPart(1. - u[i]) / 2.0));
525:         else if (PetscRealPart(u[i]) > 1.0 - 2.0 * tol) yy[2] = .5 * theta * (PetscRealPart(1.0 + u[i]) * PetscLogReal(PetscRealPart(1.0 + u[i]) / 2.0) + 2.0 * tol * PetscLogReal(tol));
526:         else yy[2] = .5 * theta * (PetscRealPart(1.0 + u[i]) * PetscLogReal(PetscRealPart(1.0 + u[i]) / 2.0) + PetscRealPart(1.0 - u[i]) * PetscLogReal(PetscRealPart(1.0 - u[i]) / 2.0));
527:         break;
528:       case 4: /* logarithm + double obstacle */
529:         yy[1] = .5 * theta_c * PetscRealPart(1.0 - u[i] * u[i]);
530:         if (PetscRealPart(u[i]) < -1.0 + 2.0 * tol) yy[2] = .5 * theta * (2.0 * tol * PetscLogReal(tol) + PetscRealPart(1.0 - u[i]) * PetscLogReal(PetscRealPart(1. - u[i]) / 2.0));
531:         else if (PetscRealPart(u[i]) > 1.0 - 2.0 * tol) yy[2] = .5 * theta * (PetscRealPart(1.0 + u[i]) * PetscLogReal(PetscRealPart(1.0 + u[i]) / 2.0) + 2.0 * tol * PetscLogReal(tol));
532:         else yy[2] = .5 * theta * (PetscRealPart(1.0 + u[i]) * PetscLogReal(PetscRealPart(1.0 + u[i]) / 2.0) + PetscRealPart(1.0 - u[i]) * PetscLogReal(PetscRealPart(1.0 - u[i]) / 2.0));
533:         break;
534:       default:
535:         SETERRQ(PETSC_COMM_SELF, PETSC_ERR_PLIB, "It will always be one of the values");
536:       }
537:     }
538:     PetscCall(PetscDrawLGAddPoint(lg, xx, yy));
539:     x += hx;
540:   }
541:   PetscCall(PetscDrawGetPause(draw, &pause));
542:   PetscCall(PetscDrawSetPause(draw, 0.0));
543:   PetscCall(PetscDrawAxisSetLabels(axis, "Energy", "", ""));
544:   /*  PetscCall(PetscDrawLGSetLegend(lg,legend[ctx->energy-1])); */
545:   PetscCall(PetscDrawLGDraw(lg));

547:   /*
548:       Plot the  forces
549:   */
550:   PetscCall(PetscDrawLGSetDimension(lg, 0 + (ctx->cahnhillard ? 2 : 0) + (ctx->energy == 3)));
551:   PetscCall(PetscDrawLGSetColors(lg, colors + 1));
552:   PetscCall(PetscDrawViewPortsSet(ports, 1));
553:   PetscCall(PetscDrawLGReset(lg));
554:   x   = xs * hx;
555:   max = 0.;
556:   for (i = xs; i < xs + xm; i++) {
557:     xx[0] = xx[1] = xx[2] = xx[3] = x;
558:     xx_netforce                   = x;
559:     if (ctx->degenerate) {
560:       c = (1. - u[i] * u[i]) * (u[i - 1] + u[i + 1] - 2.0 * u[i]) * sx;
561:       r = (1. - u[i + 1] * u[i + 1]) * (u[i] + u[i + 2] - 2.0 * u[i + 1]) * sx;
562:       l = (1. - u[i - 1] * u[i - 1]) * (u[i - 2] + u[i] - 2.0 * u[i - 1]) * sx;
563:     } else {
564:       c = (u[i - 1] + u[i + 1] - 2.0 * u[i]) * sx;
565:       r = (u[i] + u[i + 2] - 2.0 * u[i + 1]) * sx;
566:       l = (u[i - 2] + u[i] - 2.0 * u[i - 1]) * sx;
567:     }
568:     yy[0]       = PetscRealPart(-ctx->kappa * (l + r - 2.0 * c) * sx);
569:     yy_netforce = yy[0];
570:     max         = PetscMax(max, PetscAbs(yy[0]));
571:     if (ctx->cahnhillard) {
572:       switch (ctx->energy) {
573:       case 1: /* double well */
574:         yy[1] = PetscRealPart(6. * .25 * u[i] * (u[i + 1] - u[i - 1]) * (u[i + 1] - u[i - 1]) * sx + (3. * u[i] * u[i] - 1.) * (u[i - 1] + u[i + 1] - 2.0 * u[i]) * sx);
575:         break;
576:       case 2: /* double obstacle */
577:         yy[1] = -PetscRealPart(u[i - 1] + u[i + 1] - 2.0 * u[i]) * sx;
578:         break;
579:       case 3: /* logarithmic + double well */
580:         yy[1] = PetscRealPart(6. * .25 * u[i] * (u[i + 1] - u[i - 1]) * (u[i + 1] - u[i - 1]) * sx + (3. * u[i] * u[i] - 1.) * (u[i - 1] + u[i + 1] - 2.0 * u[i]) * sx);
581:         if (ctx->truncation == 2) { /* quadratic */
582:           if (PetscRealPart(u[i]) < -1.0 + 2.0 * tol) yy[2] = (.25 * theta / (tol - tol * tol)) * PetscRealPart(u[i - 1] + u[i + 1] - 2.0 * u[i]) * sx;
583:           else if (PetscRealPart(u[i]) > 1.0 - 2.0 * tol) yy[2] = (.25 * theta / (tol - tol * tol)) * PetscRealPart(u[i - 1] + u[i + 1] - 2.0 * u[i]) * sx;
584:           else yy[2] = PetscRealPart(2.0 * theta * u[i] / ((1.0 - u[i] * u[i]) * (1.0 - u[i] * u[i])) * .25 * (u[i + 1] - u[i - 1]) * (u[i + 1] - u[i - 1]) * sx + (theta / (1.0 - u[i] * u[i])) * (u[i - 1] + u[i + 1] - 2.0 * u[i]) * sx);
585:         } else { /* cubic */
586:           a = 2.0 * theta * (1.0 - 2.0 * tol) / (16.0 * tol * tol * (1.0 - tol) * (1.0 - tol));
587:           b = theta / (4.0 * tol * (1.0 - tol)) - a * (1.0 - 2.0 * tol);
588:           if (PetscRealPart(u[i]) < -1.0 + 2.0 * tol) yy[2] = PetscRealPart(-1.0 * a * .25 * (u[i + 1] - u[i - 1]) * (u[i + 1] - u[i - 1]) * sx + (-1.0 * a * u[i] + b) * (u[i - 1] + u[i + 1] - 2.0 * u[i]) * sx);
589:           else if (PetscRealPart(u[i]) > 1.0 - 2.0 * tol) yy[2] = PetscRealPart(1.0 * a * .25 * (u[i + 1] - u[i - 1]) * (u[i + 1] - u[i - 1]) * sx + (a * u[i] + b) * (u[i - 1] + u[i + 1] - 2.0 * u[i]) * sx);
590:           else yy[2] = PetscRealPart(2.0 * theta * u[i] / ((1.0 - u[i] * u[i]) * (1.0 - u[i] * u[i])) * .25 * (u[i + 1] - u[i - 1]) * (u[i + 1] - u[i - 1]) * sx + (theta / (1.0 - u[i] * u[i])) * (u[i - 1] + u[i + 1] - 2.0 * u[i]) * sx);
591:         }
592:         break;
593:       case 4: /* logarithmic + double obstacle */
594:         yy[1] = theta_c * PetscRealPart(-(u[i - 1] + u[i + 1] - 2.0 * u[i])) * sx;
595:         if (ctx->truncation == 2) {
596:           if (PetscRealPart(u[i]) < -1.0 + 2.0 * tol) yy[2] = (.25 * theta / (tol - tol * tol)) * PetscRealPart(u[i - 1] + u[i + 1] - 2.0 * u[i]) * sx;
597:           else if (PetscRealPart(u[i]) > 1.0 - 2.0 * tol) yy[2] = (.25 * theta / (tol - tol * tol)) * PetscRealPart(u[i - 1] + u[i + 1] - 2.0 * u[i]) * sx;
598:           else yy[2] = PetscRealPart(2.0 * theta * u[i] / ((1.0 - u[i] * u[i]) * (1.0 - u[i] * u[i])) * .25 * (u[i + 1] - u[i - 1]) * (u[i + 1] - u[i - 1]) * sx + (theta / (1.0 - u[i] * u[i])) * (u[i - 1] + u[i + 1] - 2.0 * u[i]) * sx);
599:         } else {
600:           a = 2.0 * theta * (1.0 - 2.0 * tol) / (16.0 * tol * tol * (1.0 - tol) * (1.0 - tol));
601:           b = theta / (4.0 * tol * (1.0 - tol)) - a * (1.0 - 2.0 * tol);
602:           if (PetscRealPart(u[i]) < -1.0 + 2.0 * tol) yy[2] = PetscRealPart(-1.0 * a * .25 * (u[i + 1] - u[i - 1]) * (u[i + 1] - u[i - 1]) * sx + (-1.0 * a * u[i] + b) * (u[i - 1] + u[i + 1] - 2.0 * u[i]) * sx);
603:           else if (PetscRealPart(u[i]) > 1.0 - 2.0 * tol) yy[2] = PetscRealPart(1.0 * a * .25 * (u[i + 1] - u[i - 1]) * (u[i + 1] - u[i - 1]) * sx + (a * u[i] + b) * (u[i - 1] + u[i + 1] - 2.0 * u[i]) * sx);
604:           else yy[2] = PetscRealPart(2.0 * theta * u[i] / ((1.0 - u[i] * u[i]) * (1.0 - u[i] * u[i])) * .25 * (u[i + 1] - u[i - 1]) * (u[i + 1] - u[i - 1]) * sx + (theta / (1.0 - u[i] * u[i])) * (u[i - 1] + u[i + 1] - 2.0 * u[i]) * sx);
605:         }
606:         break;
607:       default:
608:         SETERRQ(PETSC_COMM_SELF, PETSC_ERR_PLIB, "It will always be one of the values");
609:       }
610:       if (ctx->energy < 3) {
611:         max         = PetscMax(max, PetscAbs(yy[1]));
612:         yy[2]       = yy[0] + yy[1];
613:         yy_netforce = yy[2];
614:       } else {
615:         max         = PetscMax(max, PetscAbs(yy[1] + yy[2]));
616:         yy[3]       = yy[0] + yy[1] + yy[2];
617:         yy_netforce = yy[3];
618:       }
619:     }
620:     if (ctx->netforce) {
621:       PetscCall(PetscDrawLGAddPoint(lg, &xx_netforce, &yy_netforce));
622:     } else {
623:       PetscCall(PetscDrawLGAddPoint(lg, xx, yy));
624:     }
625:     x += hx;
626:     /*if (max > 7200150000.0) */
627:     /* printf("max very big when i = %d\n",i); */
628:   }
629:   PetscCall(PetscDrawAxisSetLabels(axis, "Right hand side", "", ""));
630:   PetscCall(PetscDrawLGSetLegend(lg, NULL));
631:   PetscCall(PetscDrawLGDraw(lg));

633:   /*
634:         Plot the solution
635:   */
636:   PetscCall(PetscDrawLGSetDimension(lg, 1));
637:   PetscCall(PetscDrawViewPortsSet(ports, 0));
638:   PetscCall(PetscDrawLGReset(lg));
639:   x = hx * xs;
640:   PetscCall(PetscDrawLGSetLimits(lg, x, x + (xm - 1) * hx, -1.1, 1.1));
641:   PetscCall(PetscDrawLGSetColors(lg, colors));
642:   for (i = xs; i < xs + xm; i++) {
643:     xx[0] = x;
644:     yy[0] = PetscRealPart(u[i]);
645:     PetscCall(PetscDrawLGAddPoint(lg, xx, yy));
646:     x += hx;
647:   }
648:   PetscCall(PetscDrawAxisSetLabels(axis, "Solution", "", ""));
649:   PetscCall(PetscDrawLGDraw(lg));

651:   /*
652:       Print the  forces as arrows on the solution
653:   */
654:   x   = hx * xs;
655:   cnt = xm / 60;
656:   cnt = (!cnt) ? 1 : cnt;

658:   for (i = xs; i < xs + xm; i += cnt) {
659:     y = yup = ydown = PetscRealPart(u[i]);
660:     c               = (u[i - 1] + u[i + 1] - 2.0 * u[i]) * sx;
661:     r               = (u[i] + u[i + 2] - 2.0 * u[i + 1]) * sx;
662:     l               = (u[i - 2] + u[i] - 2.0 * u[i - 1]) * sx;
663:     len             = -.5 * PetscRealPart(ctx->kappa * (l + r - 2.0 * c) * sx) / max;
664:     PetscCall(PetscDrawArrow(draw, x, y, x, y + len, PETSC_DRAW_RED));
665:     if (ctx->cahnhillard) {
666:       if (len < 0.) ydown += len;
667:       else yup += len;

669:       switch (ctx->energy) {
670:       case 1: /* double well */
671:         len = .5 * PetscRealPart(6. * .25 * u[i] * (u[i + 1] - u[i - 1]) * (u[i + 1] - u[i - 1]) * sx + (3. * u[i] * u[i] - 1.) * (u[i - 1] + u[i + 1] - 2.0 * u[i]) * sx) / max;
672:         break;
673:       case 2: /* double obstacle */
674:         len = -.5 * PetscRealPart(u[i - 1] + u[i + 1] - 2.0 * u[i]) * sx / max;
675:         break;
676:       case 3: /* logarithmic + double well */
677:         len = .5 * PetscRealPart(6. * .25 * u[i] * (u[i + 1] - u[i - 1]) * (u[i + 1] - u[i - 1]) * sx + (3. * u[i] * u[i] - 1.) * (u[i - 1] + u[i + 1] - 2.0 * u[i]) * sx) / max;
678:         if (len < 0.) ydown += len;
679:         else yup += len;

681:         if (ctx->truncation == 2) { /* quadratic */
682:           if (PetscRealPart(u[i]) < -1.0 + 2.0 * tol) len2 = .5 * (.25 * theta / (tol - tol * tol)) * PetscRealPart(u[i - 1] + u[i + 1] - 2.0 * u[i]) * sx / max;
683:           else if (PetscRealPart(u[i]) > 1.0 - 2.0 * tol) len2 = .5 * (.25 * theta / (tol - tol * tol)) * PetscRealPart(u[i - 1] + u[i + 1] - 2.0 * u[i]) * sx / max;
684:           else len2 = PetscRealPart(.5 * (2.0 * theta * u[i] / ((1.0 - u[i] * u[i]) * (1.0 - u[i] * u[i])) * .25 * (u[i + 1] - u[i - 1]) * (u[i + 1] - u[i - 1]) * sx + (theta / (1.0 - u[i] * u[i])) * (u[i - 1] + u[i + 1] - 2.0 * u[i]) * sx) / max);
685:         } else { /* cubic */
686:           a = 2.0 * theta * (1.0 - 2.0 * tol) / (16.0 * tol * tol * (1.0 - tol) * (1.0 - tol));
687:           b = theta / (4.0 * tol * (1.0 - tol)) - a * (1.0 - 2.0 * tol);
688:           if (PetscRealPart(u[i]) < -1.0 + 2.0 * tol) len2 = PetscRealPart(.5 * (-1.0 * a * .25 * (u[i + 1] - u[i - 1]) * (u[i + 1] - u[i - 1]) * sx + (-1.0 * a * u[i] + b) * (u[i - 1] + u[i + 1] - 2.0 * u[i]) * sx) / max);
689:           else if (PetscRealPart(u[i]) > 1.0 - 2.0 * tol) len2 = PetscRealPart(.5 * (a * .25 * (u[i + 1] - u[i - 1]) * (u[i + 1] - u[i - 1]) * sx + (a * u[i] + b) * (u[i - 1] + u[i + 1] - 2.0 * u[i]) * sx) / max);
690:           else len2 = PetscRealPart(.5 * (2.0 * theta * u[i] / ((1.0 - u[i] * u[i]) * (1.0 - u[i] * u[i])) * .25 * (u[i + 1] - u[i - 1]) * (u[i + 1] - u[i - 1]) * sx + (theta / (1.0 - u[i] * u[i])) * (u[i - 1] + u[i + 1] - 2.0 * u[i]) * sx) / max);
691:         }
692:         y2 = len < 0 ? ydown : yup;
693:         PetscCall(PetscDrawArrow(draw, x, y2, x, y2 + len2, PETSC_DRAW_PLUM));
694:         break;
695:       case 4: /* logarithmic + double obstacle */
696:         len = -.5 * theta_c * PetscRealPart(-(u[i - 1] + u[i + 1] - 2.0 * u[i]) * sx / max);
697:         if (len < 0.) ydown += len;
698:         else yup += len;

700:         if (ctx->truncation == 2) { /* quadratic */
701:           if (PetscRealPart(u[i]) < -1.0 + 2.0 * tol) len2 = .5 * (.25 * theta / (tol - tol * tol)) * PetscRealPart(u[i - 1] + u[i + 1] - 2.0 * u[i]) * sx / max;
702:           else if (PetscRealPart(u[i]) > 1.0 - 2.0 * tol) len2 = .5 * (.25 * theta / (tol - tol * tol)) * PetscRealPart(u[i - 1] + u[i + 1] - 2.0 * u[i]) * sx / max;
703:           else len2 = PetscRealPart(.5 * (2.0 * theta * u[i] / ((1.0 - u[i] * u[i]) * (1.0 - u[i] * u[i])) * .25 * (u[i + 1] - u[i - 1]) * (u[i + 1] - u[i - 1]) * sx + (theta / (1.0 - u[i] * u[i])) * (u[i - 1] + u[i + 1] - 2.0 * u[i]) * sx) / max);
704:         } else { /* cubic */
705:           a = 2.0 * theta * (1.0 - 2.0 * tol) / (16.0 * tol * tol * (1.0 - tol) * (1.0 - tol));
706:           b = theta / (4.0 * tol * (1.0 - tol)) - a * (1.0 - 2.0 * tol);
707:           if (PetscRealPart(u[i]) < -1.0 + 2.0 * tol) len2 = .5 * PetscRealPart(-1.0 * a * .25 * (u[i + 1] - u[i - 1]) * (u[i + 1] - u[i - 1]) * sx + (-1.0 * a * u[i] + b) * (u[i - 1] + u[i + 1] - 2.0 * u[i]) * sx) / max;
708:           else if (PetscRealPart(u[i]) > 1.0 - 2.0 * tol) len2 = .5 * PetscRealPart(a * .25 * (u[i + 1] - u[i - 1]) * (u[i + 1] - u[i - 1]) * sx + (a * u[i] + b) * (u[i - 1] + u[i + 1] - 2.0 * u[i]) * sx) / max;
709:           else len2 = .5 * PetscRealPart(2.0 * theta * u[i] / ((1.0 - u[i] * u[i]) * (1.0 - u[i] * u[i])) * .25 * (u[i + 1] - u[i - 1]) * (u[i + 1] - u[i - 1]) * sx + (theta / (1.0 - u[i] * u[i])) * (u[i - 1] + u[i + 1] - 2.0 * u[i]) * sx) / max;
710:         }
711:         y2 = len < 0 ? ydown : yup;
712:         PetscCall(PetscDrawArrow(draw, x, y2, x, y2 + len2, PETSC_DRAW_PLUM));
713:         break;
714:       }
715:       PetscCall(PetscDrawArrow(draw, x, y, x, y + len, PETSC_DRAW_BLUE));
716:     }
717:     x += cnt * hx;
718:   }
719:   PetscCall(DMDAVecRestoreArrayRead(da, localU, &x));
720:   PetscCall(DMRestoreLocalVector(da, &localU));
721:   PetscCall(PetscDrawStringSetSize(draw, .2, .2));
722:   PetscCall(PetscDrawFlush(draw));
723:   PetscCall(PetscDrawSetPause(draw, pause));
724:   PetscCall(PetscDrawPause(draw));
725:   PetscFunctionReturn(PETSC_SUCCESS);
726: }

728: PetscErrorCode MyDestroy(void **ptr)
729: {
730:   UserCtx *ctx = *(UserCtx **)ptr;

732:   PetscFunctionBegin;
733:   PetscCall(PetscDrawViewPortsDestroy(ctx->ports));
734:   PetscFunctionReturn(PETSC_SUCCESS);
735: }

737: /*TEST

739:    test:
740:      TODO: currently requires initial condition file generated by heat

742: TEST*/